Spelling suggestions: "subject:"thermodynamic amodelling"" "subject:"thermodynamic bmodelling""
11 |
Cation adsorption properties of substituted kraft fibres : an experimental and thermodynamic modelling studySundman, Ola January 2008 (has links)
Acid/base and metal ion adsorption properties have been investigated for a range of chemically modified bleached Kraft fibre materials (pulps). The studies were performed via potentiometric titrations, Flame Atomic Absorbtion (and Emission) Spectroscopy, Inductively Coupled Plasma Optical Emission Spectroscopy and Extended X-ray Absorbtion Fine Structure measurements. As a result of a chemical modification procedure, the total concentration of acidic carboxylate groups in the fibre materials ranged between 43 and 590 μmol/g. The preferable surface potential model for modelling the ionic strength dependent acid/base properties of fibre materials with low charge densities, i.e. unmodified fully bleached Kraft fibre materials, was found to be the Basic Stern Model. For fibre materials with high total charge, ≳100 μmol/g, this model resulted in poor fits to data, and for such materials a number of Constant Capacitance Models, one at each ionic strength, must be recommended. With respect to metal ion adsorption, the results have indicated that the unspecific Donnan theory could correctly model the simultaneous adsorption of several metal ions, i.e. K+, Na+, Mg2+, Ca2+ and Cu2+, provided that the salt concentration in the fibre suspension is low. In suspensions of high salt concentration it was, however, found that this very same model strongly underestimated the adsorption of Ca2+ and Cu2+. Here, the Donnan model had to be complemented by specific ion exchange equilibria. These results were corroborated by spectroscopic evidence of specific interactions between Cu2+-ions and fibres. The spectroscopic indication of a complex formed between two fibre surface carboxylate groups and one Cu2+-ion, agree with the specific ion exchange model. It was therefore concluded that specific metal ionfibre interactions cannot be neglected, especially at high salt concentrations. The interactions occurring between the polycation GaO4Al12(OH)24(H2O)127+ and fibre materials were studied by both adsorption and spectroscopic measurements. These indicate that GaO4Al12(OH)24(H2O)127+ is surprisingly stable in fibre suspensions and that intact GaO4Al12(OH)24(H2O)127+- ions are strongly adsorbed onto the fibres. Also for this ion, specific interactions has to be considered, since the strong adsorption registered was too strong to be explained by Donnan equilibria. In the thesis, the stochiometric composition and an equilibrium constant characterising these interactions is presented.
|
12 |
Thermodynamic description of the Fe-C-Cr-Mn-Ni-O systemKjellqvist, Lina January 2009 (has links)
The Fe-C-Cr-Mn-Ni-O system is of fundamental importance when describing the influence of oxygen on high alloyed steels. Both solid and liquid phases are of great interest: The solid phases regarding oxidation processes like the formation of oxide layers, inner oxidation, sintering processes and high temperature corrosion. The liquid phase is of interest concerning the interaction between steel and its slag in a metallurgical context. In this thesis the thermodynamic properties of this system is described using the Calphad technique. The main idea of the Calphad technique is to describe the Gibbs energy of all phases in the system as a function of temperature, pressure and composition using appropriate thermodynamic models. When thermodynamic descriptions of all phases taking part in the system are modelled and described in a database, the equilibrium state could be calculated with a software that minimizes the total Gibbs energy. Models within the compound energy formalism are used for all solution phases, among them the ionic two-sublattice liquid model, to describe both the metallic and oxide melts. All simple spinels (Cr3O4, FeCr2O4, Fe3O4, FeMn2O4, Mn3O4, MnCr2O4, NiCr2O4, NiFe2O4, NiMn2O4) within this system are described using a four-sublattice model. In this thesis several binary and ternary systems have been assessed or partly reassessed. The Fe-C-Cr-Mn-Ni-O database achieved can be used with an appropriate thermodynamic software to calculate thermodynamic properties, equilibrium states and phase diagrams. In general, the agreement between calculated and experimental values is good. / QC 20100723
|
13 |
Studies of Steel/Slag Equilibria using Computational ThermodynamicsKjellqvist, Lina January 2006 (has links)
