• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 3
  • 1
  • Tagged with
  • 19
  • 8
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modélisation thermomécanique d'un composite carbone/carbone à texture complexe / Thermomechanical modeling of a carbon/carbon composite with complex texture

Raude, Amandine 28 November 2018 (has links)
Les composites C/C sont utilisés dans les domaines du spatial et de l'aéronautique pour leurs excellentes propriétés thermomécaniques depuis la température ambiante jusqu'aux très hautes températures (> 3000°C). Ces matériaux ont une architecture complexe constituée de nappes de fibres stratifiées et aiguilletées. Leur utilisation en zones fortement sollicitées et à haute température nécessite une maîtrise des propriétés thermiques et mécaniques. Actuellement, la conception du matériau se fait de manière empirique et itérative. Pour l'accélérer, le développement d'un modèle numérique multi-échelle prédictif du comportement du composite C/C est proposé. Ce matériau a tout d'abord été caractérisé morphologiquement à ses différentes échelles caractéristiques, les propriétés thermomécaniques de ses constituants élémentaires ont également été identifiées. A l'échelle microscopique, les fils sont représentés de façon homogène et thermoélastique à partir des taux de constituants qui leurs sont associés. A l'échelle mésoscopique, deux aspects morphologiques semblent prédominants : son architecture ainsi que ses porosités et endommagements. Leur effet sur le comportement effectif du composite C/C est étudié dans le but d'évaluer leur influence relative et d'aboutir à une description suffisamment fine de leurs morphologies dans la modélisation effectuée. Un modèle de matériau idéalisé ainsi qu'un modèle basé images ont été développés. La simulation d'essais macroscopiques a révélé que ces deux aspects avaient un effet non-négligeable sur le comportement effectif du composite C/C et ont permis le développement et la validation d'un modèle prédictif multi-échelle de ce matériau, prenant en compte les caractéristiques précédentes, et permettant le lien entre l'échelle de ses constituants élémentaires et celle macroscopique. / C/C composites are used in space and aeronautics for their excellent thermomechanical properties from room temperature to very high temperatures (> 3000°C). These materials have a complex architecture consisting of layers of laminated and needled fibers. Its use in highly stressed areas and at high temperature requires control of thermal and mechanical properties. Currently, the design of the material is done empirically and iteratively. To accelerate it, the development of a multi-scale digital model of the C/C composite is proposed. This material was first morphologically characterized at its different characteristic scales, the thermomechanical properties of its elementary constituents were also identified. At the microscopic scale, the wires are represented homogeneously and thermoelastically from the constituent levels associated with them. At the mesoscopic scale, two morphological aspects seem to predominate: its architecture as well as its porosities and damages. Their effect on the effective behavior of the C/C composite is studied in order to evaluate their relative influence and to arrive at a sufficiently fine description of their morphologies in the modeling carried out. An idealized material model as well as an image based model have been developed. The simulation of macroscopic tests revealed that both aspects had a non-negligible effect on the effective behavior of the C/C composite and allowed the development and validation of a multi-scale predictive model of this material, taking into account the preceding characteristics, and allowing the link between the scale of its elementary constituents and the macroscopic one.
12

Construction d’abaques numériques dédiés aux études paramétriques du procédé de soudage par des méthodes de réduction de modèles espace-temps / Construction of computational vademecum dedicated to parametric studies of welding processes by space-time model order reduction techniques

