Spelling suggestions: "subject:"bthermal cotransport"" "subject:"bthermal detransport""
31 |
Contributions to an Improved Oxygen and Thermal Transport Model and Development of Fatigue Analysis Software for Asphalt PavementsJin, Xin 2009 August 1900 (has links)
Fatigue cracking is one primary distress in asphalt pavements, dominant
especially in later years of service. Prediction of mixture fatigue resistance is critical for
various applications, e.g., pavement design and preventative maintenance. The goal of
this work was to develop a tool for prediction of binder aging level and mixture fatigue
life in pavement from unaged binder/mixture properties. To fulfill this goal, binder
oxidation during the early fast-rate period must be understood. In addition, a better
hourly air temperature model is required to provide accurate input for the pavement
temperature prediction model. Furthermore, a user-friendly software needs to be
developed to incorporate these findings.
Experiments were conducted to study the carbonyl group formation in one
unmodified binder (SEM 64-22) and one polymer-modified binder (SEM 70-22), aged at
five elevated temperatures. Data of SEM 64-22, especially at low temperatures, showed
support for a parallel-reaction model, one first order reaction and one zero order
reaction. The model did not fit data of SEM 70-22. The polymer modification of SEM 70-22 might be responsible for this discrepancy. Nonetheless, more data are required to
draw a conclusion.
Binder oxidation rate is highly temperature dependent. Hourly air temperature
data are required as input for the pavement temperature prediction model. Herein a new
pattern-based air temperature model was developed to estimate hourly data from daily
data. The pattern is obtained from time series analysis of measured data. The new model
yields consistently better results than the conventional sinusoidal model.
The pavement aging and fatigue analysis (PAFA) software developed herein
synthesizes new findings from this work and constant-rate binder oxidation and
hardening kinetics and calibrated mechanistic approach with surface energy (CMSE)
fatigue analysis algorithm from literature. Input data include reaction kinetics
parameters, mixture test results, and pavement temperature. Carbonyl area growth,
dynamic shear rheometer (DSR) function hardening, and mixture fatigue life decline are
predicted as function of time. Results are plotted and saved in spreadsheets.
|
32 |
Thermoelectric transport in rare-earth compounds / Thermoelektrischer Transport in SeltenerdverbindungenKöhler, Ulrike 02 July 2008 (has links) (PDF)
The focus of this thesis lies on the thermoelectric transport properties of rare-earth compounds containing Ce, Eu, and Yb. These systems have been investigated either to study fundamental problems or to evaluate their potential for thermoelectric applications.
|
33 |
Modeling of the Thermal Output of a Flat Plate Solar CollectorMunich, Chad Thomas January 2013 (has links)
Traditionally, energy capture by non-concentrating solar collectors is calculated using the Hottel-Whillier Equation (HW): Q(u)=A(c)*F(r)*S-A(c)*F(r)*U(l)*(T(fi)-Tₐ), or its derivative: Q(u)=A(c)*F(r)*S-A(c)*F(r)*U(l)*((T(fi)-T(fo))/2-Tₐ). In these models, the rate of energy capture is based on the collector's aperture area (A(c)), collector heat removal factor (F(r)), absorbed solar radiation (S), collector overall heat loss coefficient (U(l)), inlet fluid temperature (T(fi)) and ambient air temperature (Tₐ). However real-world testing showed that these equations could potentially show significant errors during non-ideal solar and environmental conditions. It also predicts that when T(fi)-Tₐ equals zero, the energy lost convectively is zero. An improved model was tested: Q(u)=A(c)F(r)S-A(c)U(l)((T(fo)-T(fi))/(ln(T(fo)/T(fi)))-Tₐ) where T(fo) is the exit fluid temperature. Individual variables and coefficients were analyzed for all versions of the equation using linear analysis methods, statistical stepwise linear regression, F-Test, and Variance analysis, to determine their importance in the equation, as well as identify alternate methods of calculated collector coefficient modeling.
|
34 |
Thermal Transport in Strongly Correlated Rare-Earth Intermetallic CompoundsPfau, Heike 08 June 2015 (has links) (PDF)
In dieser Arbeit wurden mit Hilfe von Transportmessungen – vor allem mit thermischem Transport bei sehr tiefen Temperaturen – intermetallische Seltenerdverbindungen untersucht. Diese Materialien sind oft durch starke elektronische Korrelationen gekennzeichnet, die zu neuartigen Eigenschaften führen. Um die Wechselwirkungen in den untersuchten Systemen zu beeinflussen, führten wir ein Magnetfeld als zusätzlichen Parameter ein. Damit untersuchten wir drei Fragestellungen.
