• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 386
  • 105
  • 74
  • 40
  • 21
  • 19
  • 11
  • 11
  • 10
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 866
  • 231
  • 128
  • 104
  • 94
  • 79
  • 74
  • 73
  • 72
  • 67
  • 52
  • 51
  • 50
  • 47
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Numerical simulation of weldment creep response

Segle, Peter January 2002 (has links)
<p>In-service inspections of high temperature pressureequipment show that weldments are prone to creep and fatiguedamage. It is not uncommon that severely damaged weldments arefound even before the design life of the component has beenreached. In order to improve this situation action has beentaken during the last decades, both from industry, universitiesand research institutes, aiming at an enhanced understanding ofthe weldment response.</p><p>The work presented in this thesis focuses on numericalsimulation of weldment creep response. For a more profoundunderstanding of the evolution of creep damage in mismatchedlow alloy weldments, simulations are performed using thecontinuum damage mechanics, CDM, concept. Both design and lifeassessment aspects are addressed. The possibility to assessseam welded pipes using results from tests of cross-weldspecimens taken out from the seam is investigated. It is foundthat the larger the cross-weld specimen the better thecorrelation. The advantage to use the CDM concept prior to aregular creep analysis is also pointed out. In order to developthe CDM analysis, a modified Kachanov-Rabotnov constitutivemodel is implemented into ABAQUS. Using this model, a secondredistribution of stresses is revealed as the tertiary creepstage is reached in the mismatched weldment.</p><p>Creep crack growth, CCG, in cross-weld compact tension, CT,specimens is investigated numerically where a fracturemechanics concept is developed in two steps. In the first one,the C<sup>*</sup>value and an averaged constraint parameter areused for characterising the fields in the process zone, whilein the second step, the creep deformation rate perpendicular tothe crack plane and a constraint parameter ahead of the cracktip, are used as characterising parameters. The influence oftype and degree of mismatch, location of starter notch as wellas size of CT specimen, is investigated. Results show that notonly the material properties of the weldment constituentcontaining the crack, but also the deformation properties ofthe adjacent constituents, influence the CCG behaviour.Furthermore, the effect of size is influenced by the mismatchof the weldment constituents.</p><p>A circumferentially cracked girth weld with differentmismatch is assessed numerically by use of the fracturemechanics concept developed. The results show that type anddegree of mismatch have a great influence on the CCG behaviourand that C<sup>*</sup>alone cannot characterise crack tip fields.Corresponding R5 assessments are also performed. Comparisonwith the numerical investigation shows that the assumption ofplane stress or plane strain conditions in the R5 analysis isessential for the agreement of the results. Assuming the formerresults in a relatively good agreement for the axial stressdominated cases while for the hoop stress dominated cases, R5predicts higher CCG rates by an order of magnitude.</p><p><b>Keywords:</b>ABAQUS, constraint effect, continuum damagemechanics, creep, creep crack growth, design, design code,finite element method, fracture mechanics, life assessment,mismatch, numerical simulation, weldment</p>
262

Fiber takviyeli elastik malzemelerin sürekli ortam hasar mekaniğine dayalı bünye denklemlerinin modellenmesi /

Korkmaz, Ayşe Hilal. Usal, Melek. January 2009 (has links) (PDF)
Tez (Yüksek Lisans) - Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Makine Eğitimi Anabilim Dalı, 2009. / Kaynakça var.
263

Development of an efficient embedded discrete fracture model for 3D compositional reservoir simulation in fractured reservoirs

