• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribuição ao desenvolvimento de técnicas de visualização térmica para monitoração de processos envolvendo fluidos multifásicos / Contribution to the development of techniques of thermal visualization for monitoring of processes involving fluid multiphases

Campos, Gisleine Pereira de 22 October 2004 (has links)
Técnicas de reconstrução térmica inversa são muito usadas em diferentes aplicações tais como a determinação de propriedades térmicas de novos materiais, controle da produção de calor, temperatura em processos de manufatura, etc. Apesar da ampla aplicabilidade, o problema inverso é intrinsecamente mal condicionado e tem sido tema de trabalhos de vários pesquisadores. A solução de um problema térmico inverso tridimensional é significantemente complexa, e, assim requer uma formulação que não contenha condições experimentais não realistas tais como confinamento bidimensional e estabilidade do campo térmico com relação a mudanças em parâmetros internos. Uma das abordagens adotada é baseada na formulação variacional sobre a forma do erro quadrático para reconstrução da distribuição de condução de calor interna e coeficiente de condução de calor parietal para um problema tridimensional. Dentro desta estrutura, a natureza mal condicionada do problema se manifesta na superfície de otimização por produzir topologias problemáticas tais como, vários mínimos locais, pontos de sela, vales e platôs ao redor da solução etc. Para viabilizar a abordagem escolhida, um modelo numérico foi escrito baseado na discretização por diferenças finitas da equação diferencial governante e condições de contorno. O erro funcional foi definido pela comparação entre medidas experimentais e numéricas de temperatura. O objetivo foi realizar simulações numéricas a fim de mapear a superfície de otimização correspondente e identificar a estrutura problemática associada ou patologia, chegando assim à reconstrução do coeficiente de convecção h. / Inverse thermal reconstruction techniques are widely used in different applications such as the determination of thermal properties of new materials, control of heat generation, temperature in manufacturing processes, etc. Despite the broad range of applicability, an inverse problem is intrinsically ill conditioned and has been the subject of the work of several researchers. The solution of an inverse 3-dimesional thermal problem is significantly complex, and, thus, requires a formulation that do not contain unrealistic experimental conditions such as 2-dimensional confinement and steadiness of the thermal field with respect to changes in internal parameters. One of the most adopted is the variational formulation based on quadratic error forms for the reconstruction of the internal heat conduction distribution and convection coefficient for a 3-dimensional problem. Within this framework, the ill conditioned nature of the problem manifests itself on the optimization surface by producing problematic topologies such as contour and multiple local minima, saddle points, plateaux around the solution pit and so on. To be able to apply th method a numerical model was written based on a finite difference discretization of the governing differential equation and boundary conditions. An error functional was defined by comparing experimental and numerical measurement temperatures. Numerical simulations aiming at mapping the corresponding optimization surfaces andatidentifing the associated problematic structures or pathologies, resulting in the reconstruction of convection coefficient.
2

Contribuição ao desenvolvimento de técnicas de visualização térmica para monitoração de processos envolvendo fluidos multifásicos / Contribution to the development of techniques of thermal visualization for monitoring of processes involving fluid multiphases

Gisleine Pereira de Campos 22 October 2004 (has links)
Técnicas de reconstrução térmica inversa são muito usadas em diferentes aplicações tais como a determinação de propriedades térmicas de novos materiais, controle da produção de calor, temperatura em processos de manufatura, etc. Apesar da ampla aplicabilidade, o problema inverso é intrinsecamente mal condicionado e tem sido tema de trabalhos de vários pesquisadores. A solução de um problema térmico inverso tridimensional é significantemente complexa, e, assim requer uma formulação que não contenha condições experimentais não realistas tais como confinamento bidimensional e estabilidade do campo térmico com relação a mudanças em parâmetros internos. Uma das abordagens adotada é baseada na formulação variacional sobre a forma do erro quadrático para reconstrução da distribuição de condução de calor interna e coeficiente de condução de calor parietal para um problema tridimensional. Dentro desta estrutura, a natureza mal condicionada do problema se manifesta na superfície de otimização por produzir topologias problemáticas tais como, vários mínimos locais, pontos de sela, vales e platôs ao redor da solução etc. Para viabilizar a abordagem escolhida, um modelo numérico foi escrito baseado na discretização por diferenças finitas da equação diferencial governante e condições de contorno. O erro funcional foi definido pela comparação entre medidas experimentais e numéricas de temperatura. O objetivo foi realizar simulações numéricas a fim de mapear a superfície de otimização correspondente e identificar a estrutura problemática associada ou patologia, chegando assim à reconstrução do coeficiente de convecção h. / Inverse thermal reconstruction techniques are widely used in different applications such as the determination of thermal properties of new materials, control of heat generation, temperature in manufacturing processes, etc. Despite the broad range of applicability, an inverse problem is intrinsically ill conditioned and has been the subject of the work of several researchers. The solution of an inverse 3-dimesional thermal problem is significantly complex, and, thus, requires a formulation that do not contain unrealistic experimental conditions such as 2-dimensional confinement and steadiness of the thermal field with respect to changes in internal parameters. One of the most adopted is the variational formulation based on quadratic error forms for the reconstruction of the internal heat conduction distribution and convection coefficient for a 3-dimensional problem. Within this framework, the ill conditioned nature of the problem manifests itself on the optimization surface by producing problematic topologies such as contour and multiple local minima, saddle points, plateaux around the solution pit and so on. To be able to apply th method a numerical model was written based on a finite difference discretization of the governing differential equation and boundary conditions. An error functional was defined by comparing experimental and numerical measurement temperatures. Numerical simulations aiming at mapping the corresponding optimization surfaces andatidentifing the associated problematic structures or pathologies, resulting in the reconstruction of convection coefficient.
3

