• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 87
  • 56
  • 19
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 356
  • 91
  • 69
  • 60
  • 54
  • 50
  • 44
  • 44
  • 41
  • 38
  • 35
  • 32
  • 31
  • 30
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Investigation of the Processing History during Additive Friction Stir Deposition using In-process Monitoring Techniques

Garcia, David 01 February 2021 (has links)
Additive friction stir deposition (AFSD) is an emerging solid-state metal additive manufacturing technology that uses deformation bonding to create near-net shape 3D components. As a developing technology, a deeper understanding of the processing science is necessary to establish the process-structure relationships and enable improved control of the as-printed microstructure and material properties. AFSD provides a unique opportunity to explore the friction stir fundamentals via direct observation of the material during processing. This work explores the relationship between the processing parameters (e.g., tool rotation rate Ω, tool velocity V, and material feed rate F) and the thermomechanical history of the material by process monitoring of i) the temperature evolution, ii) the force evolution, and iii) the interfacial contact state between the tool and deposited material. Empirical trends are established for the peak temperature with respect to the processing conditions for Cu and Al-Mg-Si, but a key difference is noted in the form of the power law relationship: Ω/V for Cu and Ω2/V for Al-Mg-Si. Similarly, the normal force Fz for both materials correlates to V and inversely with Ω. For Cu both parameters show comparable influence on the normal force, whereas Ω is more impactful than V for Al-Mg-Si. On the other hand, the torque Mz trends for Al-Mg-Si are consistent with the normal force trends, however for Cu there is no direct correlation between the processing parameters and the torque. These distinct relationships and thermomechanical histories are directly linked to the contact states observed during deformation monitoring of the two material systems. In Cu, the interfacial contact between the material and tool head is characterized by a full slipping condition (δ=1). In this case, interfacial friction is the dominant heat generation mechanism and compression is the primary deformation mechanism. In Al-Mg-Si, the interfacial contact is characterized by a partial slipping/sticking condition (0<δ<1), so both interfacial friction and plastic energy dissipation are important mechanisms for heat generation and material deformation. Finally, an investigation into the contact evolution at different processing parameters shows that the fraction of sticking is critically dependent on the processing parameters which has many implications on the thermomechanical processing history. / Doctor of Philosophy / Additive manufacturing or three-dimensional (3D) printing technologies have been lauded for their ability to fabricate complex geometries and multi-material parts with reduced material waste. Of particular interest is the use of metal additive manufacturing for repair and fabrication of industrial and structural components. This work focuses on characterizing the thermomechanical processing history for a developing technology Additive Friction Stir Deposition (AFSD). AFSD is solid-state additive manufacturing technology that uses frictional heat and mechanical mixing to fabricate 3D metal components. From a fundamental materials science perspective, it is imperative to understand the processing history of a material to be able to predict the performance and properties of a manufactured part. Through the use of infrared imaging, thermocouples, force sensors, and video monitoring this work is able to establish quantitative relationships between the equipment processing parameters and the processing history for Cu and Al. This work shows that there is a fundamental difference in how these two materials are processed during AFSD. In the future, these quantitative relationships can be used to validate modeling efforts and improve manufacturing quality of parts produced via friction stir techniques.
62

