Spelling suggestions: "subject:"bthermal conergy"" "subject:"bthermal coenergy""
81 |
Evaluation de l'impact potentiel d'un upwelling artificiel lié au fonctionnement d'une centrale à énergie thermique des mers sur le phytoplancton / Evaluation of the potential impact of an artificial upwelling linked to the operation of a thermal energy plant of the seas on phytoplanktonGiraud, Mélanie 01 February 2016 (has links)
Dans le cadre de l’implantation d’une centrale pilote à énergie thermique des mers (ETM) prévue au large des côtes caribéennes de la Martinique d’ici 2020, ces travaux de thèse visent à évaluer les impacts potentiels de la décharge d’eau profonde en surface sur le phytoplancton. La centrale pilote offshore NEMO conçue par DCNS et mise en oeuvre par Akuo Energy prévoit une production d’environ 10 MW. Les eaux froides et riches en nutriments pompées au fond et rejetées en surface par la centrale ETM avec un débit d’environ 100 000 m3.h-1 devraient enrichir les eaux de surface du site d’étude, particulièrement pauvres en nitrate et phosphate. Deux campagnes de mesures sur le terrain à deux saisons contrastées (saison humide en juin 2014 et saison sèche en novembre 2013) ont permis d’apporter une description des différents paramètres physiques et biogéochimiques susceptibles d’induire une modification de la communauté phytoplanctonique. Une variabilité saisonnière marquée de la stratification et des paramètres biogéochimiques a été mise en évidence avec en saison humide une forte influence océanique (advection d’eaux originaires de l’Amazone et de l’Orénoque) et atmosphérique (brumes des sables) enrichissant potentiellement la couche de surface en nutriments et en métaux traces. Des microcosmes in situ ont été développés afin de simuler le rejet d’eau de fond dans la couche de surface sous différents scénarios. De l’eau de surface prélevée dans le maximum de chlorophylle (45 m, où le phytoplancton est le plus abondant) et à la base de la couche euphotique (80 m, où le phytoplancton est présent en très faible abondance) a été enrichie avec un faible (2%) ou fort apport (10%) d’eau de fond (1100 m) et mise à incuber in situ pendant 6 jours. La production primaire a également été estimée dans le milieu naturel et dans les microcosmes. Ces expérimentations ont mis en évidence qu’un fort apport (10%) stimule le développement du micro-phytoplancton, des diatomées en particulier, au détriment des Prochlorococcus, tandis qu’un apport de 2% ne modifie que faiblement la communauté. La réponse des diatomées pourrait être liée à l’apport en nitrate et phosphate par les eaux profondes. La production primaire serait quant-à-elle dépendante de l’assemblage phytoplanctonique en présence, plutôt que de l’intensité de l’apport d’eau profonde. Enfin, les perturbations thermiques liées au rejet d’eau froide de fond ont été évaluées à partir du modèle numérique ROMS. Les seuils d’impact thermique de -3°C préconisés par la World Group Bank et de -0,3°C correspondant à 2% de dilution d’eau profonde ont été considérés. Même au seuil le plus bas (-0,3°C), la surface impactée sur les premiers 150 m de la colonne d’eau était trop faible pour être détectable par la simulation, quelle que soit la profondeur du rejet. L’impact thermique lié au rejet d’eau froide devrait donc être négligeable, et elle serait limitée à moins de 3 km2. Ces travaux constituent la première étape indispensable dans la compréhension de ce que pourrait être l’impact de ce rejet sur l’écosystème à plus long terme. / As part of the implementation of an Ocean thermal energy conversion (OTEC) pilot plant planned off the Caribbean coast of Martinique by 2020, this thesis aims to assess the potential impacts of deep seawater discharge at the surface on the phytoplankton. The offshore pilot plant NEMO, designed by DCNS and implemented by Akuo Energy anticipates production of approximately 10 MW. The cold and nutrient-rich waters that are pumped in the bottom and discharged at the surface by the heat engine with a flow of roughly 100 000 m3 h-1 should enrich surface waters of the study site, which are particularly poor in nitrate and phosphate. Two campaigns of field measurements in two contrasting seasons (the dry season in November 2013 and the wet season in June 2014) have allowed the description of different physical and biogeochemical parameters that may induce changes in the phytoplankton community. Marked seasonal variability in stratification and biogeochemical parameters occurred, with strong oceanic influences (advection of waters from the Amazon and Orinoco) and atmospheric influences (African dust) potentially enriching the surface layer in nutrients and trace metals during the wet season. In situ microcosms were designed to simulate the discharge of bottom waters into the surface layer under different scenarios. Surface water collected at the chlorophyll maximum(45 m, where the phytoplankton is the most abundant), and at the base of the euphotic layer (80 m, where the phytoplankton is