• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 43
  • 13
  • 8
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 164
  • 52
  • 33
  • 26
  • 19
  • 19
  • 16
  • 15
  • 15
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Étude d’alliages à base de CoSi et de composites à base de polymères pour la thermoélectricité / Study of CoSi-based alloys and composites containing polymers for thermoelectric applications

Longhin, Marco 04 February 2015 (has links)
La récupération de chaleur perdue lors des procédés industriels grâce à la thermoélectricité peut contribuer au développement des économies d'énergie. Pour une plus large diffusion des convertisseurs thermoélectriques, le facteur de mérite ZT n'est pas le seul critère à prendre en compte ; le coût et l'éco-compatibilité des éléments utilisés, la facilité de synthèse et de mise en forme sont des aspects également importants. Deux familles de matériaux, encore peu présentes dans la littérature, répondent assez bien à toutes ces exigences : les siliciures et les composites. Nous nous sommes intéressés au siliciure de cobalt CoSi, ainsi que aux alliages et aux composites obtenus à partir de cette phase.Nous avons tout d'abord étudié la nanostructuration. La fusion à arc suivie d'un broyage mécanique ou la mécanosynthèse ont permis de synthétiser des cristallites de CoSi avec une taille de 13 nm. Ces poudres présentent une bonne stabilité chimique et un grossissement de grain limité jusqu'à 400 °C. Pour des températures plus élevées, une croissance cristalline importante s'accompagne d'une perte de silicium et de la formation de Co2Si. La nanostructuration diminue la conductivité thermique de CoSi de 35% par rapport au matériau massif. Le facteur de mérite ZT=0,15 obtenu à une température T=300 °C est supérieur à celui de CoSi synthétisé par four à arc mais légèrement inférieures à celui d'un monocristal.Différents éléments ont été envisagés pour former des alliages avec CoSi sur la base de considérations pratiques ainsi que sur les résultats de calculs ab initio. Certains se sont montrés insolubles dans CoSi (Ca, Zr, Nb, Mo, Sn, Ta, W et Pb), d'autres très peu solubles (Ti, V ou Cu). Des solutions solides de composition Co0,85Cr0,15Si, Co0,90Mn0,10Si et CoSi0,92Zn0,08 ont aussi été synthétisées, mais le facteur de puissance des deux premières est inférieure à celui de CoSi.Nous avons comparé trois polymères intrinsèquement conducteurs et commercialement disponibles : la polyaniline (PANI), le polypyrrole (PPy) et le polyéthylène(3,4dioxythiophéne) dopé avec le polystyrène sulfonate (PEDOT:PSS). Pour former des composites contenants l'alliage Co0.85Fe0.15Si, le PPy s'est avéré être le polymère le plus adapté. Le meilleur facteur de puissance PF=2,5 μW/m⋅K2 a été obtenu avec une fraction volumique de polymère ϕ=10%, toutefois la tenue mécanique pour cette composition est limitée. Les performances de ces composites sont toujours inférieures à celles de la phase la plus performante ; l'intérêt de ces matériaux réside donc surtout dans leur grande facilité de mise en forme. / Wasted heat recovery through thermoelectricity can contribute to a more sustainable energetic model. For a large-scale application of thermoelectric devices, their efficiency is not the only criterion to consider; materials should be easy to synthesize and made of abundant, cheap and environmental friendly elements. Silicides and composites are little known thermoelectric materials that meet all these requirements. We studied the cobalt silicide CoSi and some alloys and composites obtained using this phase.Firstly we investigate whether nanostructuration allows increasing the thermoelectric properties of CoSi. CoSi crystallites with a size of 13 nm were synthesized by arc melting followed by mechanical milling or by mechanical alloying. These powders showed good chemical stability and a limited grain growth up to 400 °C. At higher temperatures grain coarsening is accompanied by a loss of silicon and the formation of Co2Si. The thermal conductivity of CoSi was reduced by 35% by nanostructuring. A ZT=0.15 was obtained at T=300 °C, which is higher than that of CoSi synthesized by arc melting but slightly lower than that of CoSi single crystals.Various elements were considered in order to form a solid solution with CoSi, taking into account common sense considerations and the results of ab initio calculations. We observed that Ca, Zr, Nb, Mo, Sn, Ta, W and Pb are not soluble while Ti, V and Cu have a limited solubility. The phases Co0.85Cr0.15Si, Co0.90Mn0.10Si and CoSi0.92Zn0.08 were also synthesized but the first two have a lower power factor than CoSi.We compared three commercially available intrinsically conducting polymers: polyaniline (PANI), polypyrrole (PPy) and polyethylene (3,4dioxythiophene) doped with polystyrene sulfonate (PEDOT: PSS). PPy demonstrated to be the best polymer to form composites containing Co0.85Fe0.15Si. The highest power factor, PF=2.5 μW/m.K2, is obtained for a volume fraction of polymer ϕ=10%, nonetheless this composition induces poor mechanical strength. The thermoelectric performances we measured were always inferior to the ones of inorganic phase, thus the main advantage of these composites is their ease of shaping.
142