Desenvolvimento de uma técnica não intrusiva de medição do coeficiente de convecção: solução do problema térmico inverso / Development of a non-intrusive technique for measuring of the convection coefficient: solution of the inverse thermal problem

Brandi, Analice Costacurta 13 August 2010 (has links)
A tomografia por sensoriamento térmico é muito utilizada em diferentes aplicações industriais, tais como a determinação de propriedades térmicas de novos materiais, o controle da produção de calor e a temperatura no processo de manufatura. Entretanto, o emprego de técnicas tomográficas em processos industriais envolvendo transferência de calor ainda carece de métodos robustos e computacionalmente eficientes. Nesse contexto, o principal objetivo deste trabalho é contribuir para o desenvolvimento de uma técnica não intrusiva de medição do coeficiente de convecção a partir de medidas externas de temperatura e fluxo de calor baseada na solução do problema térmico inverso. Para tanto é necessário resolver um problema de condução acoplado a um problema de convecção de calor. Este acoplamento ocorre através do coeficiente de convecção no interior do domínio do problema, cuja determinação pode ser feita através da aplicação de um fluxo de calor e medição das temperaturas resultantes na superfície externa. A tomografia térmica é tratada como um problema de minimização global, cuja função objetivo é um funcional de erro que quantifica a diferença entre as medidas externas não intrusivas (temperatura real) e as medidas calculadas no modelo numérico (temperatura aproximada). A natureza mal condicionada do problema assim formulado se manifesta na superfície de minimização por produzir topologias problemáticas tais como múltiplos mínimos locais, pontos de sela, vales ao redor da solução, platôs, etc. Desse modo, uma técnica bastante sofisticada, capaz de convergir para a solução correta mesmo na presença dessas patologias é necessária para obtenção da solução. Neste trabalho optou-se pelo método de Newton para a minimização deste funcional em que a inversa da matriz Hessiana é substituída por uma pseudo-inversa construída a partir da técnica de Decomposição em Valores Singulares Truncados. Os resultados mostram que a técnica proposta foi capaz de superar os problemas de convergência associados à natureza intrínseca mal condicionada do problema inverso e o coeficiente de convecção foi reconstruído com precisão razoável. / Tomography by thermal sensing is widely used in different industrial applications, such as the determination of thermal properties of new materials, the control of heat production and the temperature in manufacturing processes. However, the application of tomographic techniques in industrial processes involving heat transfer still lacks robust and computationally efficient methods. In this context, the main objective of this thesis is to contribute to the development of a non-intrusive technique for measuring of the convection coefficient from external temperature and heat flow measurements based on the solution of the inverse thermal problem. This requires solving a conduction problem coupled with a heat convection problem, which is coupled through an internal convection coefficient, determined by applying a heat flux and measuring the resulting temperatures on the external boundary. The thermal tomography is treated as a global minimization problem in which the fitness function is an error functional that quantifies the difference between non-intrusive external measurements (actual temperature) and measurements calculated in a numerical model (approximate temperature). The ill-conditioned nature of the problem manifests itself in the minimization problem for producing problematic topologies, such as multiple local minima, saddle points, valleys around the solution, plateaus, etc. Thus, a very sophisticated technique that can converge to the correct solution even in the presence of these pathologies is necessary to obtain the solution. In this thesis the Newton\'s method was used for the minimization of this functional in which the inverse Hessian matrix was replaced by a pseudo-inverse built from the truncated singular value decomposition technique. Results show that the proposed technique was capable of overcoming the convergence problems associated with the intrinsic ill-conditioned nature of the inverse problem and the convection coefficient was reconstructed within reasonable precision.
4

Desenvolvimento de uma técnica não intrusiva de medição do coeficiente de convecção: solução do problema térmico inverso / Development of a non-intrusive technique for measuring of the convection coefficient: solution of the inverse thermal problem

