Spelling suggestions: "subject:"ehe wide"" "subject:"ehe side""
71 |
Estimation of Radial RunoutNilsson, Martin January 2007 (has links)
The demands for ride comfort quality in today's long haulage trucks are constantly growing. A part of the ride comfort problems are represented by internal vibrations caused by rotating mechanical parts. This thesis work focus on the vibrations generated from radial runout on the wheels. These long haulage trucks travel long distances on smooth highways, with a constant speed of 90 km/h resulting in a 7 Hz oscillation. This frequency creates vibrations in the cab, which can be found annoying. To help out with the vibration diagnosis when a truck enters a mechanical workshop, this work studies methods for radial runout detection using the wheel speed sensors. The main idea is to represent the varying radius signal with a sinusoid, where the calculations are based on Fourier series. The estimated radial runout value is then the amplitude of the sinusoid. In addition to the detection part, the work also present results regarding how the relative phase difference between two wheels with radial runout effects the lateral motion of the cab. This thesis work was performed at Scania CV AB in Södertälje, Sweden and all measurements have been full scale experiments on real trucks.
|
72 |
Voltage Sag Ride-Through and Harmonics Mitigation for Adjustable Speed Drives using Dual-Functional HardwareSalib, Anton Samir January 2006 (has links)
Great portion of today's industry are <em>Adjustable Speed Drives</em> (<em>ASD's</em>) operated in order to fulfill certain processes. When these processes are critical ones or sensitive to voltage disturbances, that might take place due to inserting high load in an area near to the Point of Common Coupling (<em>PCC</em>) of the process or due to a short term outage, few tens of thousands up to millions of dollars will be lost once such interruptions (voltage sags) take place as a result of the process failure. On the other hand, a distorted voltage waveform at the PCC for some sensitive process might malfunction as a result of the high harmonic content of the voltage waveform. Utilities are required to deliver as pure as possible sinusoidal voltage waveform according to certain limits; thus, they might apply fines against the consumers who are responsible for producing high amounts of current harmonics that affect the voltage wave shape at the <em>PCC</em> in order to force them to improve the consumer's load profile by adding filters at <em>PCC</em> for instance. Utilities are charging the consumers who are drawing power at poor power factor as well. <br /><br /> This thesis presents an <em>ASD</em> retrofitted with a dual-functional piece of hardware connected in series to its <em>DC-link</em> that is capable of handling the previously two mentioned problems. In other words, hardware that is capable of providing <em>voltage sag ride-through</em> during the voltage sag conditions on one side, on the other side, during the normal operating conditions, it is capable to mitigate the harmonic contents of the drawn current by the ASD's rectifier and to improve the power factor. <br /><br /> Survey on voltage sag ride-through for ASD's approaches are presented in the literature has been made. Approaches are classified as the topology utilized; first, topologies that utilizes energy storage elements that store energy to compensate the DC-link voltage with during the voltage sags, second, topologies retrofitting the DC-link itself with additional hardware to compensate the DC-link voltage. The first group is capable to provide voltage compensating during the full outages while the second can't. The presented voltage sag ride-through work of this thesis belongs to the second group. <br /><br /> Boost converter has been used as the hardware to compensate the DC-link voltage because of its simplicity and cheap price. An adaptive linear network (ADALINE) is investigated as the detection system to detect the envelope of the input voltage waveform. Once the envelope of the voltage goes below a certain level, the boost converter is activated to compensate the difference between voltage set point and the actual DC-link voltage. Simulation results supporting the proposed configuration are presented. <br /><br /> A third-harmonic current injection approach is utilized in this work in order to achieve <em>total harmonic distortion</em> (<em>THD</em>) mitigation from 32% to 5. 125% (theoretically). Two third-harmonic current injection networks have been investigated; one utilizes a real resistor, the other utilizes a resistor emulator to reduce the energy dissipated. The proposed controller for the resistor emulator does not require a proportional-integral (PI) controller. <br /><br /> As a result of the common devices between the voltage sag ride-through circuitry and the harmonic mitigation one, they can be integrated together in one circuitry connected in series with the DC-link of the ASD. And hence, the dual functionality of the hardware will be achieved. Simulation results supporting the theoretical results have been presented.
|
73 |
Study of Vehicle Dynamics with Planar Suspension Systems (PSS)Zhu, Jian Jun 18 May 1011 (has links)
The suspension system of a vehicle is conventionally designed such that the spring-damper element is configured in the vertical direction, and the longitudinal connection between the vehicle chassis and wheels is always very stiff compared to the vertical one. This mechanism can isolate vibrations and absorb shocks efficiently in the vertical direction but cannot attenuate the longitudinal impacts caused by road obstacles. In order to overcome such a limitation, a planar suspension system (PSS) is proposed. This novel vehicle suspension system has a longitudinal spring-damper strut between the vehicle chassis and wheel. The dynamic performance, including ride comfort, pitch dynamics, handling characteristics and total dynamic behaviour, of a mid-size passenger vehicle equipped with such planar suspension systems is thoroughly investigated and compared with those of a conventional vehicle.