present, but in very low abundance) was enriched with either a weak (2%) or strong (10%) input of bottom waters (1100 m), and incubated for 6 days. Primary production was estimated in both the natural environment, and in the microcosms. These experiments have shown that high input (10%) stimulates the development of micro-phytoplankton, especially diatoms, to the detriment of Prochlorococcus. The response of diatoms could be linked to the input of nitrate and phosphate by the deep seawater.Primary production would be dependent on the composition of the phytoplankton assemblage rather than on the intensity of deep water discharge. Finally, thermal disturbances linked to the discharge of cold water at the surface were assessed using a numerical model (ROMS), which considered the thermal impact threshold of -3°C as recommended by the World Bank Group, and -0.3 °C, corresponding to a 2% dilution with deep water. Even at the lowest threshold (-0.3 °C), the area impacted in the first 150 m of the water column was too low to be detected by the simulation, regardless of the discharge depth. The thermal impact of cold water should therefore be negligible and limited to an area of less than 3 km2. This work provides the first critical step in understanding how bottom water discharge may impact the ecosystem in the longer-term.
|
82 |
Thermal energy harvesting from temperature fluctuations / Récupération d'énergie thermique à partir de variations de températureZhu, Hongying 29 September 2011 (has links)
Le développement des équipements portables, des réseaux de capteurs sans fil et systèmes auto-alimentés d'une manière générale génère une forte demande pour les dispositifs de récupération de micro-énergie. Une des voies les plus intéressantes pour auto-alimenter des dispositifs consiste à développer des systèmes recyclant l'énergie ambiante afin de renouveler sans cesse l'énergie consommée par le dispositif. En dehors de la récupération d'énergie électromécanique, il est également intéressant de convertir l'énergie thermique, qui est «disponible» partout, en énergie électrique. Au cours de cette thèse, la conversion d’énergie thermique en énergie électrique fondée sur des variations temporelles de température a été développée et améliorée. Parmi les matériaux ferroélectriques, des monocristaux de PZN-4.5PT et le terpolymère P(VDF-TrFECFE) 61.3/29.7/9 mol % ont été choisis comme matériaux actifs en raison de leurs propriétés remarquables sous champ électrique. En utilisant des cycles thermodynamiques intelligents, par exemple, Ericsson ou à cycle de Stirling, l'efficacité de la conversion de l'énergie pourrait être considérablement améliorée. Dans la première partie, la récupération d'énergie pyroélectrique en utilisant des monocristaux de PZN-4.5PT a été principalement étudiée sous deux aspects: l'effet de fréquence et des transitions de phase sur les cycles d’Ericsson. Il a été montré que l'énergie récupérée diminue de façon non linéaire avec une augmentation de la fréquence. De plus, l’utilisation optimale des transitions de phase pendant le cycle d’Ericsson permet d’améliorer grandement l’énergie récupérée en choisissant une gamme de température de travail appropriée. A partir de ces résultats, deux cycles d’Ericsson asymétriques (LH et HL) ont été réalisés avec succès. Avec les monocristaux de PZN-4.5PT, le cycle HL est le cycle le plus efficace pour la conversion d’énergie thermique en énergie électrique. La deuxième partie traite de la récupération d'énergie électrostatique via la variation non linéaire de la capacité du terpolymère P(VDF-TrFE-CFE) 61.3/29.7/9 mol %. Un cycle d’Ericsson a été réalisé entre 25 et 0°C et comparé à sa simulation à partir de la valeur de la constante diélectrique sous champ électrique DC. La concordance entre la simulation et l’expérience a prouvé la fiabilité de notre évaluation théorique. A partir de la simulation, l'énergie récupérée augmente jusqu'à 240 mJ/cm3 en appliquant un champ électrique de 80 kV/mm. Des cycles de Stirling et d’Ericsson ont également été simulés sous différentes variations de température et champ électriques. L'énergie récupérée augmente avec l’accroissment de la variation de température et de la valeur du champ électrique appliqué et ceci quelque soit le cycle réalisé. Contrairement au cycle d’Ericsson, un cycle de Stirling peut récupérer plus d'énergie pour une même énergie injectée. / The development of portable equipments, wireless sensors networks and self-powered devices in a general manner generates a strong demand for micro-energy harvesting devices. One of the most challenging ways to self power devices is the development of systems that recycle ambient energy and continually replenish the energy consumed by the system. Apart from electromechanical energy harvesting, it is also interesting to convert thermal energy, which is “available” everywhere, into suitable electrical energy. In this thesis, the thermal to electrical energy conversion from temperature fluctuations was developed and