Im ersten Teil überprüften wir die Gültigkeit des Wiedemann-Franz-Gesetzes in YbRh2Si2. Dieses Material zeigt einen durch ein kleines Magnetfeld induzierten quantenkritischen Punkt, für dessen unkonventionelle Eigenschaften es noch keine allgemein etablierte mikroskopische Theorie gibt. Mit Hilfe des Wiedemann-Franz-Gesetzes haben wir untersucht, ob eine solche Theorie im Rahmen des Quasiteilchenbildes formuliert werden kann. Während wir eine Bestätigung für Magnetfelder abseits des quantenkritischen Punktes zeigen, ergibt unsere Analyse direkt am quantenkritischen Punkt eine Verletzung des Weidemann-Franz-Gesetzes. Dies hat weitreichende physikalische Folgen, da eine Verletzung den Zusammenbruch des Konzeptes von Quasiteilchen impliziert.
In der zweiten Studie untersuchten wir die Kondogittersysteme YbRh2Si2 und CeRu2Si2 in Magnetfeldern mit Energien von der Größenordnung der Kondotemperatur. Beide Systeme zeigen bislang ungeklärte feldinduzierte Übergänge mit sehr unterschiedlichen Signaturen jedoch den selben Vorschlägen für deren Ursache: ein abrupter Zusammenbruch des Kondoeffekts oder ein Lifshitzübergang. Mit Thermokraft- und Widerstandsmessungen konnten wir für CeRu2Si2 zeigen, dass auch der thermische Transport kompatibel mit einem Lifshitzübergang ist. Ein globales Modell, das thermodynamische Größen mit einschließt, ist jedoch weiterhin nicht vorhanden. In YbRh2Si2 detektierten wir anstatt eines einzelnen, insgesamt drei Übergänge in höheren Magnetfeldern. Mithilfe einer sehr guten Übereinstimmung von renormalisierten Bandstrukturrechnungen mit unseren und früheren Experimenten, können wir die Entwicklung von YbRh2Si2 im Magnetfeld als Superposition von einer stetigen Unterdrückung des Kondoeffekts und drei Lifshitzübergängen beschreiben.
Im dritten Projekt untersuchten wir den supraleitenden Ordnungsparameter von LaPt4Ge12. Während frühere Experimente auf konventionelle Supraleitung hindeuten, wird für das eng verwandte PrPt4Ge12 unkonventionelle und/oder Multiband-Supraleitung diskutiert. Resultate an der Substitutionsreihe LaxPr1-xPt4Ge12 suggerieren jedoch kompatible Ordnungsparameter für beide Verbindungen. Unsere Ergebnisse der spezifischen Wärme und der temperatur- und feldabhängigen Wärmeleitfähigkeit an LaPt4Ge12 sind kompatibel mit dem Modell konventioneller Supraleitung ohne Nullstellen im der supraleitenden Bandlücke. Die Abhängigkeit der Wärmeleitfähigkeit vom Feldwinkel zeigt unerwartet umfangreiche Oszillationsmuster. Während solche Oszillationen oft als Zeichen von Nullstellen in der Bandlücke interpretiert werden, konnten wir die meisten Frequenzen anderen Ursachen zuordnen. Eine sehr genaue Analyse von winkelabhängigen Messungen ist daher unabdingbar, um daraus Schlussfolgerungen für den Ordnungsparameter ziehen zu können.