To facilitate this investigation, various number of vehicle models are developed considering the relative longitudinal motions of wheels with respect to the chassis. A 4-DOF quarter-car model is used to conduct a preliminary study of the ride quality, and a pitch plane half-car model is employed to investigate the pitch dynamics in both the frequency and time domain. A 5-DOF yaw plane single-track half-car model along with a pitch plane half-car model is proposed to carry out the handling performance study, and also an 18-DOF full-car model is used to perform total dynamics study. In addition to these mathematical models, virtual full-car models are constructed in Adams/car to validate the proposed mathematical models. For the sake of prediction of the tire-ground interaction force, a radial-spring tire model is modified by adding the tire damping to generate the road excitation forces due to road disturbances in the vertical and longitudinal directions. A dynamic 2D tire friction model based on the LuGre friction theory is modified to simulate the dynamic frictional interaction in the tire-ground contact pitch.
The ride quality of a PSS vehicle is evaluated in accordance with the ISO 2631 and compared with that of a conventional vehicle. It is shown that the PSS system exhibits good potential to attenuate the impact and isolate the vibration due to road excitations in both the vertical and longitudinal directions, resulting in improved vehicles’ ride and comfort quality. The relatively soft longitudinal strut can absorb the longitudinal impact and, therefore, can protect the components. The investigation of handling performance including the steady-state handling characteristics, transient and frequency responses in various scenarios demonstrates that the PSS vehicle is directionally stable and generally has comparable handling behaviour to a similar conventional vehicle. The application of PSS in vehicles can enhance the understeer trend, i.e. the understeer becomes more understeer, neutral steer becomes slightly understeer, and oversteer becomes less oversteer. The total dynamic behaviour combining the bounce, pitch, roll and the longitudinal dynamics under various scenarios such as differential brake-in-turn and asymmetric obstacle traversing was thoroughly investigated. Simulation results illustrate that the PSS vehicle has a relatively small roll angle in a turning manoeuvre. In some cases such as passing road potholes, the PSS vehicle has a better directional stability.
|
74 |
A study on low voltage ride-through capability improvement for doubly fed induction generatorLin, Xiao-Chiu 02 September 2010 (has links)
Since large scale unscheduled tripping of wind power generation could lead to power system stability problem. Thus network interconnection regulations become more rigid when the wind power penetration reaches a non-neglible portion of the total power generation. This thesis presents a comparison of five different low voltage ride through (LVRT) capability enhancement technologies, i.e., additional rotor resistance, DC bus chopper, crowbar on rotor, the combination of above schemes, and grid voltage support by controlling grid side converter. System simulations are performed under Digsilent environment with model and control blocks provided by
the package. Additional models are developed to implement the LVRT enhancement schemes studied. A Doubly-Fed Induction Generator (DFIG) with pitch control is used to simulate different system fault scenarios with different voltage sag magnitude and duration time. Simulation results indicate that different enhancement schemes provide various levels in relieving DC bus overvoltage, rotor winding overcurrent, and overspeed problems, and the method combines all tested schemes seems to provide the best result.
|
75 |
Analysis of Low Voltage Ride Through Capability of Different Off-shore Wind Farm Collection SchemesChen, Yu-Jie 15 July 2012 (has links)
Demand is emerging for offshore wind power plant (WPP) that often has favorable capacity factor and high capacity value as compared with onshore wind farms. There are many challenges regarding power losses, economics, protection system and reliability of the wind farm. Collection system design decisions play an essential role to efficient operation of the WPP. Wind generators also have to be able to cope with grid disturbances. Low voltage ride-through (LVRT) capability of wind turbines requires generator units remain in operation for severe voltage drops during ¡@grid system faults, and be able to withstand depressed voltage for a few seconds in a recovery period. Technical requirements set out in grid codes for off shore wind farm normally relate to different connection points. A rigor LVRT requirement would increase the overall investment costs of the wind farm.