<p>The main focus in the present work concerns calculations on steel/slag equilibria. Thermodynamic software and databases are now powerful and accurate enough to give reliable results when applied to complex metallurgical processes. One example is the decarburization process of high alloyed steels. It is shown that using advanced thermodynamic models, without a complicated kinetic description of the system, reasonable agreement with experimental data is obtained. The calculations are performed using the Thermo-Calc software.</p><p>Within this work a Java interface for Thermo-Calc has been implemented. Java gives graphical possibilities and a graphical interface has been created that facilitates calculations that involve both metallic phases as well as oxides and make them feasible also for an industrial user.</p>
|
14 |
A Numerical Investigation Of A Two-Stroke Poppet-Valved Diesel Engine ConceptTeakle, Philip Robert January 2004 (has links)
Two-stroke poppet-valved engines may combine the high power density of two - stroke engines and the low emissions of poppet-valved engines. A two-stroke diesel engine can generate the same power as a four-stroke engine of the same size, but at higher (leaner) air/fuel ratios. Diesel combustion at high air/fuel ratios generally means hydrocarbons, soot and carbon monoxide are oxidised more completely to water and carbon dioxide in the cylinder, and the opportunity to increase the rate of exhaust gas recirculation should reduce the formation of nitrogen oxides (NOx). The concept is being explored as a means of economically modifying diesel engines to make them cleaner and/or more powerful. This study details the application of two computational models to this problem. The first model is a relatively simple thermodynamic model created by the author capable of rapidly estimating the behaviour of entire engine systems. It was used to estimate near-optimum engine system parameters at single engine operating points and over a six-mode engine cycle. The second model is a detailed CFD model called KIVA-ERC. It is a hybrid of the KIVA engine modelling package developed at the Los Alamos National Laboratory and combustion and emissions subroutines developed at the University of Wisconsin-Madison Engine Research Center. It was used for detailed scavenging and combustion simulations and to provide estimates of emissions levels. Both models were calibrated and validated for four-stroke cycle operation using experimental data. The thermodynamic model was used to provide initial and boundary conditions to the KIVA-ERC model. Conversely, the combustion simulations were used to adjust zero-dimensional combustion correlations when experimental data was not available. Scavenging simulations were performed with shrouded and unshrouded intake valves. A new two-zone scavenging model was proposed and validated using multidimensional scavenging simulations. A method for predicting the behaviour of the two-stroke engine system based on four-stroke data has been proposed. The results using this method indicate that a four-stroke diesel engine with minor modifications can be converted to a two-stroke cycle and achieve substantially the same fuel efficiency as the original engine. However, emissions levels can not be predicted accurately without experimental data from a physical prototype. It is therefore recommended that such a prototype be constructed, based on design parameters obtained from the numerical models used in this study.
|
15 |
Hydrogen trapping in bearing steels : mechanisms and alloy designSzost, Blanka Angelika January 2013 (has links)
Hydrogen embrittlement is a problem that offers challenges both to technology and to the theory of metallurgy. In the presence of a hydrogen rich environment, applications such as rolling bearings display a significant decrease in alloy strength and accelerated failure due to rolling contact fatigue. In spite of these problems being well recognised, there is little understanding as to which mechanisms are present in hydrogen induced bearing failure. The objective of this thesis are twofold. First, a novel alloy combining the excellent hardness of bearing steels, and resistance to hydrogen embrittlement, is proposed. Second, a new technique to identify the nature of hydrogen embrittlement in bearing steels is suggested. The new alloy was a successful result of computer aided alloy design; thermodynamic and kinetic modelling were employed to design a composition and heat treatment combining (1) fine cementite providing a strong and ductile microstructure, and (2) nano-sized vanadium carbide precipitates acting as hydrogen traps. A novel technique is proposed to visualise the migration of hydrogen to indentation-induced cracks. The observations employing this technique strongly suggest that hydrogen enhanced localised plasticity prevails in bearing steels. While proposing a hydrogen tolerant bearing steel grade, and a new technique to visualize hydrogen damage, this thesis is expected to aid in increasing the reliability of bearings operating in hydrogen rich environments.