|
35 |
Point critique quantique de la phase pseudogap dans les cuprates supraconducteurs / The pseudogap quantum critical point of superconducting cupratesMichon, Bastien 25 October 2017 (has links)
Cette thèse expérimentale explore les propriétés du point critique de la phase pseudogap dans le diagramme de phase des cuprates supraconducteurs. Dans une première partie, j’expose un état de l’art sur les connaissances du diagramme de phases température-dopage (T-p) de ces systèmes. Des études récentes montrent une chute importante de la densité de porteurs électroniques au voisinage du point critique suggérant une reconstruction de la surface Fermi. Pour comprendre la nature exacte de la transition de phases liée à cette reconstruction, j’ai réalisé des mesures complémentaires de transport thermique et de chaleur spécifique sous champ magnétique intense sur les familles La1.8-xSrxEu0.2CuO4 et La1.6-xSrxNd0.4CuO4.Dans une deuxième partie, après une introduction théorique sur la chaleur spécifique et le transport thermique, je détaille comment ces deux grandeurs ont été mesurées. En particulier, une technique originale de mesures de la chaleur spécifique a été mise au point pour combiner haute résolution et précision absolue en champ magnétique intense et basse température. Différents modèles thermiques et électroniques ont été développés pour comprendre et analyser les mesures et ont permis d’optimiser les différents montages de chaleur spécifique selon les gammes de température.Dans une troisième partie, je présente l’ensemble des résultats obtenus en transport thermique et chaleur spécifique. Le transport thermique confirme la chute de la densité de porteur dans l’état normal (sans supraconductivité) des cuprates déjà observée en transport électrique sous champ intense. Par ailleurs, j ‘ai montré que cette chute existe également au sein de la phase supraconductrice (à champ magnétique nul), montrant qu’elle n’est influencée ni par la présence de la supraconductivité ni par le champ magnétique. Dans l’état normal, la loi de Wiedemann-Franz est respectée prouvant le caractère métallique de la phase pseudogap.La chaleur spécifique électronique montre un comportement non classique à proximité du point critique. Ce comportement anormal est caractérisé par une dépendance logarithmique en fonction de la température au dopage critique p* correspondant à la chute du nombre de porteurs. De plus, ces mesures suggèrent une divergence de la masse effective à p* en fonction du dopage. Ces deux observations sont la signature d’un point critique quantique localisé à T = 0 et p = p* dont l’origine est discutée dans la dernière partie. Les différentes classes d’universalités possibles sont discutées et une comparaison avec d’autres composés (fermions lourds, pnictures) possédant un point critique quantique est présentée. / This experimental PhD thesis explores the properties of the pseudogap critical point in the phase diagram of superconducting cuprates. In a first part, I present a state of the art on the knowledge of the temperature-doping (T-p) phase diagram of these systems. Recent studies show a dramatic drop in the electronic carrier density near the critical point, suggesting a Fermi surface reconstruction. To understand the exact nature of the phase transition related to this reconstruction, I performed complementary high magnetic field measurements of thermal transport and specific heat on La1.8-xSrxEu0.2CuO4 and La1.6-xSrxNd0.4CuO4 cuprates.In a second part, after a theoretical introduction on specific heat and thermal transport, I detail how these two quantities were measured. In particular, an original technique for measuring specific heat has been developed to combine high resolution and absolute accuracy in high magnetic field and low temperature. Different thermal and electronic models have been developed to understand and analyze the measurements in order to optimize the different set-ups according to the temperature range.In a third part, I present the results obtained in thermal transport and specific heat. Thermal transport confirms the drop in carrier density in the normal state (without superconductivity) of cuprates, already observed in high magnetic field electrical transport. Moreover, this drop also exists within the superconducting phase (in zero magnetic field), showing that it is neither influenced by the presence of superconductivity nor by the magnetic field. In the normal state, the Wiedemann-Franz low is satisfied, proving the metallic character of the pseudogap phase.Electronic specific heat shows non-classical behavior in the vicinity of the critical point. This abnormal behavior is characterized by a logarithmic dependence as a function of temperature at the critical doping p *, corresponding to the drop in the carrier density. Moreover, these measurements suggest a divergence of the effective mass at p * as a function of doping. These two observations are the signature of a quantum critical point located at T = 0 and p = p *, whose origin is discussed in the last part. I discuss the possible universality classes, and I compare with others compounds (heavy fermions, pnictides) which present a quantum critical point.