In most offshore wind farm projects, radial collector systems connecting a number of wind turbines and terminated at the offshore platform have served well the requirements for an economical design. However, due to the lack of redundancy, its reliability is poor. To improve the reliability of the collector system, the inclusion of a cable section that interconnects the remote ends of two adjacent radial feeders has been proposed. The transmission system of a wind farm takes the power generated and sends it to shore. Medium voltage AC transmission is the simplest one, just gathering the cables from the collector system and taking them together until they reach the point of common coupling (PCC).Through wind farm dynamic simulations by using DIgSIENT package, this thesis demonstrates that the ride through capability which occur at the particular wind parks with different collector system topology are greater than those which the wind turbines are capable of riding through, i.e., LVRT curves of different wind farm collection system designs of an offshore WPP and a single wind generator are different. This can be exploited to reduce the cost in complying with LVRT requirement of offshore WPP.
|
76 |
Ride Model And Simulation Of A Backhoe-loaderGoztas, Durmus Ali 01 January 2010 (has links) (PDF)
The objective of this study is to present a dynamic model of a backhoe-loader including cab dynamics in order to simulate the vibration levels transmitted to the operator. For this purpose, analytical solutions of the cab and the machine are developed by deriving the equations of motion of the system and the state space forms of the solution are implemented in the commercially available simulation software, MATLAB/Simulink. In addition to the analytical solution, a model is developed using the physical modeling toolboxes of MATLAB/SimMechanics. Cab model developed in SimMechanics is extended to simulate whole machine dynamics by inserting machine body and tire parameters. Vibration data is acquired from the machine for experimental validation of the models. Analytical and SimMechanics solution are evaluated by comparing the seat acceleration results for the same inputs.
Furthermore, simulation results obtained from the models and the measurement results are found to be in agreement in both time and frequency domain.
|
77 |
Analysis and design of matrix converters for adjustable speed drives and distributed power sourcesCha, Han Ju 15 November 2004 (has links)
Recently, matrix converter has received considerable interest as a viable alternative to the conventional back-to-back PWM (Pulse Width Modulation) converter in the ac/ac conversion. This direct ac/ac converter provides some attractive characteristics such as: inherent four-quadrant operation; absence of bulky dc-link electrolytic capacitors; clean input power characteristics and increased power density. However, industrial application of the converter is still limited because of some practical issues such as common mode voltage effects, high susceptibility to input power disturbances and low voltage transfer ratio. This dissertation proposes several new matrix converter topologies together with control strategies to provide a solution about the above issues.
In this dissertation, a new modulation method which reduces the common mode voltage at the matrix converter is first proposed. The new method utilizes the proper zero vector selection and placement within a sampling period and results in the reduction of the common mode voltage, square rms of ripple components of input current and switching losses.
Due to the absence of a dc-link, matrix converter powered ac drivers suffer from input voltage disturbances. This dissertation proposes a new ride-through approach to improve robustness for input voltage disturbances. The conventional matrix converter is modified with the addition of ride-through module and the add-on module provides ride-through capability for matrix converter fed adjustable speed drivers.
In order to increase the inherent low voltage transfer ratio of the matrix converter, a new three-phase high-frequency link matrix converter is proposed, where a dual bridge matrix converter is modified by adding a high-frequency transformer into dc-link. The new converter provides flexible voltage transfer ratio and galvanic isolation between input and output ac sources.
Finally, the matrix converter concept is extended to dc/ac conversion from ac/ac conversion. The new dc/ac direct converter consists of soft switching full bridge dc/dc converter and three phase voltage source inverter without dc link capacitors. Both converters are synchronized for zero current/voltage switching and result in higher efficiency and lower EMI (Electro Magnetic Interference) throughout the whole load range. Analysis, design example and experimental results are detailed for each proposed topology.