Synthèse et caractérisation de nanoparticules de conducteurs et de supraconducteurs moléculaires : Application à la thermoélectricité / Synthesis and characterisation of nanoparticles of molecular conductors and superconductors : Application to thermoelectricity

Chtioui Gay, Imane 17 December 2015 (has links)
Ce travail a concerné la préparation des premières nanoparticules de supraconducteurs moléculaires dont la croissance en solution a pu être contrôlée par l'ajout de molécules amphiphiles neutres (amines, imines, acides carboxyliques). Notre étude s'est principalement focalisée sur les sels de Bechgaard (TMTSF)2X (TMTSF : tétraméthyltétrasélénafulvalène, X = ClO4 ou PF6) et sur le dérivé (BEDT-TTF)2I3 (BEDT-TTF : bis(éthylènedithio)tétrathiafulvalène). La taille, la morphologie et l'état de dispersion des nanoparticules ont été contrôlés par la nature et la concentration du structurant amphiphile. Ces nanoparticules ont été caractérisées par des méthodes spectroscopiques (IR, Raman, UV-visible, spectrométrie de photoélectrons), diffractométriques et microscopiques (microscopie électronique à transmission et AFM). Elles présentent une transition vers un état supraconducteur mise en évidence par des mesures de résistivité électrique ou de susceptibilité magnétique. Finalement, le pouvoir thermoélectrique des nano-objets de (BEDT-TTF)2I3 a été évalué. Des mesures préliminaires de facteur de mérite thermoélectrique (ZT) en font des candidats potentiels pour la réalisation de modules thermoélectriques organiques. / In this work, we described the preparation of the first nanoparticles of molecule-based superconductors for which the growth has been controlled by the addition of neutral amphiphilic molecules (such as amines, imines, carboxylic acids). Our study focused on Bechgaard salts (TMTSF)2X (TMTSF: tetramethyltetraselenafulvalene, X = ClO4 or PF6) and (BEDT-TTF)2I3 (BEDT-TTF: bis(ethylenedithio)tetrathiafulvalene). The size, the morphology and the state of dispersion of the nanoparticles have been controlled by the nature and the concentration of the amphiphilic structuring agent. The particles have been characterized by spectroscopic methods (IR, Raman, UV-visible, photoelectron spectroscopy), X-Ray diffraction and microscopy (TEM and AFM). Small particles underwent a transition to a superconducting state, as evidenced by electrical resistivity or magnetic susceptibility measurements. Finally, the thermoelectric power of nano-objects of (BEDT-TTF)2I3 has been evaluated. Preliminary measurements of the thermoelectric figure of merit (ZT) make them potential candidates for future organic-based thermoelectric generators.
143