improved, and the feasibility of this technique was also confirmed by implementing the experimental experiment. Among different ferroelectric materials, PZN-4.5PT single crystal and P(VDF-TrFE-CFE) 61.3/29.7/9 mol% were chosen as active materials due to their outstanding properties under electric field. By means of some intelligent thermodynamic cycles, e.g., Ericsson or Stirling cycle, which has been presented in previous research, the efficiency of energy conversion could be improved greatly. In the first part, pyroelectric energy harvesting on PZN-4.5PT single crystals with an Ericsson cycle was mainly investigated from two aspects: frequency effect and phase transitions. It was shown that the harvested energy demonstrated a nonlinear decrease with an increase of frequency, and the optimal use of the phase transitions during the Ericsson cycle could greatly improve the harvested energy by choosing the appropriate working temperature range. Based on it, two asymmetric Ericsson models (L-H and H-L cycles) were attempted successfully, and it was confirmed that the H-L cycle is the most effective thermal energy harvesting cycle for this material. The second part concentrated on electrostatic energy harvesting by nonlinear capacitance variation on P(VDF-TrFE-CFE) 61.3/29.7/9 mol% terpolymer. Ericsson cycle was tested experimentally between 25 and 0°C and compared with the simulation from dielectric constant values obtained under DC electric field. The identical result between simulation and experiment proved the reliability of our theoretical evaluation. It was found, from simulation, that the harvested energy increased up to 240 mJ/cm3 when raising the electric field at 80 kV/mm. The further study on Ericsson and Stirling cycle was also made under different temperature and electric field conditions for evaluation. The harvested energy increases with the rising of temperature variation and electric field in both cycles, but in contrast to Ericsson cycle, Stirling cycle can harvest more energy for the same injected energy.
|
83 |
Dispositifs innovants pour la récupération de l'énergie thermique / Innovative devices for heat energy harvestingPuscasu, Onoriu 22 January 2014 (has links)
Le présent travail est une contribution au domaine de la récupération de l’énergie. La conversion mise en place est faite à échelle centimétrique, les puissances électriques produites étant suffisantes pour alimenter des dispositifs à basse consommation, comme par exemple les capteurs sans fil. Une technologie innovante pour la récupération de l’énergie thermique est proposée, l’objectif étant de fabriquer des dispositifs fins, flexibles et bas coût pour une utilisation sans radiateur. Le fonctionnement choisi repose sur une conversion de la chaleur en électricité en deux étapes : thermomécanique (réalisée avec des bilames thermiques) et mécano-électrique (réalisée avec des piézoélectriques). Plusieurs prototypes ont été élaborés, aboutissant à des dispositifs matriciels flexibles, d’une épaisseur de quelques millimètres et fonctionnant sans radiateur avec refroidissement par convection naturelle. Les signaux générés sont des pics de tension qui dépassent les 10 V, pour une puissance mécanique disponible autour de 200 µW à 75°C. Plusieurs études ont été réalisées pour l'optimisation des dispositifs et la caractérisation de leurs composants. Leurs lois d’échelle ont été déduites, prédisant un gain en puissance avec la miniaturisation. Des modèles ont été proposés pour le comportement du piézoélectrique et pour le comportement thermique d’un dispositif. Les premiers cas d’usage ont été identifiés et les premiers tests ont été faits dans les environnements proposés par des potentiels utilisateurs. / The present work is a contribution to the domain of energy harvesting. The developed conversion is made at centimeter scale, and the generated electrical power is sufficient for low power devices, as for example wireless sensor nodes. An innovative technology for heat energy harvesting is proposed, with the goal to fabricate thin, flexible, and low cost devices for a use without a heat sink. Their working principle relies on a two-step conversion of heat into electricity: thermo-mechanical (with thermal bimetals) and mechanoelectrical (with piezoelectrics). Several prototypes have been built, resulting in flexible matrix devices that are a few millimeters thick and work without a heat sink with natural convection. The generated signals are voltage peaks above 10 V, for an available mechanical power in the order of 200 µW around 75°C. Several studies have been done for the optimization of the devices and the characterization of their components. Scale laws have been established, and predict significant power gain with miniaturization. Analytical models have been elaborated for the behavior of the piezoelectric and for the thermal behavior of a device. The first use cases have been identified, and the first tests have been performed in environments proposed by potential end users.