|
78 |
Tilting trains : Technology, benefits and motion sicknessPersson, Rickard January 2008 (has links)
<p>Carbody tilting is today a mature and inexpensive technology allowing higher speeds in curves and thus reduced travel time. The technology is accepted by most train operators, but a limited set of issues still holding back the full potential of tilting trains. The present study identifies and report on these issues in the first of two parts in this thesis. The second part is dedicated to analysis of some of the identified issues. The first part contains Chapters 2 to 5 and the second Chapters 6 to 12 where also the conclusions of the present study are given.</p><p>Chapters 2 and 3 are related to the tilting train and the interaction between track and vehicle. Cross-wind stability is identified as critical for high-speed tilting trains. Limitation of the permissible speed in curves at high speed may be needed, reducing the benefit of tilting trains at very high speed. Track shift forces can also be safety critical for tilting vehicles at high speed. An improved track standard must be considered for high speed curving.</p><p>Chapters 4 and 5 cover motion sickness knowledge, which may be important for the competitiveness of tilting trains. However, reduced risk of motion sickness may be contradictory to comfort in a traditional sense, one aspect can not be considered without also considering the other. One pure motion is not the likely cause to the motion sickness experienced in motion trains. A combination of motions is much more provocative and much more likely the cause. It is also likely that head rotations contribute as these may be performed at much higher motion amplitudes than performed by the train.</p><p>Chapter 6 deals with services suitable for tilting trains. An analysis shows relations between cant deficiency, top speed, tractive performance and running times for a tilting train. About 9% running time may be gained on the Swedish line Stockholm – Gothenburg (457 km) if cant deficiency, top speed and tractive performance are improved compared with existing tilting trains. One interesting conclusion is that a non-tilting very high-speed train (280 km/h) will have longer running times than a tilting train with today’s maximum speed and tractive power. This statement is independent of top speed and tractive power of the non-tilting vehicle.</p><p>Chapters 7 to 9 describe motion sickness tests made on-track within the EU-funded research project<i> Fast And Comfortable Trains (FACT).</i> An analysis is made showing correlation between vertical acceleration and motion sickness. However, vertical acceleration could not be pointed out as the cause to motion sickness as the correlation between vertical acceleration and several other motions are strong.</p><p>Chapter 10 reports on design of track geometry. Guidelines for design of track cant are given optimising the counteracting requirements on comfort in non-tilting trains and risk of motion sickness in tilting trains. The guidelines are finally compared with the applied track cant on the Swedish line Stockholm – Gothenburg. Also transition curves and vertical track geometry are shortly discussed.</p><p>Chapters 11 and 12 discusses the analysis, draws conclusions on the findings and gives proposals of further research within the present area.</p>
|
79 |
Development of an On-line Ride Comfort Evaluation ToolSala De Rafael, Jose Manuel January 2008 (has links)
<p>To produce competitive vehicles, their comfort is one important issue to take into account during the development process. The aim of this Master Thesis is to develop an on-line comfort evaluation tool in order to improve research and education in the field of vehicle comfort at the division of Vehicle Dynamics at the Royal Institute of Technology.</p><p>Based on ISO standards concerning comfort an on-line evaluation tool has been developed using DASYLab, which is a software that allows creation of acquisition, control, simulation and analysis tasks.</p><p>The developed tool has been evaluated by performing measurements of a VOLVO V40 equipped with sensors. Different sorts of surfaces and driving conditions have been investigated, and from this investigation one can conclude that the comfort tool works properly.</p>
|
80 |
The Implications of Park and Ride for Urban Development Strategies in major metropolitan areas in New ZealandWoods, Stuart George January 2006 (has links)
Many cities, including some in New Zealand, are investigating, developing or implementing urban form strategies and, separately, Park and Ride systems. These two matters are not generally considered alongside one another. This paper explores the relationship and interactions between urban form and Park and Ride systems through the identification of objectives for each, and considering the degree to which objectives of various urban form types may be achieved with different types of Park and Ride systems. The purpose of this research project is to investigate and develop a predictive methodology that would allow the identification of the most suitable Park and Ride system (from a proposed classification scheme) for a given set of urban form objectives. Classification systems for urban form and Park and Ride systems are proposed in light of information from an extensive literature and information review. They are used as a basis for an Assessment Framework Matrix of urban form type against Park and Ride type. The matrix is populated from a spreadsheet-based analysis process, which considers the degree of achievement of urban form objectives by various Park and Ride categories. This process is hampered by the lack of (easily accessible) data, particularly for strategic assessment of existing Park and Ride systems worldwide. A range of tests are conducted on the proposed Assessment Framework Matrix using real cities, a range of hypothetical urban areas, and several sensitivity tests. Subsequently, a case study applies the matrix to Christchurch, New Zealand. The main findings of this research project indicate that the proposed methodology works, needs refining with better data, could be useable in public or stakeholder engagement processes, and would benefit from a "User Manual" and some simplification. The case study tentatively indicates a recommended Park and Ride system type for Christchurch.
|
Page generated in 0.0757 seconds