Computational Design of Nanomaterials

Gutierrez, Rafael 15 December 2017 (has links) (PDF)
The development of materials with tailored functionalities and with continuously shrinking linear dimensions towards (and below) the nanoscale is not only going to revolutionize state of the art fabrication technologies, but also the computational methodologies used to model the materials properties. Specifically, atomistic methodologies are becoming increasingly relevant in the field of materials science as a fundamental tool in gaining understanding on as well as for pre-designing (in silico material design) the behavior of nanoscale materials in response to external stimuli. The major long-term goal of atomistic modelling is to obtain structure-function relationships at the nanoscale, i.e. to correlate a definite response of a given physical system with its specific atomic conformation and ultimately, with its chemical composition and electronic structure. This has clearly its pendant in the development of bottom-up fabrication technologies, which also require a detailed control and fine tuning of physical and chemical properties at sub-nanometer and nanometer length scales. The current work provides an overview of different applications of atomistic approaches to the study of nanoscale materials. We illustrate how the use of first-principle based electronic structure methodologies, quantum mechanical based molecular dynamics, and appropriate methods to model the electrical and thermal response of nanoscale materials, provides a solid starting point to shed light on the way such systems can be manipulated to control their electrical, mechanical, or thermal behavior. Thus, some typical topics addressed here include the interplay between mechanical and electronic degrees of freedom in carbon based nanoscale materials with potential relevance for designing nanoscale switches, thermoelectric properties at the single-molecule level and their control via specific chemical functionalization, and electrical and spin-dependent properties in biomaterials. We will further show how phenomenological models can be efficiently applied to get a first insight in the behavior of complex nanoscale systems, for which first principle electronic structure calculations become computationally expensive. This will become especially clear in the case of biomolecular systems and organic semiconductors.
144

Thermoelectric properties of Mg2Si-based systems investigated by combined DFT and Boltzmann theories

Balout, Hilal 29 January 2015 (has links)
Les propriétés électroniques et thermoélectriques de matériaux basés sur Mg2Si ont été étudiées par calculs DFT et semi-classiques (théorie de Boltzmann). Les effets d’abaissement de dimensionalité et de contraintes ont été étudiés. Les calculs ont été effectués sur les films monocristallins orientés 001, 110 et 111 et sur les films polycristallins. Seul le film monocristallin orienté 110 a montré des propriétés thermoélectriques intéressantes. Trois types de contraintes ont été investiguées: uniaxiale, biaxiale et isotrope. L’augmentation de la contrainte sur Mg2Si produit un décalage du maximum du facteur de puissance (PF) vers les basses températures. Comparé à Mg2Si non contraint, le coefficient Seebeck (S) augmente uniquement sous contrainte isotrope. On montre l’équivalence des propriétés thermoélectriques entre Mg2Si contraint dans la direction [110] et celles du film orienté 110. Les contraintes de tension isotropes ont été modélisées en insérant des atomes Sb dans Mg2Si massif conduisant aux structures Mg2Si:Sb, Mg2Si:3Sb and Mg2Si:4Sb. Seul Mg2Si:4Sb produit une contrainte isotrope. Les effets de substitutions de Sn pour Si dans Mg2Si massif sont similaires à ceux observés pour Mg2Si sujet à des contraintes en tension uniaxiales et biaxiales. Pour les films Mg2Si1−xSnx orientés 110 le S du matériau dopé p est supérieur à celui des massifs Mg2Si et Mg2Si1−xSnx. Concernant les nanostructures, le super-réseau Mg2Si/Mg2Sn est le plus intéressant lorsque faiblement dopé p et à basse température. Les assemblages de fils sont les meilleurs en tant que matériaux faiblement dopés n et à basse température: le PF est quasiment doublé par rapport à celui de Mg2Si massif. / The electronic and thermoelectric properties of Mg2Si-based materials have been investigated by means of DFT calculations and semi-classical Boltzmann theory. The low-dimensional and strain effects on these properties have been studied. The properties have been investigated on 001-, 110- and 111-oriented Mg2Si monocrystalline films, and on polycrystalline Mg2Si film. Only the 110-oriented monocrystalline film has been found to have interesting thermoelectric properties. Three types of strains have been investigated: uniaxial, biaxial and isotropic. Increasing the intensity of the strain on Mg2Si induces a shift of the power factor (PF) maximum towards low temperature. Compared with unstrained Mg2Si, the Seebeck coefficient (S) increases only under isotropic strain. We evidence an equivalence in the thermoelectric properties between Mg2Si material constrained in the [110] direction and the 110-oriented Mg2Si film. Isotropic tensile strains have been modeled by inserting Sb atoms in bulk Mg2Si leading to the stuctures Mg2Si:Sb, Mg2Si:3Sb and Mg2Si:4Sb. Only Mg2Si:4Sb is found to induces such type of constraints. The effects of the Sn for Si substitutions in bulk Mg2Si are very similar to those observed for Mg2Si subjected to uniaxial and biaxial tensile strains. For (110)-oriented Mg2Si1−xSnx films S of the n−doped material outperforms that of the bulk Mg2Si and bulk Mg2Si1−xSnx. Regarding nanostructures, the Mg2Si/Mg2Sn superlattice is most interesting as a p-doped material at low carrier concentration/low temperature. The stick assemblage is best as a n-doping material at low carrier concentration/low temperature where its PF is almost twice as high as that of bulk Mg2Si.
145