ANALYSIS AND OPTIMIZATION OF LASER CUTTING PROCESS FOR STRUCTURAL STEELS

Shamlooei, Majid 19 January 2024 (has links)
Laser cutting is a widely used technology for precision cutting of various materials, in-cluding mild structural steel. It involves the use of a high-powered laser beam to melt, burn, or vaporize the material, resulting in a clean and accurate cut. This doctoral thesis presents a comprehensive investigation of the laser cutting process for mild structural steels. To understand the thermal effects on the steel workpiece, an analytical model for the laser cutting heat source is proposed, which takes into account laser source geometry variation along the cut edge thickness. A modified heat source based on a Gaussian dis-tribution is used to model the heat flux as a combination of laser beam and heat produced by the reaction of oxygen with iron. The proposed model allows the laser cutting process to be simulated as a function of cutting speed, laser power, and shape of the heat flux. The FE method is employed to predict both temperature and stress fields in the cutting section considering the solid-state phase transformation during and after the laser cutting process. Optical microscopy, scanning electron microscopy and microhardness measure-ments are employed to observe morphological and metallurgical changes in the cutting sections, and the stress is detected using the X-ray diffraction methodology. The residual stress field surrounding the cutting edges is experimentally examined, and the results are compared to those anticipated by the developed model. An accurate temperature distri-bution field is obtained and validated by microstructural solid phases of the cut specimens. Consequently, residual stresses are also validated by comparing experimental measure-ments and outputs of the FE model. The study also investigates the optimization of laser cutting parameters for achieving, in agreement with the standard EN ISO 9013, quality cut surface requirements, such as roughness and perpendicularity. The trial-and-error method used in the past is incompat-ible with environment-friendly processes. Hence, to study the effects of cutting parameters on the target parameters and to collect data, an experimental campaign is carried out on a 12 mm thickness low carbon steel grade S235 cut by a 4kW fiber laser. A multi-objective optimization based on both a genetic algorithm and Kriging method is carried out to in-vestigate the correlations between input and target parameters as well as to find the op-timal laser cutting parameters to achieve the minimum roughness and perpendicularity. The applicability of the Kriging method to laser cutting processes is highlighted by the agreement between predicted cut quality and experimental results, provided by additional specimens cut with laser parameter sets obtained by a Pareto front. Overall, the investi-gated model offers important details on the physical procedures that occur during the laser cutting process and provides useful insights for selecting the optimal sets of laser cutting parameters for different applications.
63

Thermomechanical and Vibration Analysis of Stiffened Unitized Structures and Threaded Fasteners

Devarajan, Balakrishnan 01 February 2019 (has links)
This dissertation discusses the thermomechanical analyses performed on threaded fasteners and curvilinearly stiffened composite panels with internal cutouts. The former problem was analyzed using a global/local approach using the commercial finite element software ANSYS while a fully functional code using isogeometric analysis was developed from scratch for the latter. For the threaded fasteners, a global simplified 3D model is built to evaluate the deformation of the structure. A second local model reproducing accurately the threads of the fasteners is used for the accurate assessment of the stresses in the vicinity of the fasteners. The isogeometric analysis code, capable of performing static, buckling and vibration analysis on stiffened composite plates with cutouts using single patch, multiple patches and level set methods is then discussed. A novel way to achieve displacement compatibility between the panel and stiffeners interfaces is introduced. An easy way of modeling plates with complicated cutouts by using edge curves and generating a ruled NURBS surface between them is described. Influence on the critical thermal buckling load and the fundamental mode of vibration due to the presence of circular, elliptical and complicated cutouts is also investigated. Results of parametric studies are presented which show the influence of ply orientation, size and orientation of the cutout, and the position and profile of the curvilinear stiffener. The numerical examples show high reliability and efficiency when compared with other published solutions and those obtained using ABAQUS, a commercial software. / PHD / Aircraft in flight are subjected to different loads due to maneuvers and gust; there external forces cause internal loads and depend on the location of the panel in the aircraft. The internal loads, may result in the buckling of the panel. Hence, there is a need for studying structural efficiency and develop strong and stiff lightweight structures. Stiffened composite panels is a technology capable of addressing these needs. However, when used in space vehicles moving at hypersonic speeds, such structures experience significant temperature rise in a very short time resulting from the aerodynamic heating due to friction between the vehicle surface and the atmosphere. Such phenomena is more prominent during reentry and launch processes. Hence, it is really important to consider thermal effects while designing and analyzing such structures. Composite stiffened panels have many advantages like small manufacturing cost, high stability, great energy absorption, superior damage tolerance etc. One of the main failure modes for stiffened composite panels is thermal buckling. An extensive literature review on thermal buckling of stiffened composite panels was conducted in this dissertation. Thermal buckling and vibration analysis as well as a parametric study of a stiffened composite panel with internal cutouts was conducted, and verified using ABAQUS, a Finite Element Software.
64

Shrinkage restraint forces in oriented PET, PMMA and PET/PMMA blend: Contrasting effects on cooling