|
36 |
Thermoelectric transport in rare-earth compoundsKöhler, Ulrike 08 May 2008 (has links)
The focus of this thesis lies on the thermoelectric transport properties of rare-earth compounds containing Ce, Eu, and Yb. These systems have been investigated either to study fundamental problems or to evaluate their potential for thermoelectric applications.
|
37 |
Atomistic and Machine Learning Simulations for Nanoscale Thermal TransportPrabudhya Roychowdhury (11182083) 26 July 2021 (has links)
<div>The recent decades have witnessed increased efforts to push the efficiency of energy systems beyond existing limits in order to keep pace with the rising global energy demands. Such efforts involve finding bulk materials and nanostructures with desired thermal properties such as thermal conductivity (k). For example, identifying high k materials is crucial in thermal management of vertically integrated circuits (ICs) and flexible nanoelectronics, which will power the next generation personal computing devices. On the opposite end of the spectrum, designing ultra-low k materials is essential for improving thermal barrier coatings in turbines and creating high performance thermoelectric (TE) devices for waste heat harvesting. In this dissertation, we identify nanostructures with such extreme thermal transport properties and explore the underlying phonon and photon transport mechanisms. Our approach follows two main avenues for evaluating potential candidates: (a) high fidelity atomistic simulations and (b) rapid machine learning-based property prediction and design optimization. The insight gained into the governing physics enables us to theoretically predict new materials for specific applications requiring high or low k, propose accelerated design optimization pathways which can significantly reduce design time, and advance the general understanding of energy transport in semiconductors and dielectric materials.</div><div><br></div><div>Bi2Te3, Sb2Te3 and nanostructures have long been the best TE materials due to their low κ at room temperatures. Despite this, computational studies such as molecular dynamics (MD) simulations on these important systems have been few, due to the lack of a suitable interatomic potential for Sb2Te3. We first develop interatomic potential parameters to predict thermal transport properties of bulk Sb2Te3. The parameters are fitted to a potential energy surface comprised of density functional theory (DFT) calculated lattice energies, and validated by comparing against experimental and DFT calculated lattice constants and phonon properties. We use the developed parameters in equilibrium MD simulations to calculate the thermal conductivity of bulk Sb2Te3 at different temperatures. A spectral analysis of the phonon transport is also performed, which reveals that 80% of the total cross-plane k is contributed by phonons with mean free paths (MFPs) between 3-100 nm. </div><div><br></div><div>We then use MD simulations to calculate phonon transport properties such as thermal conductance across Bi2Te3 and Sb2Te3 interface, which may account for the major part of the total thermal resistance in nanostructures. By comparing our MD results to an elastic scattering model, we find that inelastic phonon-phonon scattering processes at higher temperatures increases interfacial conductance by providing additional channels for energy transport. Finally, we calculate the thermal conductivities of Bi2Te3/Sb2Te3 superlattices (SLs) of varying period. The results show the characteristic minimum thermal conductivity, which is attributed to the competition between incoherent and coherent phonon transport regimes. Our MD simulations are the first fully predictive studies on this important TE system and pave the way for further exploration of nanostructures such as SLs with interface diffusion and random multilayers (RMLs).</div><div><br></div><div>The MD simulations described in the previous section provide high-fidelity data at a high computational cost. As such, manual intuition-based search methods using these simulations are not feasible for searching for low-probability-of-occurrence systems with extreme thermal conductivity. In view of this, we use machine learning (ML) techniques to accelerate and efficiently perform nanostructure design optimization within such large design spaces. First, we use a Genetic Algorithm (GA) based optimization method to efficiently search the design space of fixed length Si/Ge random multilayers (RMLs) for the structure with lowest k, which is found to be lower than the SL k by 33%. By comparing thermal conductivity and interface