Transport électrique et thermoélectrique dans les nanodispositifs / Electric and thermoelectric transport in nanodevices

Azema, Julien 17 December 2014 (has links)
Cette thèse est consacrée à l'étude théorique des propriétés de transportd'un nanodispositif comme par exemple une boîte quantique. A faible dimensionnalité,les propriétés de transport sont fortement liées à la densité d'étatsélectroniques du système, il est donc important d'utiliser une approche capablede calculer cette dernière correctement notamment en tenant comptedu confinement électronique.En utilisant le modèle d'Anderson et l'approximation de non croisementafin de calculer la densité d'états, on a pu observer et caractériser les transfertsde poids spectral pour des orbitales simplement, doublement ou triplementdégénérées. Ces transferts de poids spectral sont typiques des systèmescorrélés, mais lorsqu'une différence de potentiel est appliquée, on a pu remarquerque ces transferts se faisaient en deux temps.Dans un second temps, on a analysé les signatures du couplage de Hundincluant le terme de saut de paires dans les diagrammes de stabilité. Ces deuxtermes, provenant de l'interaction Coulombienne, modifient sensiblement lastructure des diamants de Coulomb et doivent donc être considérés lorsqu'ondéduit les paramètres microscopiques à partir du diagramme de stabilitéexpérimental.Enfin, on s'est placé dans le régime de générateur thermoélectrique, et ona utilisé le pic de Kondo comme canal de transport. Cependant l'optimisationà la fois du rendement et de la puissance en utilisant les bandes de Hubbardcomme canaux de transport est impossible. Or les particularités et les grandeurscaractérisant le pic de Kondo permettent d'une part de s'affranchirpartiellement de ce compromis mais cela permet également de générer uneplus grande puissance. / This thesis is devoted to the theoretical study of a nanodevice transportproperties, such as a quantum dot. At low dimensionality, transport propertiesare strongly related to the local density of state, it is important to use anapproach able to compute the latter properly especially tanking into accountthe electronic containment.Using the Anderson model and the non-crossing approximation to computedensity of states, we observed and characterize spectral weight transfersfor simply, doubly and triply degenerated orbitals. These spectral weighttransfers are typical of correlated systems, but when potential bias is applied,we note that these transfers occur in two stages.In a second step, we analyze Hund coupling footprint including pair hoppingin stability diagrams. These two terms, from the Coulomb interaction,substantially alter the Coulomb diamonds structure and must be considerwhen microscopic parameters are derived from experimental stability diagrams.Finally, we placed in the thermoelectric generator regime, and we usedKondo peak as transport channel. However, optimization of both efficiencyand power output using Hubbard bands as transport channel is impossible.But the features and scales characterizing Kondo peak serve on the one handto overcome this compromise and on the other hand to generate a greaterpower output.
146

Optimisation par inclusion, alliage et dopage des matériaux thermoélectriques d'intérêt - application des méthodes ab initio et de dynamique moléculaire / Improving key thermoelectric materials by filling, doping and alloying using ab initio and molecular dynamics methods