|
16 |
Studies of Steel/Slag Equilibria using Computational ThermodynamicsKjellqvist, Lina January 2006 (has links)
The main focus in the present work concerns calculations on steel/slag equilibria. Thermodynamic software and databases are now powerful and accurate enough to give reliable results when applied to complex metallurgical processes. One example is the decarburization process of high alloyed steels. It is shown that using advanced thermodynamic models, without a complicated kinetic description of the system, reasonable agreement with experimental data is obtained. The calculations are performed using the Thermo-Calc software. Within this work a Java interface for Thermo-Calc has been implemented. Java gives graphical possibilities and a graphical interface has been created that facilitates calculations that involve both metallic phases as well as oxides and make them feasible also for an industrial user. / QC 20101118
|
17 |
Thermodynamic modelling ofmartensite start temperature in commercial steelsGulapura Hanumantharaju, Arun Kumar January 2018 (has links)
Firstly, an existing thermodynamic model for the predicting of martensite start temperature of commercial steels has been improved to include more elements such as N, Si, V, Mo, Nb, W, Ti, Al, Cu, Co, B, P and S and their corresponding composition ranges for Martensitic transformation. The predicting ability of the existing model is improved considerably by critical assessment of different binary and ternary systems i.e. CALPHAD approach which is by wise selection of experimental data for optimization of the interaction parameters. Understanding the degree of variation in multi-component commercial alloys, various ternary systems such as Fe-Ni-X and Fe-Cr-X are optimized using both binary and ternary interaction parameters. The large variations between calculated and the experimental values are determined and reported for improvements in thermodynamics descriptions.Secondly, model for the prediction of Epsilon martensite start temperature of some commercial steels and shape memory alloys is newly introduced by optimizing Fe-Mn, Fe-Mn-Si and other Fe-Mn-X systems considering the commercial aspects in the recent development of light weight steels alloyed with Al and Si.Thirdly, the effect of prior Austenite grain size (pAGS) on martensite start temperature is introduced into the model in the form of non-chemical contribution which will greatly influence the Gibbs energy barrier for transformation. A serious attempt has been made to describe the dependency of transition between lenticular and thin-plate martensite morphologies on the refinement of prior Austenite grain size.Finally, the model is validated using a data-set of 1500 commercial and novel alloys. Including the newly modified thermodynamic descriptions for the Fe-based TCFE9 database by Thermo-Calc software AB, the model has the efficiency to predict the martensite start temperature of Multi-component alloys with an accuracy of (±) 35 K. The model predictability can be further improved by critical assessment of thermodynamic factors such as stacking faults and magnetism in Fe-Mn-Si-Ni-Cr systems.
|
18 |
FTIR measurement of monomer fractions in dilute alcohol-acetone systems for the evaluation of the sPC-SAFT EoSKruger, Francois Johan 12 1900 (has links)
Thesis (MScEng)-- Stellenbosch University, 2013. / ENGLISH ABSTRACT: The simplified Perturbed-Chain Statistical Associating Fluid Theory (sPC-SAFT) is characterised by the
dual advantages of decreased computational intensity, while remaining accurate for a variety of
systems. Vapour-liquid equilibrium data are used to generate equation of state parameters.
However, incorporating monomer fraction data into the parameter regression has long been
advocated as a good, or even preferred, practice. Therefore, the monomer fraction data of dilute
alcohol-acetone systems were analysed in this study. A small stainless steel sample vessel was
constructed with temperature control, manual pressure control and a mechanism for liquid phase
analysis via infrared spectroscopy.