|
84 |
Estudo numérico da mudança de fase de PCMs em cavidades cilíndricasEstrázulas, Jutaí Juarez 12 June 2015 (has links)
Submitted by Silvana Teresinha Dornelles Studzinski (sstudzinski) on 2015-10-26T16:14:39Z
No. of bitstreams: 1
Jutaí Juarez Estrázulas_.pdf: 1716303 bytes, checksum: ac095da5508e03eaab20ab1008f22067 (MD5) / Made available in DSpace on 2015-10-26T16:14:39Z (GMT). No. of bitstreams: 1
Jutaí Juarez Estrázulas_.pdf: 1716303 bytes, checksum: ac095da5508e03eaab20ab1008f22067 (MD5)
Previous issue date: 2015-06-12 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Inúmeras aplicações residenciais, comerciais e industriais voltadas ao gerenciamento térmico tem seus custos operacionais reduzidos quando um sistema de armazenamento de energia térmica é incorporado. Tal tipo de sistema pode, por exemplo, absorver energia térmica oriunda de fonte solar, de reaproveitamento de calor de processo industrial ou mesmo proveniente de energia elétrica (nos horários em que esta é menos onerosa), e liberá-la em um horário em que estas fontes de calor não estejam presentes e em que a energia elétrica, se utilizada, seria mais onerosa.Os PCMs (Phase Change Materials), devido ao seu alto calor latente de fusão, são materiais que representam uma alternativa viável à implementação de sistemas de armazenamento de energia térmica. No entanto, inúmeros PCMs ainda não tiveram suas características e propriedades fluidodinâmicas investigadas suficientemente. Assim, este trabalho apresenta um estudo numérico da mudança de fasede PCMs da família RT,em cavidades cilíndricas, visando o armazenamento térmico de energia através de calor latente (LHTES). O estudo foi realizado através de simulação numérica por CFD, com o software ANSYS Fluent. O modelo numérico adotado é bidimensional e é composto pelas equações da conservação da massa, quantidade de movimento e energia. Além destas, foi utilizada a técnica de modelamento entalpia-porosidade. A malha computacional é do tipo hexaédrica, com refinamento junto às paredes da geometria e na região de interface entre o PCM e o ar. O modelo implementado foi validado com resultados numéricos e experimentais da literatura, obtendo-se bons resultados. Foi avaliado o processo de fusão de cinco diferentes tipos de PCMs (RT 4, RT 35, RT 35HC (alta capacidade), RT 55 e RT 82), cada um deles com três intervalos de temperatura (T=10, 20 e 30 °C).Além disto, para T=10 ºC, os PCMS RT 27, RT 35, RT 35 HC e RT 82 foram testados para cinco diferentes valores de constante C (Mushy Zone), totalizando trinta diferentes situações. Paraos PCMs RT 4, RT 35, RT55 e RT82, aumentando-se o T de 10 oC para 20 oC e de 10 oC para 30 oC, para frações líquidas entre 0,4 e 0,8, a redução média dos tempos de fusão foide, aproximadamente, 55,8% e 71,8% e os incrementos médios no fluxo de calor foram de 63% e 111 %, respectivamente. Para o RT35HC, as reduções médias nos tempos de fusão foram de 51,6% e de 67,8%, para a mesma faixa de fração líquidae mesmos T. O RT35HC, quando comparado com o RT 35, possui calor latente de fusão 41,1% maiore os seus tempos de fusão são entre 100% à 134% superiores, dependendo do T utilizado. / Several residential, commercial and industrial applications focused on thermal management have their operating costs reduced when a thermal energy storage system is incorporated to them. This type of system can provide, can, for example, absorb thermal energy from solar source, heat reuse from industrial process or even from electrical power (during the time this is less expensive) and release it at a time that these heat sources are not present and the electrical power, if used, would be more expensive.The Phase Change Materials (PCMs), due to their high latent heat of fusion, are materials that represent a viable alternative to the implementation of thermal energy storage systems. However, many PCMs have not had their characteristics and fluid dynamics properties sufficiently investigated. Thus, this paper presents a numerical study of RT phase change materials family, inside cylindrical cavities, aiming at the thermal energy storage trough latent heat (LHTES). The study was conducted through a CFD numerical simulation, with ANSYS Fluent software. The numeric model adopted is two-dimensional