Yu, Lantao 08 March 2018 (has links)
La thermoélectricité est considérée comme une source prometteuse de l'énergie puisqu'elle est capable de convertir directement la chaleur en électricité. Ceci permet de récupérer la chaleur dissipée sans causer de la pollution. Cependant, les options applicatives à grande échelle sont encore en restriction en raison du faible rendement de conversion thermoélectrique. Par conséquent, de nombreux travaux de recherche sont consacrés à l'amélioration de la performance thermoélectrique de différents matériaux, qui est caractérisée par la figure de mérite ZT. Un ZT favorable comprend simultanément un coefficient Seebeck satisfaisant, une conductivité électrique élevée et une faible conductivité thermique. Rechercher un matériau approprié avec une meilleure performance thermoélectrique est l'objectif de nos analyses. Avec les techniques de dopage, différents éléments peuvent être ajoutés dans des semi-conducteurs à différentes concentrations. La densité de charge pourrait ainsi être modifiée pour améliorer les propriétés thermoélectriques. En raison des obstacles liés à la synthèse des matériaux, des simulations numériques basées sur différentes méthodes, telles que la théorie fonctionnelle de la densité (DFT), la dynamique moléculaire (DM), sont ensuite mises en oeuvre pour estimer l'approche d'amélioration la plus prometteuse. Au cours de cette thèse, les propriétés thermoélectriques de plusieurs matériaux sont étudiées pour des applications dans différentes situations, à savoir CsSnI₃ comme un candidat potentiel avec sa haute conductivité électrique, ZnO comme un matériau thermoélectrique transparent, Bi₂Te₃ comme un traditionnel matériau avec d'autres améliorations et la cellulose comme futur semi- conducteur organique. Comme la DFT ne concerne que les propriétés des électrons (coefficient de Seebeck, conductivité électrique, conductivité thermique due aux électrons), la conductivité thermique du réseau n'est pas incluse ici. Par conséquent, DFT avec des déplacements finis et DM sont utilisés comme méthodes complémentaires pour établir la conductivité thermique due aux phonons. De cette façon, cette thèse est divisée en deux parties. Dans la première partie, des contextes théoriques de DFT sont introduits à partir de l'équation de Schrödinger. Les résultats des simulations DFT classiques sont présentés par la suite. En utilisant des positions atomiques issues de mesures expérimentales, nous avons lancé la relaxation de la structure cristalline pour assurer que chaque atome dans le système est à sa position d'équilibre. Les structures de bande d'énergie électronique sont également calculées pour valider les configurations de calcul (énergie de coupure, conditions de convergence, etc.). Une cartographie complète des valeurs propres dans l'espace réciproque est faite et les propriétés thermoélectriques sont calculées en résolvant les équations de transport de Boltzmann. Dans la deuxième partie, les théories de base des phonons sont mentionnées, suivies des introductions des méthodes en DFT avec des déplacements finis et en DM. Nous avons mis en oeuvre des simulations DM pour étudier l'influence du dopage à l'aluminium sur la conductivité thermique du réseau pour ZnO. Nous avons également utilisé la méthode en DFT avec des déplacements finis pour étudier la variation de la conductivité thermique de l'alliage Bi₂Te₃₋ₓSeₓ. / Thermoelectricity is considered a promising source of energy since it is able to directly convert heat into electricity. This makes it possible to recover dissipated heat without causing pollution. However, large-scale applicative options are still under restriction because of the dim thermoelectric conversion yield. Therefore, numerous research works are dedicated to improving thermoelectric performance of different materials, which is characterized by the dimensionless figure of merit ZT. A favorable ZT includes simultaneously a satisfying Seebeck coefficient, a high electrical conductivity and a low thermal conductivity. To seek a suitable material with a better thermoelectric performance is the objective of our analyses. With doping technics, different elements can be added into semi-conductors within different concentrations. The charge density could be thus modified in order to change thermoelectric properties. Due to hurdles related to materials synthesis, numerical simulations based on different methods, such as density functional theory (DFT), molecular dynamics (MD), are then implemented to estimate the most promising improvement approach. During this thesis, thermoelectric properties of several materials are investigated for applications in different situations, i.e. CsSnI₃ as a potential candidate with its high electronic conductivity, ZnO as a transparent thermoelectric material, Bi₂Te₃ as a traditional material with further improvements and cellulose as future organic semi-conductor. As DFT concerns only properties of electrons (Seebeck coefficient, electric conductivity, thermal conductivity due to electrons), lattice thermal conductivity is not included herein. Therefore, DFT with finite displacement and MD are used as a complementary method to establish thermal conductivity due to phonons. In this way, this thesis is divided into two parts. In the first part, theoretical backgrounds of DFT are introduced starting with Schrödinger equation. Results of classical DFT simulations are presented afterwards. By using atomic positions from experimental measurements, we launched crystal structure relaxation to ensure that every atom in the system is at its equilibrium position. Electronic band structures are also calculated to validate calculation configurations (cutoff energy, convergence conditions, etc.). A full mapping of Eigenvalues in reciprocal space is realized and thermoelectric properties are calculated by solving Boltzmann transport equations. In the second part, basic theories of phonons are mentioned, followed by introductions of DFT with finite displacements and MD methods. We implemented MD simulations to study the influence of aluminum doping on lattice thermal conductivity for ZnO. We also used DFT with finite displacements method to study lattice thermal conductivity variation of Bi₂Te₃₋ₓSeₓ alloy.
147