The performance of the spectrometer was verified by comparison with the ethanol – n-hexane data
of von Solms et al. (2007), after which new monomer fraction data were obtained for dilute
solutions (between 0.01 and 1.5 mol%) of methanol, ethanol, 1-propanol and 2-propanol in acetone
near 23 °C.
For dilute alcohol-acetone systems it was found that the propanols had the highest monomer
fractions, and methanol the lowest. With increasing alcohol concentration, the monomer fractions
decreased exponentially to values of 0.4 and 0.1 for methanol and the other alcohols respectively.
The excess availability of hydrogen bond acceptors in the mixtures explains the equivalency
observed for ethanol, 1-propanol and 2-propanol.
For dilute acetone-alcohol systems it was found that, especially for methanol and ethanol, there was
a pronounced trend towards acetone monomer fractions of 1 at infinite dilution. For the acetone –
2-propanol system, a previously unrecorded monomer peak was observed and quantified. Acetone
monomer fractions tended to decrease as alcohol chain-length increased, showing that acetone
could more easily penetrate the hydrogen bond network of the solvent when the solvent-solvent
bonds were weaker. Monomer fraction data were compared to predictions for the sPC-SAFT scheme and parameters
combinations published in the literature. The experimental data were accurately modelled using
modified association parameters such that the solute associates strongly (εAB≈103 κ≈1), while the
solvent parameters were decreased (εAB≈102 κ≈10˗3) to give a weakened solvent association effect.
The difficulty for the dilute solute in penetrating the solvent bonding network appeared to be similar
to the hydrophobic effect. Two new association schemes were proposed for acetone, assigning a single (N) or two (2N)
negative association sites to represent the oxygen valence electron pairs. These schemes showed
relative success in modelling acetone as the solvent in the mixture, while not being able to predict
acetone monomer fractions when acetone was the solute. For dilute acetone-alcohol systems, the
data were best described using the 2B model for acetone, while the best choice of scheme for the
alcohol varied from system to system.
For dilute alcohol-acetone mixtures it was generally found that a 2B-N model (with modified
association parameters) provided the best fit to those experimental data. Accurate modelling below
0.1 mol% was difficult to attain with average errors decreasing to the order of 10% when this area
was excluded. In this highly dilute region, not one of the models could describe the rapid change in
(monomer fraction) gradient sufficiently while simultaneously offering accurate predictions over the
entire experimental range. / AFRIKAANSE OPSOMMING: Die sPC-SAFT of simplified Perturbed-Chain Statistical Associating Fluid Theory toestandsvergelykings
word wyd gebruik as gevolg van sy goeie akkuraatheid vir ‘n wye reeks sisteme, ten spyte van
verminderde berekeningsintensiteit. Die parameters vir dié toestandsvergelyk word afgelei van faseewewig
data, maar monomeer fraksie data word voorgestel vir die verbetering van (veral) die
assosiasie parameters. Ten opsigte hiervan, was alkohol-asetoon sisteme bestudeer en hul
monomeer fraksies gemeet. ‘n Staal reaktor was ontwerp (met ‘n temperatuurbeheerstelsel sowel
as drukbeheer) om vloeistof monsters voor te berei vir analise d.m.v. infrarooi-spektroskopie.
Die akkuraatheid van die eksperimentele apparaat is bewys deur nabootsing van etanol – n-heksaan
data van von Solms et al. (2007), waarna nuwe monomeer fraksie data gegenereer is vir verdunde
mengsels (0.01 tot 1.5 mol%) van metanol, etanol, 1- en 2-propanol met asetoon by 23 °C.
Metanol monomeer fraksies het eksponensieël afgeneem na 0.4, terwyl etanol en propanol fraksies
afgeneem het na ‘n gemene waarde van ongeveer 0.1. Hierdie tendens word toegeskryf aan ‘n
oormaat van toeganklike waterstofbindingontvangers in hierdie mengsels.