Sweeney, John, Nocita, Davide, Spencer, Paul, Thompson, Glen, Babenko, Maxims, Coates, Philip 07 August 2024 (has links)
Yes / We have performed shrinkage restraint force measurements on three shape memory polymers of polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) and a blend of the two at a range of temperatures. Observations are made of the change in stress during temperature rise, hold and cooling. All materials show an increase in stress during rise and hold, but on cooling the three materials behave differently; the PET shows a drop in stress, the PMMA a rise and the blend a much smaller rise. This behaviour correlates with the reversible thermal dimensional change at below the shrinkage threshold temperature; the expansion coefficients are negative for PET, positive for PMMA and positive at a lower order of magnitude for the blend. We model the behaviour by supposing that the shrinkage forces are created by prestressed strains effective at long range within a matrix of shorter chains effective at short range. The total stress is the sum of the shrinkage stress and the thermal stress in the matrix. The drops in stress on cooling are modelled using an elastic analysis based on measured elastic moduli and thermal expansion coefficients. For the blend, downward jumps in temperature produce small transient increases in the total stress, leaving it effectively unchanged. This phenomenon and the results of the elastic model for the stress drops imply that the shrinkage stress from the long-range chain network is largely unaffected by the temperature change, and so is not entropic.
65

Effects of Thermomechanical Refining on Douglas fir Wood

Tasooji, Mohammad 03 July 2018 (has links)
Medium density fiberboard (MDF) production uses thermomechanically refined fiber processed under shear with high pressure steam. The industry evaluates fiber quality with visual and tactile inspection, emphasizing fiber dimensions, morphology, and bulk density. Considering wood reactivity, the hypothesis is that a variety of chemical and physical changes must occur that are not apparent in visual/tactile inspection. An industry/university cooperation, this work studies effects of refining energy (adjusted by refiner-plate gap) on fiber: size, porosity, surface area, surface and bulk chemistry, fiber crystallinity and rheology, and fiber interaction with amino resins. The intention is to reveal novel aspects of fiber quality that might impact MDF properties or process control efficiency, specific to a single industrial facility. In cooperation with a North American MDF Douglas fir plant, two refining energies were used to produce resin and additive-free fibers. Refining reduced fiber dimensions and increased bulk density, more so at the highest energy. Thermoporosimetry showed increases in sub-micron scale porosity, greatest at the highest energy. Mercury intrusion porosimetry (MIP) revealed porosity changes on a higher dimensional scale. Brunauer-Emmett-Teller gas adsorption and MIP showed that refining increased specific surface area, more so at the highest energy. Inverse gas chromatography showed that the lowest refining energy produced surfaces dominated by lignin and/or extractives. The highest energy produced more fiber damage, revealing higher energy active sites. A novel rheological method was devised to study fiber compaction and densification; it did not distinguish fiber types, but valuable aspects of mechano-sorption and densification were observed. Refining caused substantial polysaccharide degradation, and other degradative effects that sometimes correlated with higher refining energy. Lignin acidolysis was detected using nitrobenzene oxidation, conductometric titration of free phenols, and formaldehyde determination. Formaldehyde was generated via the C2 lignin acidolysis pathway, but C3 cleavage was the dominant lignin reaction. Observations suggested that in-line formaldehyde monitoring might be useful for process control during biomass processing. According to rheological and thermogravimetric analysis, lignin acidolysis was not accompanied by repolymerization and crosslinking. Lignin repolymerization must have been prevented by the reaction of benzyl cations with non-lignin nucleophiles. This raises consideration of additives that compete for lignin benzyl cations, perhaps to promote lignin crosslinking and/or augment the lignin network with structures that impart useful properties. Fiber/amino resin interactions were studied with differential scanning calorimetry (DSC) and X-ray diffraction (XRD). All fiber types, refined and unrefined, caused only a slight increase in melamine-urea-formaldehyde (MUF) resin reactivity. Generally, all fiber types decreased the enthalpy of MUF cure, suggesting fiber absorption of small reactive species. But DSC did not reveal any dependency on fiber refining energy. According to XRD, all fiber types reduced crystallinity in cured MUF, more so with refined fiber, but independent of refining energy. The crystallinity in cured urea-formaldehyde resin was studied with one fiber type (highest refining energy); it caused a crystallinity decrease that was cure temperature dependent. This suggests that resin crystallinity could vary through the thickness of an MDF panel. / PHD / Medium density fiberboard (MDF) is a wood-based composite which is widely used for making kitchen cabinets and furniture. In the process of making MDF, wood particles are softened under steam pressure and under high temperature and pressure, inside a refiner, mechanically cut into wood fibers. Wood fibers are then mixed with adhesive and additives then hot-pressed and form the final board. In the MDF industry, wood fiber quality has significant effect on final board properties and is evaluated based on visual and tactile inspections. The research hypothesis is that, during the refining, a variety of chemical and physical changes must occur that are not apparent in visual/tactile inspection. An industry/university cooperation, this work studies effects of refining energy (adjusted by refiner-plate gap) on fiber: size, porosity, surface area, surface and bulk chemistry, fiber crystallinity and rheology, and fiber interaction with adhesive. The intention is to reveal novel aspects of fiber quality that might impact MDF properties or process control efficiency, specific to a single industrial facility. It was found that refining had significant effect on wood fiber properties: increased surface area, porosity, and changed the surface energy; and also on wood fiber chemistry: significant degradation in wood fiber main chemical components: poly saccharides and lignin. These changes also had effect on fiber/adhesive interaction. Therefore the hypothesis was confirmed that MDF fiber quality must involve more than a simple visual/tactile evaluation and the effect of refining can be detected on other fiber quality aspects. However more research needs to be conducted to test and find feasible new methods for fiber quality evaluation.
66