and is composed by mass conservation, movement amount and energy equations. In addition, the enthalpy-porosity modeling technique was used. The computational mesh is hexaedric, with refinement along the walls of geometry and at the interface area between the PCM and air. The model was validated with numerical and experimental results available in the literature, achieving good results. The fusion process of five different PCMs (RT 4, RT 35, RT 35 HC (high capacity), RT 55 and RT 82) was evaluated, each one of them with three temperature ranges (T= 10, 20 e 30 °C). Furthermore, for T=10 °C, the PCMs RT 27, RT 35, RT 35 HC and RT 82 were tested for five different values of C constant (Mushy Zone) totaling thirty different situations. For PCMs RT 4, RT 35, RT 55 and RT 82, increasing T from 10 oC to 20 oC and from 10 oC to 30 oC, for liquid fraction between 0,4 and 0,8, the average reduction in fusion time were, approximately, 55.8% and 71.8% and the average increase in heat flow were 63% and 111% respectively. For RT 35 HC, the average reductions in fusion time were 51.6% and 67.8% for the same liquid fraction range and same T. The RT 35 HC, when compared to RT 35, has latent heat of fusion 41.1% greater and its fusion times are between 100% to 134% greater, depending on T used.
|
85 |
Carvão mineral e as energias renováveis no BrasilGavronski, Jorge Dariano January 2007 (has links)
O aumento da população e o desenvolvimento da economia criam a necessidade de expansão de mais de quatro mil Megawatts da energia nova por ano no Sistema Interligado Nacional (SIN). O sistema elétrico brasileiro é peculiar, devido a sua grande capacidade, extensão continental e grande dependência na energia renovável hídrica. Outra peculiaridade é a capacidade potencial de inserção de outras formas da energia renováveis “verdes” no sistema. Embora as vantagens ambientais das energias renováveis, elas têm limitações, são variáveis e dependentes das condições climáticas. Para que o setor elétrico brasileiro possa atuar com confiabilidade com mais energia renovável deve haver concomitante mais energia firme de origem térmica disponível. Assim o trabalho analisa, na perspectiva global, o estado da arte e as tendências das fontes de geração elétrica, sob o ponto de vista de disponibilidade, preço e sustentação ambiental. De forma especial, o trabalho analisa as opções de geração térmica no Brasil. Conclui pela necessidade do Brasil priorizar o uso dos recursos disponíveis dentro de suas fronteiras como o carvão mineral para garantir a geração térmica elétrica auto-suficiente. O trabalho demonstra as vantagens sociais e de desenvolvimento de uma indústria do carvão para as regiões produtoras. Aponta também a necessidade de implementação de tecnologias modernas a fim de atender à legislação ambiental, que gradativamente deve aumentar as restrições das emissões poluentes, na medida em que as tecnologias forem desenvolvidas. / The population and economy growth in Brazil generate the necessity of an expansion higher than four thousand Megawatts of new electric energy per year. The Brazilian Electrical System is peculiar because of its continental extension and also its strong dependence in renewable energy (hydro). Another reason for its peculiarity is the potential of inserting other forms of renewable and “green” energy in the system. Although the environmental advantages of the “renewable”, these kinds of energies are variable and dependant of the weather conditions. In order to the electrical system be more reliable, its operation must be combined with a larger addition of thermal energy. Thus this report analyses thermal generation option in Brazil. Looking at the developed countries trends in diversify power generation, the article indicates the advantages and the priority of using, in Brazil, internal resources like coal to guarantee the self-sufficient thermal generation electrical capacity. The dissertation demonstrates the social advantages to develop the coal industry for the producers region, witch are poor areas in Brazil. The proposition points the need of implement modern technologies in order to attend the environmental legislation, which must increase the emissions restrictions as these technologies are developed.