Vir verdunde asetoon-alkohol sisteme is daar ‘n tendens, (veral vir verdunnings met metanol en
etanol) vir die monomer fraksies om te neig na 1 by oneindige verdunning. ‘n Monomeer piek is ook
waargeneem vir die asetoon – 2-propanol sisteem. Hierdie piek is nie voorheen gesien in ander
studies nie en dit is ook die eerste keer wat sulke data gekwantifiseer is. Daar is bevind dat asetoon
monomeer fraksies afneem soos alkohol kettinglengte toeneem.
Die gegenereerde monomeer fraksie data word vergelyk met verskeie sPC-SAFT parameterstelle
vanuit die literatuur. Oor die algemeen, is die beraamde fraksie veel hoër as die eksperimentele data
wanneer die 2B/3B/2C skemas met ‘n nie-assosiërende asetoon molekuul gemodelleer word.
Wanneer die 2B parameters van von Solms et al. (2004) gebruik word, toon die beraming ‘n
drastiese onderskatting van die data. Om ‘n akkurate beraming van die monomeer fraksie data te kry, moet die assosiasie parameters van
die opgeloste stof vermeerder word (met εAB≈103 κ≈1) terwyl die oplosmiddel s’n drasties verswak
moet word (met εAB≈102 κ≈10-3). Hierdie patroon kan vergelyk word met die hidrofobiese effek waar
die kragte binne die oplosmiddel ‘n netwerk vorm wat die opgeloste stof uitstoot. Twee nuwe assosiasie skemas word ook voorgestel vir asetoon waar onderskeidelik een (N) en twee
(2N) negatiewe sones, wat die valenselektroonpare op die suurstofatoom voorstel, aan asetoon
geheg word. Hierdie twee skemas het relatiewe sukses getoon in die modellering van verdunde
alkohol-asetoon sisteme terwyl dit ‘n swak beskrywing van die verdunde asetoon-alkohol mengsels
voorspel het. ‘n Gewysigde 2B asetoon skema gee ‘n goeie beskrywing van die eksperimentele data.
In hierdie geval, is die keuse van alkohol skema minder belangrik, terwyl die waardes van die
assosiasie parameters verminder moet word.
Vir verdunde alkohol-asetoon mengels word daar bevind dat ‘n 2B-N model met nuwe assosiasie
parameters die beste passing van die eksperimentele data gee. Daar was ook bevind dat die modelle
se akkuraatheid drasties afneem (met fout vermeerdering in die orde van 10%) wanneer die
konsentrasie van die opgeloste stof minder as 0.1 mol% is.
|
19 |
Mélanges de ciments sulfoalumineux et Portland / Blends of sulfoaluminate and Portland cementsTrauchessec, Romain 13 November 2013 (has links)
Les mélanges de ciment sulfoalumineux et de ciment Portland sont des liants hydrauliques innovants permettant de moduler les propriétés des bétons, telles que la vitesse de montée en résistance ou la stabilité dimensionnelle. Les performances du liant peuvent ainsi être ajustées pour de nombreuses applications. Au-delà de cet avantage, les émissions de dioxyde de carbone liées à la production du ciment sulfoalumineux sont significativement réduites comparées à celles du ciment Portland traditionnellement utilisé. La diversité des propriétés de ces liants résulte de la variété des mélanges pouvant être réalisés à partir des deux constituants de base. Chaque mélange présente alors une cinétique d'hydratation et des propriétés qui lui sont propres. Par exemple, certains liants sont expansifs mais présentent une montée en résistance progressive, tandis que d'autres sont stables dimensionnellement alors que leur résistance stagne après quelques jours d'hydratation. L'identification et le contrôle des paramètres à l'origine de ces comportements sont donc nécessaires pour garantir des propriétés spécifiques à un usage donné : chape, mortier de réparation, élément préfabriqué, etc. C'est l'objectif de cette étude qui s'attache à déterminer la cinétique, la minéralogie et les propriétés associées à l'hydratation de trois mélanges contenant 85 %, 70 % et 40 % de ciment Portland. Les essais entrepris ont aussi permis d'aboutir à une modélisation thermodynamique des mécanismes d'hydratation. L'impact de la composition du ciment Portland est également étudié. Enfin, il est montré que l'anhydrite et la chaux sont deux leviers qui modifient radicalement le processus d'hydratation et permettent ainsi d'adapter les propriétés