Structures et propriétés de transports de chalcogénures complexes / Structures and transport properties of complex chalcogenides

Lefevre, Robin 29 September 2017 (has links)
Ce travail est consacré à la synthèse et à la caractérisation de composés chalcogénures. Pour la plupart nouveaux, ces composés ont la particularité de présenter des structures complexes ou dont le désordre amène une certaine complexité. La première partie de ce manuscrit est consacré à l’étude du nouveau composé monocristallin Ba0,5Cr5Se8 et de la solution solide polycristalline BaxCr5Se8 (0,5 ≤ x ≤ 0,55). Ce composé fait partie de la famille des pseudo-hollandites. Sa structure cristalline a été déterminée par diffraction des rayons X sur monocristal, un abaissement de la symétrie est observé par rapport aux pseudo-hollandites usuelles. Ces composés sont antiferromagnétiques avec une température de transition unique à 58 K, la structure magnétique du composé a été déterminée par diffraction des neutrons sur échantillon polycristallin, et sa maille magnétique correspond à une maille cristalline doublée selon b et c. Les propriétés thermoélectriques des composés sont étudiées, Ba0.5Cr5Se8 présente une ZT de 0,12 à 800 K. La deuxième partie s’est d’abord focalisée sur une structure similaire à la précédente, TlIn5Se8. Toutefois trop résistif, les structures de deux nouveaux composés ont été étudiées : TlIn4,8Cr0,2Se8 et Tl0,98In13,12Se16,3Te2,7. Ce dernier présente sur certains sites un désordre considéré statique. Finalement, le dernier chapitre a permis de mettre en avant des composés de la famille de composé lamellaire MnPSe3, ayant la particularité de présenter une paire P2. La structure du nouveau composé In2Ge2Te6 est résolue et les propriétés thermoélectriques des composés InSiTe3, Cr2Si2Te6, Cr2Ge2Te6 et In2Ge2Te6 sont étudiées. Des défauts d’empilement ont été mis en lumière et expliquent l’impact sur le libre parcours moyen des phonons. L’ensemble des composés dont les propriétés thermoélectriques ont été étudiées présentent des conductivités thermiques faibles, bien en deçà du W.m-1.K-1 dans de nombreux cas. Des ZTs de 0,18 à 673 K et 0,43 à 773 K sont trouvées pour In2Ge2Te6 et Cr2Ge2Te6. / This work has been focused on synthetizing and characterising chalcogenide compounds. Most new, those compounds show complex structures or where disorder bring complexity. The first part of this manuscript is dedicated to the study of the new single-cristalline Ba0.5Cr5Se8 and of the related polycristalline solid-solution BaxCr5Se8 (0.5 ≤ x ≤ 0.55). This compound is part of the pseudo-hollandite family. Its cristalline structure has been resolved by means of single-crystal X-ray diffraction, a lowering of symetryis observed compared to usual pseudo-hollandites. All antiferromagnetic, the compounds exhibit a transition at 58 K, the magnetic structure has been resolved using neutron diffraction on polycrystal and is twice the cristalline one along b and c. Thermoelectric properties of the compounds have been studied and a maximum ZT of 0.12 is observed at 800 K for Ba0.5Cr5Se8. The second section has first focused on a similar structure to the previous one, TlIn5Se8. Although too resistive to be interesting, two new compounds have been studied: TlIn4.8Cr0.2Se8 and Tl0.98In13.12Se16.3Te2.7. The latter quaternary exhibits static disorder on specific crystallographic sites. The last chapter highlights compounds from the lamellar compound MnPSe3 family, with the particularity to possess P2 pairs. The structure of the new In2Ge2Te6 has been resolved and thermoelectric properties of the InSiTe3, Cr2Si2Te6, Cr2Ge2Te6 and In2Ge2Te6 have been studied. Stacking faults were observed in In2Ge2Te6 and explain the impact on the phonon mean free path. All the compounds whose thermoelectric properties have been studied exhibit low thermal conductivity, below 1 W.m-1.K-1 for most of them. ZTs of 0.18 at 673 K and 0.43 at 773 K were found for In2Ge2Te6 and Cr2Ge2Te6.
148