The Synthesis and Characterization of Energetic Materials From Sodium Azide

Aronson, Joshua Boyer 29 November 2004 (has links)
A tetrazole is a 5-membered ring containing 4 nitrogens and 1 carbon. Due to its energetic potential and structural similarity to carboxylic acids, this ring system has a wide number of applications. In this thesis, a new and safe sustainable process to produce tetrazoles was designed that acheived high yields under mild conditions. Also, a technique was developed to form a trityl-protected tetrazole in situ. The rest of this work involved the exploitation of the energetic potential of tetrazoles. This moiety was successfully applied in polymers, ionic liquids, foams, and gels. The overall results from these experiments illustrate the fact that tetrazoles have the potential to serve as a stable alternative to the troublesome azido group common in many energetic materials. Due to these applications, the tetrazole moiety is a very important entity.
67

The effect of epoxidised soybean oil on the curing and (THERMO) mechanical properties of epoxy resins

Mathole, Alinah Phindiwe. January 2012 (has links)
M. Tech. Polymer Technology. / Studies the effects of incorporating epoxidised soybean oil (ESO) in a standard bisphenol A-type epoxy resin (EP) cured by both amine and anhydride hardeners. The EP/ESO ratio was set for 100/0, 75/25, 50/50, 25/75 and 0/100 (wt./wt.). The investigations performed covered the curing, rheology (gelling), and thermomechanical analysis and thermogravimetric analysis of the sample produced.
68

A Simplified Approach to Thermomechanical Fatigue and Application to V-shaped Notches

Bouchenot, Thomas 01 August 2013 (has links)
A vast array of high value parts in land- and air-based turbomachinery are subjected to non-isothermal cycling in the presence of mechanical loading. Crack initiation, growth and eventual failure more significantly reduce life in these components compared to isothermal conditions. More accurate simulation of the stress and strain evolution at critical locations of components, as well as test specimens, can lead to a more accurate prediction of remaining life to a structural integrity specialists. The focus of this thesis is to characterize the effects of thermomechanical fatigue (TMF) on generic turbomachinery alloy. An expression that can be used to estimate the maximum and minimum stress under a variety of loading conditions is formulated. Analytical expressions developed here are modifications of classic mechanics of materials methods (e.g. Neuber's Rule and Ramberg-Osgood). The novel models are developed from a collection of data based on parametric finite element analysis to encompass the complex load history present in turbine service conditions. Relevance of the observations and formulated solutions are also explored for the case of a tensile specimen containing a v-shaped notch. Accurate estimations of non-isothermal fatigue presented here endeavor to improve component lifing and decrease maintenance costs.
69