|
86 |
Phase Change Materials in Infrastructural Concrete and Buildings: Material Design and PerformanceJanuary 2018 (has links)
abstract: Phase change materials (PCMs) are combined sensible-and-latent thermal energy storage materials that can be used to store and dissipate energy in the form of heat. PCMs incorporated into wall-element systems have been well-studied with respect to energy efficiency of building envelopes. New applications of PCMs in infrastructural concrete, e.g., for mitigating early-age cracking and freeze-and-thaw induced damage, have also been proposed. Hence, the focus of this dissertation is to develop a detailed understanding of the physic-chemical and thermo-mechanical characteristics of cementitious systems and novel coating systems for wall-elements containing PCM. The initial phase of this work assesses the influence of interface properties and inter-inclusion interactions between microencapsulated PCM, macroencapsulated PCM, and the cementitious matrix. The fact that these inclusions within the composites are by themselves heterogeneous, and contain multiple components necessitate careful application of models to predict the thermal properties. The next phase observes the influence of PCM inclusions on the fracture and fatigue behavior of PCM-cementitious composites. The compliant nature of the inclusion creates less variability in the fatigue life for these composites subjected to cyclic loading. The incorporation of small amounts of PCM is found to slightly improve the fracture properties compared to PCM free cementitious composites. Inelastic deformations at the crack-tip in the direction of crack opening are influenced by the microscale PCM inclusions. After initial laboratory characterization of the microstructure and evaluation of the thermo-mechanical performance of these systems, field scale applicability and performance were evaluated. Wireless temperature and strain sensors for smart monitoring were embedded within a conventional portland cement concrete pavement (PCCP) and a thermal control smart concrete pavement (TCSCP) containing PCM. The TCSCP exhibited enhanced thermal performance over multiple heating and cooling cycles. PCCP showed significant shrinkage behavior as a result of compressive strains in the reinforcement that were twice that of the TCSCP. For building applications, novel PCM-composites coatings were developed to improve and extend the thermal efficiency. These coatings demonstrated a delay in temperature by up to four hours and were found to be more cost-effective than traditional building insulating materials.
The results of this work prove the feasibility of PCMs as a temperature-regulating technology. Not only do PCMs reduce and control the temperature within cementitious systems without affecting the rate of early property development but they can also be used as an auto-adaptive technology capable of improving the thermal performance of building envelopes. / Dissertation/Thesis / Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2018
|
87 |
A NOVEL SOLAR THERMAL MEMBRANE DISTILLATION SYSTEM FOR DRINKING WATER PRODUCTION IN UNDEVELOPED AREASUnknown Date (has links)
In this research, a heat localizing solar thermal membrane distillation system has been developed for producing potable water from untreated surface water, wastewater, and seawater, using solely solar thermal energy. Unlike most other membrane technologies, this system requires no electrical power or equipment for its operation. The high production rate was achieved through the effective evaporation of water molecules within the pores of the membrane without dissipating much heat to the bulk feed water. It can remove suspending particles, microorganisms, inorganic salts, as well as organic contaminants from the feed water. The system can produce potable water for 32, 18, and 10 days on average under simulated sunlight when distilling seawater, canal water, and municipal wastewater, respectively, without cleaning the membrane. Low cost, high energy efficiency (i.e., 55%), and good water quality make the new system feasible for undeveloped areas where basic water treatment is lacking. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection
|
88 |
A Technical and Economic Comparative Analysis of Sensible and Latent Heat Packed Bed Storage Systems for Concentrating Solar Thermal Power PlantsTrahan, Jamie 17 March 2015 (has links)
Though economically favorable when compared to other renewable energy storage technologies, thermal energy storage systems for concentrating solar thermal power (CSP) plants require additional cost reduction measures to help transition CSP plants to the point of grid-parity. Thermocline packed bed storage is regarded as one potential low cost solution due to the single tank requirement and low cost storage media. Thus sensible heat storage (SHS) and latent heat storage (LHS) packed bed systems, which are two thermocline varieties, are frequently investigated. LHS systems can be further classified as single phase change material (PCM) systems or cascaded systems wherein multiple PCMs are employed.