Moinfar, Ali, 1984- 02 October 2013 (has links)
Naturally fractured reservoirs (NFRs) hold a significant amount of the world's hydrocarbon reserves. Compared to conventional reservoirs, NFRs exhibit a higher degree of heterogeneity and complexity created by fractures. The importance of fractures in production of oil and gas is not limited to naturally fractured reservoirs. The economic exploitation of unconventional reservoirs, which is increasingly a major source of short- and long-term energy in the United States, hinges in part on effective stimulation of low-permeability rock through multi-stage hydraulic fracturing of horizontal wells. Accurate modeling and simulation of fractured media is still challenging owing to permeability anisotropies and contrasts. Non-physical abstractions inherent in conventional dual porosity and dual permeability models make these methods inadequate for solving different fluid-flow problems in fractured reservoirs. Also, recent approaches for discrete fracture modeling may require large computational times and hence the oil industry has not widely used such approaches, even though they give more accurate representations of fractured reservoirs than dual continuum models. We developed an embedded discrete fracture model (EDFM) for an in-house fully-implicit compositional reservoir simulator. EDFM borrows the dual-medium concept from conventional dual continuum models and also incorporates the effect of each fracture explicitly. In contrast to dual continuum models, fractures have arbitrary orientations and can be oblique or vertical, honoring the complexity and heterogeneity of a typical fractured reservoir. EDFM employs a structured grid to remediate challenges associated with unstructured gridding required for other discrete fracture models. Also, the EDFM approach can be easily incorporated in existing finite difference reservoir simulators. The accuracy of the EDFM approach was confirmed by comparing the results with analytical solutions and fine-grid, explicit-fracture simulations. Comparison of our results using the EDFM approach with fine-grid simulations showed that accurate results can be achieved using moderate grid refinements. This was further verified in a mesh sensitivity study that the EDFM approach with moderate grid refinement can obtain a converged solution. Hence, EDFM offers a computationally-efficient approach for simulating fluid flow in NFRs. Furthermore, several case studies presented in this study demonstrate the applicability, robustness, and efficiency of the EDFM approach for modeling fluid flow in fractured porous media. Another advantage of EDFM is its extensibility for various applications by incorporating different physics in the model. In order to examine the effect of pressure-dependent fracture properties on production, we incorporated the dynamic behavior of fractures into EDFM by employing empirical fracture deformation models. Our simulations showed that fracture deformation, caused by effective stress changes, substantially affects pressure depletion and hydrocarbon recovery. Based on the examples presented in this study, implementation of fracture geomechanical effects in EDFM did not degrade the computational performance of EDFM. Many unconventional reservoirs comprise well-developed natural fracture networks with multiple orientations and complex hydraulic fracture patterns suggested by microseismic data. We developed a coupled dual continuum and discrete fracture model to efficiently simulate production from these reservoirs. Large-scale hydraulic fractures were modeled explicitly using the EDFM approach and numerous small-scale natural fractures were modeled using a dual continuum approach. The transport parameters for dual continuum modeling of numerous natural fractures were derived by upscaling the EDFM equations. Comparison of the results using the coupled model with that of using the EDFM approach to represent all natural and hydraulic fractures explicitly showed that reasonably accurate results can be obtained at much lower computational cost by using the coupled approach with moderate grid refinements. / text
264

Between suicidality and self : effects of mindfulness on college students' entrance into and progression along the continuum of suicidality

Hess, Elaine Allison 17 October 2013 (has links)
Suicide is the second leading cause of death among college students, making it a prime target for prevention initiatives on college campuses. Efforts to manage the problem of suicidality on campus frequently involve shepherding students at elevated risk into treatment services through the college counseling center. Several scholars have called for suicide prevention efforts to take a public health approach, seeking to intervene more broadly by improving the mental health of the general population that is currently at little to no risk of developing an imminent suicidal crisis. One manner of expanding these prevention efforts is to investigate those factors that preserve the emotional and mental resilience of college students facing similar life stressors and distress levels. As such, scholars of suicidality have called for closer examination of those protective factors that prevent some students--experiencing comparable levels of stress as compared to their suicidal peers--from ever entering into or progressing along the suicidality continuum. Mindfulness is a construct that has shown promise in the intervention literature for its ameliorative affect on a range of disorders and problematic coping behaviors. The possible protective benefit of dispositional levels of mindfulness at varying points along the suicidal continuum is not well understood, and the present study seeks to remedy this gap in the literature in a large sample of college students. Using archival data from a national survey of college student coping collected in 2011 by The National Research Consortium of Counseling Centers in Higher Education, this study explored the effect of trait mindfulness levels on entry into and progression along the continuum of suicidality. Multilevel modeling was used to explore associations between historical and demographic predictors of suicidality, dispositional mindfulness levels, self-reported distress levels during a recent stressful period, strength of intent during a recent suicidal crisis, and suicidal thoughts and behaviors along a continuum of suicidality. Results indicated that mindfulness conveys protection at the threshold of developing suicidal thoughts during a recent stressor, but is not associated with the shift from suicidal thoughts to the development of suicidal behaviors. Implications are discussed with respect to the role mindfulness can play in the development of comprehensive, population-based suicide prevention programming and mental health promotion initiatives on college campuses. / text
265

Quantifying electrostatic fields at protein interfaces using classical electrostatics calculations