resistances between optimal and sub-optimal structures, we identify non-intuitive trends in design parameters such as average period and degree of randomness of layer thicknesses. </div><div><br></div><div>While machine learning (ML) has shown increasing effectiveness in optimizing materials properties under known physics, its application in discovering new physics remains challenging due to its interpolative nature. We demonstrate a general-purpose adaptive ML-accelerated search process that can discover unexpected lattice thermal conductivity (k) enhancement in aperiodic superlattices (SLs) as compared to periodic superlattices, with implications for thermal management of multilayer-based electronic devices. We use molecular dynamics simulations for high-fidelity calculations of k, along with a convolutional neural network (CNN) which can rapidly predict k for a large number of structures. To ensure accurate prediction for the target unknown SLs, we iteratively identify aperiodic SLs with structural features leading to locally enhanced thermal transport and include them as additional training data for the CNN. The identified structures exhibit increased coherent phonon transport owing to the presence of closely spaced interfaces.</div><div><br></div><div>We also demonstrate the application of ML in optimization of photonic multilayered structures with enhanced reflectivity to radiation heat flux, which is required for applications such as high temperature thermal barrier coatings (TBCs). We first perform a systematic variation of design parameters such as total thickness and average layer thickness of CeO2-MgO multilayers, and quantify their influence on the spectral and total reflectivity. The effect of randomization of layer thicknesses is also studied, which is found to increase the reflectivity due to localization of photons in certain spatial regions of the multilayer structure. Next, we employ a GA search method which can efficiently identify RML structures with reflectivity enhancements of ~22%, 20%, 20% and 10% over that obtained in randomly generated RML structures for total thicknesses of 5,10,20 and 30 microns respectively. We also calculate the spectral reflectivity and the field intensity distribution within the optimal and sub-optimal RML structures. We find that the electric field intensity can be significantly enhanced within certain spatial regions within the GA-optimized RMLs in comparison to non-optimized and periodic structures, which implies the high degree of randomness-induced photon localization leading to enhanced reflectivity in the GA-optimized structures.</div><div><br></div><div>In summary, our work advances the design or search for materials and nanostructures with targeted thermal transport properties such as low and high thermal conductivity and high reflectivity. The new insights provided into the underlying physics will guide the design of promising nanostructures for high efficiency energy systems. </div><div><br></div>
|
38 |
Thermoelectric Transport and Energy Conversion Using Novel 2D MaterialsWirth, Luke J. January 2016 (has links)
No description available.
|
39 |
Attefallshus insulated with Vacuum Insulated PanelsEmre Sunal, Egill January 2016 (has links)
Stockholm lies at the top in Europe in terms of population growth. It is growing from 30,000 to 40,000 residents each year and therefor puts high demands on the regions development. One of the governments reactions to this housing problem was to approve a bill that would simplify the regulatory framework in the planning and building act. It will among other permit owners of a one-or two family houses to build a 25 compliment housing without a building permit, so called attefallshus. In this final project, a small 25 house is designed. The house was designed to have thin exterior walls to maximize the indoor living space and also to fulfill all the Boverkets regulations for permanent housing. Vacuum Insulated panels were used as an insulation material in the envelope to achieve the extra thin exterior walls to maximize the living space. Various different simulations were done to simulate: Heat- and moisture transfer through the exterior walls, thermal bridges, energy calculations and the daylight factor inside the house. Additional calculations were done in Excel to compare the mean U-value calculated in simulations. The moisture transfer simulation did show that there should not be any moisture problems in the exterior walls. The mean U-value calculations in Excel and in the simulations showed values less than the limitations of Boverkets building regulations.