This study compared the performance of SHS, single PCM, and cascaded PCM direct storage systems under the conditions that may be encountered in utility-scale molten salt CSP plants operating between 565°C and 288°C. A small-scale prototype SHS packed bed system was constructed and operated for use in validating a numerical model. The drawbacks of the latent heat storage process were discussed, and cascaded systems were investigated for their potential in mitigating the issues associated with adopting a single PCM. Several cascaded PCM configurations were evaluated. The study finds that the volume fraction of each PCM and the arrangement of latent heat in a 2-PCM and a 3-PCM system influences the output of the system, both in terms of quality and quantity of energy. In addition to studying systems of hypothetical PCMs, real salt PCM systems were examined and their selection process was discussed.
A preliminary economic assessment was conducted to compare the cost of SHS, single-PCM LHS, cascaded LHS, and state-of-the-art 2-tank systems. To the author's knowledge, this is the first study that compares the cost of all three thermocline packed bed systems with the 2-tank design. The SHS system is significantly lower in cost than the remaining systems, however the LHS system does show some economic benefit over the 2-tank design. If LHS systems are to be viable in the future, low cost storage media and encapsulation techniques are necessary.
|
89 |
Biogasprocessen : Bestämning av verkningsgradThomassen, Martin January 2010 (has links)
<p>Biogas is increasingly used for fuel in for example vehicles and it´s produced in a biogas processconsisting of the steps of pretreatment, digestion and gas cleaning. The pretreatment is a method usedto increase the gas production and / or destroy pathogens. The digestion is the stage when anaerobicmicroorganisms convert bio-mass of a substrate to a raw gas containing about 65% of methane. Thegas cleaning is used to increase the methane content to about 97% so the gas can be used for motors invehicles. The biogas part of the Ekeby sewage plant in Eskilstuna is using multiple substrates. Sewagesludge is mostly used but also other substrates, like food waste. The time for processing is in average25 days before the content is taken out for drying and finally for use as cover material. The producedgas will be cleaned in a water scrubber before pressurization and after that used as fuel for vehicles.The usage of support energy in the biogas process is essentially district heating, electricity and oil. Theoverall efficiency term is the energy produced in the gas minus the supporting energy divided with theenergy from possible biogas production of the substrates. For calculation of a continuous process thefact that there is always a part of the substrates which not will be digested has to be considered.Another thing to think about is that the inserted energy as material will not be converted to gasimmediately, several days is needed. In 2009 the overall efficiency in Ekeby biogas plant was inaverage 70.5%, and the value was higher during the summer than the winter. Calculation of overallefficiency of a biogas plant will always involve some uncertainties because differences of thecomposition of the substrates, the condition of the micro-organisms, digestion of many substrates atthe same time etc.</p>
|
90 |
Absorptionskyla i Linköpings energisystem : kompressorkyla vs absorptionskyla / Absorption Cooling in the Energy System of LinköpingPauline, Ekoff, Johanna, Lund January 2006 (has links)
<p>Huvudsyftet med arbetet har varit att undersöka potentialen för värmedriven kylproduktion, dvs. absorptionskyla, i Linköpings energisystem. Bakgrunden är att många energibolag söker efter nya avsättningsområden för fjärrvärme pga. det överskott på värme som finns sommartid i energisystem med kraftvärme. Dessutom förväntas elpriserna fortsätta stiga då Sverige med stor sannolikhet kommer att följa resten av Europa och gå från ett energidimensionerat system till ett effektdimensionerat system. Till följd av detta blir energieffektiviserande åtgärder allt viktigare och absorptionskyla innebär att mer el kan produceras i ett system med kraftvärme, istället för att konsumeras.