d'un mélange aux exigences de son utilisation / Blends of ordinary Portland cement and sulfoaluminate cement are innovative hydraulic binders allowing control of concrete properties such as hardening speed or dimensional stability for specific applications. Moreover, carbon dioxide emissions linked to sulfoaluminate cement are significantly reduced compared to ordinary Portland cement. The binder properties can be adjusted due to the diversity of blends conceivable with these two constituents. Each blend has its own hydration kinetic and properties. For example, some blends are expansive and the hardening is progressive whereas other mixtures are dimensionally stable but their strength stagnates after few days. Identification and control of the parameters responsible of these comportments are necessary in order to guaranty specific properties for each application: screed, repairing mortar, etc. This is the aim of this study which described the hydration kinetic, the properties and composition of three blends containing 85 %, 70 % and 40 % of Portland cement. These experiments are completed by thermodynamic modeling of the hydration mechanisms. The effect of the Portland cement composition has also been tested. Finally, it's shown that anhydrite and calcium hydroxide are two key parameters which modify radically the hydration process and allow the properties adjustment required for the blend used
|
20 |
Design and evaluation of stationary polymer electrolyte fuel cell systemsWallmark, Cecilia January 2004 (has links)
The objectives of this doctoral thesis are to give a basisincluding methods for the development of stationary polymerelectrolyte fuel cell (PEFC) systems for combined heat andpower production. Moreover, the objectives include identifyingprerequisites, requirements and possibilities for PEFC systemsproducing heat and power for buildings in Sweden. The PEFCsystem is still in a pre-commercial state, but low emissionlevels, fast dynamics and high efficiencies are promisingcharacteristics. A thermodynamic model to simulate stationary PEFC systemshas been constructed and pinch technology and exergy analysesare utilised to design and evaluate the system. The finalsystem configuration implies a high total efficiency ofapproximately 98 % (LHV). A flexible test facility was built in connection with theresearch project to experimentally evaluate small-scalestationary PEFC systems at KTH. The research PEFC system hasextensive measurement equipment, a rigorous control system andallows fuel cell systems from approximately 0.2 to 4 kWel insize to be tested. The simulation models of the fuel processorand the fuel cell stack are verified with experimental datataken from the test facility. The initial evaluation andsimulation of the first residential installation of a PEFCsystem in Sweden is also reported. This PEFC system, fuelled bybiogas and hydrogen, is installed in an energy system alsoincluding a photovoltaic array, an electrolyser and hydrogenstorage. Technical aspects of designing a fuel cell system-basedenergy system, including storages and grid connections, whichprovides heat and power to a building are presented in thisthesis. As a basis for the technical and economic evaluations,exemplifying energy systems are constructed and simulated. Fuelcell system installations are predicted to be economicallyunviable for probable near-term conditions in Sweden. The mainfactor in the economic evaluations is the fuel price. However,fuel cell system installations are shown to have a higher fuelutilisation than the conventional method of energy supply. The methods presented in this thesis serve as a collectedbasis for continued research and development in the area. Keywords:Small-scale, stationary, fuel cell system,polymer electrolyte fuel cell, PEFC system, reformer,thermodynamic modelling, pinch technology, exergy analyses,system configuration, test facility, experiments, application,simulation, installation, energy system, energy storage, heatand power demand.
|
Page generated in 0.0669 seconds