Computational Design of Nanomaterials

Gutierrez Laliga, Rafael 15 December 2017 (has links)
The development of materials with tailored functionalities and with continuously shrinking linear dimensions towards (and below) the nanoscale is not only going to revolutionize state of the art fabrication technologies, but also the computational methodologies used to model the materials properties. Specifically, atomistic methodologies are becoming increasingly relevant in the field of materials science as a fundamental tool in gaining understanding on as well as for pre-designing (in silico material design) the behavior of nanoscale materials in response to external stimuli. The major long-term goal of atomistic modelling is to obtain structure-function relationships at the nanoscale, i.e. to correlate a definite response of a given physical system with its specific atomic conformation and ultimately, with its chemical composition and electronic structure. This has clearly its pendant in the development of bottom-up fabrication technologies, which also require a detailed control and fine tuning of physical and chemical properties at sub-nanometer and nanometer length scales. The current work provides an overview of different applications of atomistic approaches to the study of nanoscale materials. We illustrate how the use of first-principle based electronic structure methodologies, quantum mechanical based molecular dynamics, and appropriate methods to model the electrical and thermal response of nanoscale materials, provides a solid starting point to shed light on the way such systems can be manipulated to control their electrical, mechanical, or thermal behavior. Thus, some typical topics addressed here include the interplay between mechanical and electronic degrees of freedom in carbon based nanoscale materials with potential relevance for designing nanoscale switches, thermoelectric properties at the single-molecule level and their control via specific chemical functionalization, and electrical and spin-dependent properties in biomaterials. We will further show how phenomenological models can be efficiently applied to get a first insight in the behavior of complex nanoscale systems, for which first principle electronic structure calculations become computationally expensive. This will become especially clear in the case of biomolecular systems and organic semiconductors.
149

Effets thermoélectriques dans des liquides complexes : liquides ioniques et ferrofluides / Thermoelectric effects in complex liquids : ionic liquids and ferrofluids