Ritchie, Andrew William 17 September 2015 (has links)
The functional aspects of proteins are largely dictated by highly selective protein- protein and protein-ligand interactions, even in situations of high structural homology, where electrostatic factors are the major contributors to selectivity. The vibrational Stark effect (VSE) allows us to measure electrostatic fields in complex environments, such as proteins, by the introduction of a vibrational chromophore whose vibrational absorption energy is linearly sensitive to changes in the local electrostatic field. The works presented here seek to computationally quantify electrostatic fields measured via VSE, with the eventual goal of being able to quantitatively predict electrostatic fields, and therefore Stark shifts, for any given protein-interaction. This is done using extensive molecular dynamics in the Amber03 and AMOEBA force fields to generate large ensembles the GTPase Rap1a docked to RalGDS and [superscript p]²¹Ras docked to RalGDS. We discuss how side chain orientations contribute to the differential binding of different mutations of Rap1a binding to RalGDS, where it was found that a hydrogen-bonding pocket is disrupted by the mutation of position 31 from lysine to glutamic acid. We then show that multi-dimensional umbrella sampling of the probe orientations yields a wider range of accessible structures, increasing the quality of the ensembles generated. A large variety of methods for calculating electrostatic fields are presented, with Poisson- Boltzmann electrostatics yielding the most consistent, reliable results. Finally, we explore using AMOEBA for both ensemble-generation as well as the electrostatic description of atoms for field calculations, where early results suggest that the electrostatic field due to the induce dipole moment of the probe is responsible for predicting qualitatively correct Stark shifts.
266

Continuum simulations of fluidized granular materials

Bougie, Jonathan Lee 28 August 2008 (has links)
Not available / text
267

The G305 star forming complex : a panoramic view of the environment and star formation

Hindson, Luke Paul January 2012 (has links)
This thesis presents molecular line and radio continuum observations of the giant molecular cloud (GMC) complex known as G305. The energy input from high-mass stars in the form of powerful winds and ionising radiation is one of the primary feedback mechanisms in GMCs. This feedback is thought to play a dual role both dispersing and destroying the natal environment but also sweeping up and compressing molecular gas and potentially triggering new episodes of star formation. Despite their importance to the evolution of GMCs and galaxies as a whole, the physical processes behind the formation and evolution of high-mass stars remains poorly understood. We therefore set out to obtain wide-field observations of the ionised and molecular environment to study the impact of high-mass stars on the evolution of G305. Observations conducted with the Mopra telescope of the molecular gas traced by NH3 in the (1,1), (2,2) and (3,3) transition and CO (12CO, 13CO and C18O J = 1–0) reveals the reservoir for future star formation in G305 and allows the physical properties and kinematics of the region to be studied. We identify 15 large molecular clouds and 57 smaller molecular clumps towards G305. The physical properties of the molecular gas are consistent with G305 being amongst the most massive a vigorous star forming regions in the Galaxy. We find a total molecular gas mass of 2:5–6:5 105M indicating that there is a large reservoir for future star formation. By considering virial equilibrium within the molecular clumps we discover that only 14% of the molecular clumps in G305 are gravitationally unstable, however these clumps contain > 30% of the molecular mass in G305 suggesting there is scope for considerable future star formation. To study the ionised environment towards G305 we have obtained some of the largest and most detailed wide-area mosaics with the Australia Telescope Compact Array to date. These radio continuum observations were performed simultaneously at 5.5 and 8.8 GHz and by applying two imaging techniques we are able to resolve HII regions from the ultra-compact to classical evolutionary phase. This has allowed high-mass star formation within G305 to be traced over the extent and lifetime of the complex. We discover that more than half of the observable total ionising flux in G305 is associated with embedded high-mass star formation around the periphery of a central cavity that has been driven into the molecular gas by a cluster of optically visible massive stars. By considering the contribution of embedded and visible massive stars to the observed radio continuum we suggest that more than 45 massive stars exist within G305. Combination of these two studies and recent and ongoing star formation provides the most in depth view of G305 to date and allows the star formation history and impact of high-mass stars to be investigated. We find compelling morphological evidence that suggests triggering is responsible for at least some of the observed high-mass star formation and construct a star formation history for the region.
268

Spin Measurements of Accreting Black Holes: A Foundation for X-Ray Continuum Fitting