Analice Costacurta Brandi 13 August 2010 (has links)
A tomografia por sensoriamento térmico é muito utilizada em diferentes aplicações industriais, tais como a determinação de propriedades térmicas de novos materiais, o controle da produção de calor e a temperatura no processo de manufatura. Entretanto, o emprego de técnicas tomográficas em processos industriais envolvendo transferência de calor ainda carece de métodos robustos e computacionalmente eficientes. Nesse contexto, o principal objetivo deste trabalho é contribuir para o desenvolvimento de uma técnica não intrusiva de medição do coeficiente de convecção a partir de medidas externas de temperatura e fluxo de calor baseada na solução do problema térmico inverso. Para tanto é necessário resolver um problema de condução acoplado a um problema de convecção de calor. Este acoplamento ocorre através do coeficiente de convecção no interior do domínio do problema, cuja determinação pode ser feita através da aplicação de um fluxo de calor e medição das temperaturas resultantes na superfície externa. A tomografia térmica é tratada como um problema de minimização global, cuja função objetivo é um funcional de erro que quantifica a diferença entre as medidas externas não intrusivas (temperatura real) e as medidas calculadas no modelo numérico (temperatura aproximada). A natureza mal condicionada do problema assim formulado se manifesta na superfície de minimização por produzir topologias problemáticas tais como múltiplos mínimos locais, pontos de sela, vales ao redor da solução, platôs, etc. Desse modo, uma técnica bastante sofisticada, capaz de convergir para a solução correta mesmo na presença dessas patologias é necessária para obtenção da solução. Neste trabalho optou-se pelo método de Newton para a minimização deste funcional em que a inversa da matriz Hessiana é substituída por uma pseudo-inversa construída a partir da técnica de Decomposição em Valores Singulares Truncados. Os resultados mostram que a técnica proposta foi capaz de superar os problemas de convergência associados à natureza intrínseca mal condicionada do problema inverso e o coeficiente de convecção foi reconstruído com precisão razoável. / Tomography by thermal sensing is widely used in different industrial applications, such as the determination of thermal properties of new materials, the control of heat production and the temperature in manufacturing processes. However, the application of tomographic techniques in industrial processes involving heat transfer still lacks robust and computationally efficient methods. In this context, the main objective of this thesis is to contribute to the development of a non-intrusive technique for measuring of the convection coefficient from external temperature and heat flow measurements based on the solution of the inverse thermal problem. This requires solving a conduction problem coupled with a heat convection problem, which is coupled through an internal convection coefficient, determined by applying a heat flux and measuring the resulting temperatures on the external boundary. The thermal tomography is treated as a global minimization problem in which the fitness function is an error functional that quantifies the difference between non-intrusive external measurements (actual temperature) and measurements calculated in a numerical model (approximate temperature). The ill-conditioned nature of the problem manifests itself in the minimization problem for producing problematic topologies, such as multiple local minima, saddle points, valleys around the solution, plateaus, etc. Thus, a very sophisticated technique that can converge to the correct solution even in the presence of these pathologies is necessary to obtain the solution. In this thesis the Newton\'s method was used for the minimization of this functional in which the inverse Hessian matrix was replaced by a pseudo-inverse built from the truncated singular value decomposition technique. Results show that the proposed technique was capable of overcoming the convergence problems associated with the intrinsic ill-conditioned nature of the inverse problem and the convection coefficient was reconstructed within reasonable precision.
5

Flash Pulse Thermography Measurements of Coat Thickness

Häggkvist, Alexander January 2023 (has links)
The application of varnish, metal coats, and paint is a common practice for modifying or enhancing material properties. Metal coats are frequently used as protective layers against corrosion, heat, and wear, while also influencing characteristics like conductivity, weight, and production costs. Achieving the optimal thickness of the coating is critical, as a too-thin layer may not offer sufficient protection, while an overly thick layer adds unnecessary weight and increases expenses. Therefore, it is crucial to accurately measure the coating thickness without causing any damage. This project focuses on utilising flash pulse thermography, a non-invasive and non-destructive measuring technique, with three algorithms — Dynamical Thermal Tomography, Power Function, and Pulse Phase Thermography — to measure and differentiate between plates with known variations in the number of coating layers. The study also aims to identify the limiting factors associated with the experimental equipment and the characteristics of the thermography algorithms. The thickness calculations were performed both individually for each plate and simultaneously for multiple plates. The results demonstrate that Dynamical Thermal Tomography exhibits superior precision and strong linear correlation when measuring individual plates. On the other hand, the Power Function algorithm outperforms in effectively distinguishing between two plates simultaneously, while providing decent precision for individual plates. It is worth noting that the framerate of the camera significantly affects the performance and serves as the primary limiting factor in this specific experimental setup.Further investigations are necessary to obtain more conclusive results and determine the limitations of accuracy when measuring coating thickness.

Page generated in 0.0693 seconds