|
40 |
Numerical study of electro-thermal effects in silicon devices / Etude numérique des effets électrothermiques dans les nanodispositifs de SiliciumNghiem Thi, Thu Trang 25 January 2013 (has links)
Le développement de la technologie des composants CMOS ultimes à grille ultra-courte (L < 20 nm) se heurte à de nombreuses difficultés technologiques, mais également à des limites thermiques qui perturbent notablement les règles de mise à l'échelle communément employées jusqu'à présent. Les fortes densités de courant obtenues dans des zones actives aussi réduites génèrent un important échauffement local (par effet Joule), lié à l'émission de phonons par les porteurs chauds, qui peut conduire à des réductions très sensibles des performances, voire à des défaillances. Ce phénomène est identifié comme un des plus critiques pour la poursuite de l'augmentation de la densité d'intégration des circuits. Cela est particulièrement crucial dans les technologies SOI (silicium sur isolant), où la présence de l'isolant enterré constitue un frein à l'évacuation de la chaleur. À l'échelle nanométrique, l'étude théorique de ces phénomènes d'échauffement n'est plus possible par des modèles macroscopiques (coefficient de diffusion de la chaleur) mais nécessite une description microscopique détaillée des transferts de chaleur qui sont localement hors d’équilibre. Il s'agit donc de modéliser de façon appropriée, non seulement le transport électronique et la génération de phonons, mais aussi le transport de phonons hors équilibre et les interactions phonons-phonons et électrons-phonons.Le formalisme de l’équation de transport de Boltzmann (BTE) est très bien adapté à l'étude de ce problème. En effet, il est largement utilisé depuis des années pour l'étude du transport des particules chargées dans les composants semi-conducteurs. Ce formalisme est beaucoup moins standard pour étudier le transport des phonons. Une des problématiques de ce travail concerne le couplage de la résolution de la BTE des phonons avec celle des électrons.Ce travail de thèse a développé un algorithme de calcul du transport de phonons par résolution directe de la BTE des phonons. Cet algorithme de transport de phonon a été couplé au transport électronique simulé grâce au logiciel "MONACO" basé sur une résolution statistique (ou Monte Carlo) de la BTE. Finalement, ce nouveau simulateur électrothermique a été utilisé pour étudier les effets d’auto échauffement dans des nano-transistors. L’intérêt principal de ces travaux est de permettre une analyse du transport electro-thermique au-delà d’une approche macroscopique (respectivement formalisme de Fourier pour la thermique et dérive-diffusion pour le courant). En effet, il donne accès aux distributions de phonons dans le dispositif et pour chaque mode de phonon. En particulier, ce simulateur apporte une meilleure compréhension des effets des électrons chauds sur les points chauds et leur relaxation dans les accès. / The ultra-short gate (LG < 20 nm) CMOS components (Complementary Metal-Oxide-Semiconductor) face thermal limitations due to significant local heating induced by phonon emission by hot carriers in active regions of reduced size. This phenomenon, called self-heating effect, is identified as one of the most critical for the continuous increase in the integration density of circuits. This is especially crucial in SOI technology (silicon on insulator), where the presence of the buried insulator hinders the dissipation of heat.At the nanoscale, the theoretical study of these heating phenomena, which cannot be led using the macroscopic models (heat diffusion coefficient), requires a detailed microscopic description of heat transfers that are locally non-equilibrium. It is therefore appropriate to model, not only the electron transport and the phonon generation, but also the phonon transport and the phonon-phonon and electron-phonon interactions. The formalism of the Boltzmann transport equation (BTE) is very suitable to study this problem. In fact, it is widely used for years to study the transport of charged particles in semiconductor components. This formalism is much less standard to study the transport of phonons. One of the problems of this work concerns the coupling of the phonon BTE with the electron transport.In this context, wse have developed an algorithm to calculate the transport of phonons by the direct solution of the phonon BTE. This algorithm of phonon transport was coupled with the electron transport simulated by the simulator "MONACO" based on a statistical (Monte Carlo) solution of the BTE. Finally, this new electro-thermal simulator was used to study the self-heating effects in nano-transistors. The main interest of this work is to provide an analysis of electro-thermal transport beyond a macroscopic approach (Fourier formalism for thermal transport and the drift-diffusion approach for electric current, respectively). Indeed, it provides access to the distributions of phonons in the device for each phonon mode. In particular, the simulator provides a better understanding of the hot electron effects at the hot spots and of the electron relaxation in the access.
|
Page generated in 0.0501 seconds