Steiner, James 02 January 2013 (has links)
Remarkably, an astrophysical black hole has only two attributes: its mass and its spin angular momentum. Spin is often associated with the exotic behavior that black holes manifest such as the production of relativistic and energetic jets. In this thesis, we advance one of the two primary methods of measuring black hole spin, namely, the continuum-fitting method by (1) improving the methodology; (2) testing two foundational assumptions; and (3) measuring the spins of two stellar-mass black holes in X-ray binary systems. Methodology: We present an empirical model of Comptonization that self-consistently generates a hard power-law component by upscattering thermal accretion disk photons as they traverse a hot corona. We show that this model enables reliable measurements of spin for far more X-ray spectral data and for more sources than previously thought possible. Testing the foundations: First, by an exhaustive study of the X-ray spectra of LMC X–3, we show that the inner radius of its accretion disk is constant over decades and unaffected by source variability. Identifying this fixed inner radius with the radius of the innermost stable circular orbit in general relativity, our findings establish a firm foundation for the measurement of black hole spin. Secondly, we test the customary assumption that the inclination angles of the black-hole’s spin axis and the binary’s orbital axis are the same; for XTE J1550–564 we show that they are aligned to within \(12^{\circ}\) by modeling the kinematics of the large-scale jets of this microquasar. Measuring spins: We have made the first accurate continuum-fitting spin measurements of the black hole primaries in H1743–322 and XTE J1550–564. For this latter black hole, we have also measured its spin using the other leading method, namely, modeling the broad red wing of the \(Fe K\alpha\) line. As we show, these two independent measurements of spin are in agreement. / Astronomy
269

Kanoper : utanför Musiken

Blixt, Johan January 2015 (has links)
Jag har tidigare haft mina funderingar över att reflektera kring mitt eget verk och mitt eget komponerande. Funderingar om att det skulle bli för personligt och utlämnande. Det finns dock något spännande i att skriva om sig själv och sitt komponerande, en möjlighet att göra en resa inom sig själv. Så jag har i slutändan beslutat mig för att ta denna chans att skriva om mina tankar kring musik och om hur jag arbetar med utommusikalisk inspiration i mitt komponerande. Orkesterstycket Kanoper, den klingande delen av mitt examensarbete, är inspirerat av den egyptiska mytologin och gudavärlden; utan att jag är religös eller en anhängare av den gammelegyptiska tron, men jag har en förkärlek för det mytiska. Mytologi har varit ett stort nöje och en inspirationskälla för mig enda sedan jag var ett litet barn och jag lånade böcker om grekisk, egyptisk och nordisk mytologi från familjens bokhyllor, först kanske mest för att titta på bilder men allteftersom jag lärde mig läsa så var det några av de första böckerna jag läste. Jag tycker att den egyptiska mytologin lämpar sig väl för de undertonerna jag vill jobba med när jag skriver mina stycken samt inspirerar till de klangerna jag vill ha med i mina kompositioner. / <p>Bilaga: 1 partitur.</p>
270

Modeling and computing based on lattices

Zhao, Haifeng, 1980- 07 February 2011 (has links)
This dissertation presents three studies addressing various modeling and computational aspects of lattice structures. The first study is concerned with characterization of the threshold behavior for very slow (subcritical) crack growth. First, it is shown that this behavior requires the presence of a healing mechanism. Then thermodynamic analysis of brittle fracture specimens near the threshold developed by Rice (1978) is extended to specimens undergoing microstructural changes. This extension gives rise to a generalization of the threshold concept that mirrors the way the resistance R-curve generalizes the fracture toughness. In the absence of experimental data, the resistance curve near the threshold is constructed using a lattice model that includes healing and rupture mechanisms. The second study is concerned with transmission of various boundary conditions through irregular lattices. The boundary conditions are parameterized using trigonometric Fourier series, and it is shown that, under certain conditions, transmission through irregular lattices can be well approximated by that through classical continuum. It is determined that such transmission must involve the wavelength of at least 12 lattice spacings; for smaller wavelength classical continuum approximations become increasingly inaccurate. Also it is shown that this restriction is much more severe than that associated with identifying the minimum size for representative volume elements. The third study is concerned with extending the use of boundary algebraic equations to problems involving irregular rather than regular lattices. Such an extension would be indispensable for solving multiscale problems defined on irregular lattices, as boundary algebraic equations provide seamless bridging between discrete and continuum models. It is shown that, in contrast to regular lattices, boundary algebraic equations for irregular lattices require a statistical rather than deterministic treatment. Furthermore, boundary algebraic equations for irregular lattices contain certain terms that require the same amount of computational effort as the original problem. / text

Page generated in 0.0403 seconds