Electrical, thermomechanical and reliability modeling of electrically conductive adhesives

Su, Bin 23 December 2005 (has links)
The first part of the dissertation focuses on understanding and modeling the conduction mechanism of conductive adhesives. The contact resistance is measured between silver rods with different coating materials, and the relationship between tunnel resistivity and contact pressure is obtained based on the experimental results. Three dimensional microstructure models and resistor networks are built to simulate electrical conduction in conductive adhesives. The bulk resistivity of conductive adhesives is calculated from the computer-simulated model. The effects of the geometric properties of filler particles, such as size, shape and distribution, on electrical conductivity are studied by the method of factorial design. The second part of the dissertation evaluates the reliability and investigates the failure mechanism of conductive adhesives subjected to fatigue loading, moisture conditioning and drop impacts. In fatigue tests it is found that electrical conduction failure occurs prior to mechanical failure. The experimental data show that electrical fatigue life can be described well by the power law equation. The electrical failure of conductive adhesives in fatigue is due to the impaired epoxy-silver interfacial adhesion. Moisture uptake in conductive adhesives is measured after moisture conditioning and moisture recovery. The fatigue life of conductive adhesives is significantly shortened after moisture conditioning and moisture recovery. The moisture accelerates the debonding of silver flakes from epoxy resin, which results in a reduced fatigue life. Drop tests are performed on test vehicles with conductive adhesive joints. The electrical conduction failure happens at the same time as joint breakage. The drop failure life is found to be correlated with the strain energy caused by the drop impact, and a power law life model is proposed for drop tests. The fracture is found to be interfacial between the conductive adhesive joints and components/substrates. This research provides a comprehensive understanding of the conduction mechanism of conductive adhesives. The computer-simulated modeling approach presents a useful design tool for the conductive adhesive industry. The reliability tests and proposed failure mechanisms are helpful to prevent failure of conductive adhesives in electronic packages. Moreover, the fatigue and impact life models provide tools in product design and failure prediction of conductive adhesives.
70

Constitutive Modeling and Life Prediction in Ni-Base Superalloys

Shenoy, Mahesh M. 01 June 2006 (has links)
Microstructural features at different scales affect the constitutive stress-strain response and the fatigue crack initiation life in Ni-base superalloys. While numerous efforts have been made in the past to experimentally characterize the effects of these features on the stress-strain response and/or the crack initiation life, there is a significant variability in the data with sometimes contradictory conclusions, in addition to the substantial costs involved in experimental testing. Computational techniques can be useful tools to better understand these effects since they are relatively inexpensive and are not restricted by the limitations in processing techniques. The effect of microstructure on the stress-strain response and the variability in fatigue life were analyzed using two Ni-base superalloys; DS GTD111 which is a directionally solidified Ni-base superalloy, and IN100 which is a polycrystalline Ni-base superalloy. Physically-based constitutive models were formulated and implemented as user material subroutines in ABAQUS using the single crystal plasticity framework which can predict the material stress-strain response with the microstructure-dependence embedded into them. The model parameters were calibrated using experimental cyclic stress-strain histories. A computational exercise was employed to quantify the influence of idealized microstructural variables on the fatigue crack initiation life. Understanding was sought regarding the most significant microstructure features using explicit modeling of the microstructure with the aim to predict the variability in fatigue crack initiation life and to guide material design for fatigue resistant microstructures. Lastly, it is noted that crystal plasticity models are often too computationally intensive if the objective is to model the macroscopic behavior of a textured or randomly oriented 3-D polycrystal in an engineering component. Homogenized constitutive models were formulated and implemented as user material subroutines in ABAQUS, which can capture the macroscale stress-strain response in both DS GTD111 and IN100. Even though the study was conducted on two specific Ni-base superalloys; DS GTD111 and IN100, the objective was to develop generic frameworks which should also be applicable to other alloy systems.

Page generated in 0.1274 seconds