</p><p>Det finns två typer av absorptionskylmaskiner (ABS) tillgängliga på marknaden, antingen har de fjärrvärme eller ånga som drivmedel. Den typ av ABS som drivs av fjärrvärme lämpar sig för produktion av komfortkyla, dvs. kyla som inte behöver komma ned till så låga temperaturer. Ångdriven ABS kan däremot komma ned till lägre temperaturer, något som kan passa vid processkyla. En förutsättning för absorptionskyla är tillgång till billig värme/ånga. Tekniska Verken har tack vare avfallsförbränning tillgång till billig värme. Ångan i systemet produceras däremot idag med olja och el, något som gör det dyrare att generera absorptionskyla med hjälp av ånga.</p><p>En fallstudie utfördes på de två industrierna Linköpingsmejeriet och Swedish Meats där anslutningsmöjligheterna för absorptionskyla undersöktes. Främst behovet av processkyla har undersökts då det var betydligt större än behovet av komfortkyla. Ett antal fall med olika förutsättningar för att tillgodose dessa kylbehov till de båda industrierna har simulerats i MODEST. Utifrån de resultat som erhållits har följande slutsatser dragits.</p><p>• I dagsläget finns inte tillräckligt med ångproduktion i systemet för att tillgodose både det befintliga ångbehovet samt den mängd ånga som behövs för att framställa kylan.</p><p>• En investering i nya biopannor till ett kraftvärmeverk kan ge tillräcklig mängd billig ånga och värme för att ge lönsamhet i värmedriven kylproduktion.</p><p>• Koldioxidutsläppen, lokala såväl som globala, minskar som en följd av övergång från el-kompressorer till absorptionskylmaskiner. En investering i nya biopannor skulle minska utsläppen ytterligare, då fossilt bränsle ersätts.</p><p>• En investering i en litiumbromid absorptionskylmaskin är inte lönsam vid en så pass liten efterfråga som har varit aktuellt i de undersökta fallen.</p> / <p>The main purpose of this thesis has been to look in to the potential of a production of district cooling using heat as the source of power, i.e. absorptions cooling, in the energy system of Linköping. In the light of the fact that many energy companies are looking for new markets for district heating due to the surplus of heat in the summertime in an energy system with CHP (Combined Heat and Power). Furthermore, the price on electricity is expected to continue to rise since Sweden is most likely to follow Europe’s lead and embrace a power dimensioned energy system. As a result of that transition, energy efficient measures will be more important and absorption cooling implies that more electricity can be produced, instead of consumed, in a CHP system.</p><p>There are two different types of absorption cooling machines available in the market, with either district heating or steam as the source of power. A machine using district heating as the source of power is most suitable to produce comfort cooling i.e. the cold does not need to attain such low temperatures. A steam driven absorption cooling machine is able to attain the very low temperatures needed for cooling used in the processing industry. A condition for absorption cooling is the access to low-cost heat/steam. Tekniska Verken (an energy company) has due to waste incineration access to low-cost heat. The steam in the energy system is produced with oil and electricity, which makes it more expensive to generate absorption cooling with steam as the power source.</p><p>A casestudy was preformed at two industries in Linköping, Linköpingsmejeriet and Swedish Meats, where the possibility for connection of district cooling was examined. Mainly the cooling needed in the processing industry has been examined as this is need is considerably larger than the need for comfort cooling. A number of cases with different conditions for producing district cooling have been simulated in MODEST. The following conclusions have been drawn based on the results of the simulations.</p><p>• In the energy system of today there is not enough steam production to fulfil both the current need for steam and the amount of steam needed for cooling production.</p><p>• An investment in new CHP-plants using biomass fuels will generate enough heat and steam to be profitable for cooling production using heat as a source of power.</p><p>• The emission of carbon dioxide will decrease as a result of the transmission from compression cooling to absorption cooling. The emission will decrease further if an investment in new CHP plants with biomass fuels is carried out. This will then replace the use of fossil fuels.</p><p>• An investment in lithium bromide absorptions cooler will not be profitable with such a small demand as the one in question.</p>
|
Page generated in 0.0583 seconds