Salez, Thomas 10 November 2017 (has links)
Les liquides complexes sont des matériaux très prometteurs pour réaliser la conversion bon marché et à grande échelle d’énergie thermique en énergie électrique, dans un contexte de réchauffement climatique et de maîtrise de la consommation d’énergie. Nous montrons qu’en présence d’un couple redox, les cellules thermogalvaniques à base de liquides ioniques (NEA et EMIMTFSI) présentent des propriétés remarquables tels des coefficients Seebeck de plus de 5 mV/K (Eu³⁺/Eu²⁺ dans l’EMIMTFSI). De même, ces travaux présentent l’utilisation de ferrofluides, solutions colloïdales (aqueuses ou à base de solvants organiques) de nanoparticules magnétiques (maghémite), pour accroître le coefficient Seebeck et le courant extractible de générateurs thermoélectriques liquides. Les phénomènes réversibles d’adsorption des nanoparticules sur la surface des électrodes jouent également un rôle important sur les propriétés thermoélectriques de ces solutions, et sont modifiés par l’application de champs magnétiques homogènes parallèles ou perpendiculaires au gradient de température.En l’absence d’un couple redox, les liquides ioniques peuvent être utilisés pour fabriquer des supercondensateurs à charge thermique. Ces derniers exploitent les modifications avec la température des double couches électriques aux interfaces liquide/électrode. Nous avons étudié ici ces modifications de double couches dans l’EMIMBF4 par simulations numériques de Monte-Carlo. Les résultats démontrent un accroissement conséquent des propriétés thermoélectriques lors de la dilution du liquide ionique dans un solvant organique, l’acétonitrile, en accord qualitatif avec les résultats expérimentaux. / Complex liquids are promising material for low cost and wide scale conversion of thermal energy to electric energy, within a context of global warming and control of the energy consumption.In this work we showed that with a redox couple, ionic liquid (EAN and EMIMTFSI) based thermogalvanic cells present remarkable thermoelectric properties such as the Seebeck coefficient over 5 mV/K (Eu³⁺/Eu²⁺ in EMIMTFSI). Moreover, we demonstrated for the first time that ferrofluids, colloidal solutions (aqueous or organic solvent based) of magnetic nanoparticles (maghemite), can be used to increase both the Seebeck coefficient and the electric current in liquid thermoelectric generators through unknown physical processes. The importance of reversible adsorption phenomena of the nanoparticles on the electrodes’ surface for the thermoelectric properties of these solutions was revealed. That can be further modified by a homogeneous magnetic field applied perpendicular or parallel to the temperature gradient. Without a redox couple, ionic liquids can be used to build thermally chargeable supercapacitors. They take advantage of temperature dependent electrical double-layer formation at liquid/electrode interfaces. Here, we studied these double-layer modifications in EMIMBF4/platinum through Monte-Carlo simulations. The results show substantial modifications in the thermoelectric properties when the ionic liquid is diluted in an organic solvent, acetonitrile. These results are qualitatively consistent with experimental measurements.
150

Etude de l'influence des paramètres nano et microstructuraux sur les propriétés thermoélectriques des siliciures de magnésium Mg2 (Si, Sn) de type -n / Influence of nano and microstructural parameters on the thermoelectric properties of n-type magnesium silicides Mg2(Si,Sn)

Bellanger, Philippe 28 April 2014 (has links)
Ce travail de thèse porte sur l’étude de l’influence des paramètres nano et microstructuraux pour l’optimisation des propriétés thermoélectriques des siliciures de magnésium Mg2(Si,Sn) de type -n. Ces matériaux thermoélectriques ont été choisis pour leurs compatibilités avec une utilisation en génération de puissance dans le domaine de l’automobile.Par une approche combinatoire utilisant les couples de diffusion, il est premièrement ré investigué le diagramme de phase pseudo-binaire Mg2Si-Mg2Sn dans le but d’interpréter les microstructures observées. Il est ensuite présenté les effets expérimentaux des paramètres de densification par frittage flash (SPS) sur les microstructures et les propriétés thermoélectriques résultantes. Finalement, il est explicité à l’aide de la modélisation l’influence des paramètres microstructuraux sur les propriétés thermoélectriques de l’alliage optimisé et nanostructuré Mg2Si0,3875Sn0,6Sb0,0125. / This study presents the influence of nano and microstructural parameters to optimize thermoelectric properties of n-type magnesium silicides Mg2(Si,Sn). These thermoelectric materials are chosen for their compatibilities with power generation in automotive.From a combinatorial approach using diffusion couples, it is first reinvestigated the pseudo-binary phase diagram Mg2Si-Mg2Sn to rationalize the observed microstructures. Then the experimental effects of sintering parameters (SPS) on resulting microstructures and thermoelectric properties are presented. Finally, the influence of microstructural parameters on the thermoelectric properties of optimized and nanostructured Mg2Si0,3875Sn0,6Sb0,0125 alloys are explained through modelling.

Page generated in 0.0446 seconds