Lu, Ye 03 November 2017 (has links)
Le recours à des simulations numériques pour l’étude de l’influence des paramètres d’entrée (matériaux, chargements, conditions aux limites, géométrie, etc.) sur les différentes quantités d’intérêt en soudage (contraintes résiduelles, distorsion, etc.) s’avère trop long et coûteux vu l’aspect multi-paramétrique de ces simulations. Pour explorer des espaces paramétriques de grandes dimensions, avec des calculs moins coûteux, il parait opportun d’utiliser des approches de réduction de modèle. Dans ce travail, d’une façon a posteriori, une stratégie non-intrusive est développée pour construire les abaques dédiées aux études paramétriques du soudage. Dans une phase offline, une base de données (‘snapshots’) a été pré-calculée avec un choix optimal des paramètres d'entrée donnés par une approche multi-grille (dans l’espace des paramètres). Pour explorer d’autres valeurs de paramètres, une méthode d’interpolation basée sur la variété Grassmannienne est alors proposée pour adapter les bases réduites espace-temps issues de la méthode SVD. Cette méthode a été constatée plus performante que les méthodes d’interpolation standards, notamment en non-linéaire. Afin d’explorer des espaces paramétriques de grandes dimensions, une méthode de type décomposition tensorielle (i.e. HOPGD) a été également étudiée. Pour l’aspect d’optimalité de l’abaque, nous proposons une technique d’accélération de convergence pour la HOPGD et une approche ‘sparse grids’ qui permet d’échantillonner efficacement l’espace des paramètres. Finalement, les abaques optimaux de dimension jusqu’à 10 à précision contrôlée ont été construits pour différents types de paramètres (matériaux, chargements, géométrie) du procédé de soudage. / The use of standard numerical simulations for studies of the influence of input parameters (materials, loading, boundary conditions, geometry, etc.) on the quantities of interest in welding (residual stresses, distortion, etc.) proves to be too long and costly due to the multiparametric aspect of welding. In order to explore high-dimensional parametric spaces, with cheaper calculations, it seems to be appropriate to use model reduction approaches. In this work, in an a posteriori way, a non-intrusive strategy is developed to construct computational vademecum dedicated to parametric studies of welding. In an offline phase, a snapshots database is pre-computed with an optimal choice of input parameters given by a “multi-grids” approach (in parameter space). To explore other parameter values, an interpolation method based on Grassmann manifolds is proposed to adapt both the space and time reduced bases derived from the SVD. This method seems more efficient than standard interpolation methods, especially in non-linear cases. In order to explore highdimensional parametric spaces, a tensor decomposition method (i.e. HOPGD) has also been studied. For the optimality aspect of the computational vademecum, we propose a convergence acceleration technique for HOPGD and a “sparse grids” approach which allows efficient sampling of the parameter space. Finally, computational vademecums of dimension up to 10 with controlled accuracy have been constructed for different types of welding parameters (materials, loading, geometry).
13

Thermomécanique des milieux continus : modèles théoriques et applications au comportement de l'hydrogel en ingénierie biomédicale / Continuum thermomechanics : theoretical models and applications on hydrogel behaviour in biomedical engineering

Santatriniaina, Nirina 06 October 2015 (has links)
Dans la première partie on propose un outil mathématique pour traiter les conditions aux limites dynamiques d'un problème couplé d'EDP. La simulation avec des conditions aux limites dynamiques nécessite quelques fois une condition de "switch" en temps des conditions aux limites de Dirichlet en Neumann. La méthode numérique (St DN) a été validée avec des mesures expérimentales pour le cas de la contamination croisée en industrie micro-électronique. Cet outil sera utilisé par la suite pour simuler le phénomène de « self-heating » dans les polymères et les hydrogels sous sollicitations dynamiques. Dans la deuxième partie, on s'intéresse à la modélisation du phénomène de self-heating dans les polymères, les hydrogels et les tissus biologiques. D'abord, nous nous sommes focalisés sur la modélisation de la loi constitutive de l'hydrogel de type HEMA-EGDMA. Nous avons utilisé la théorie des invariants polynomiaux pour définir la loi constitutive du matériau. Ensuite, nous avons mis en place un modèle théorique en thermomécanique couplée d'un milieu continu classique pour analyser la production de chaleur dans ce matériau. Deux potentiels thermodynamiques ont été proposés et identifiés avec les mesures expérimentales. Une nouvelle forme d'équation du mouvement non-linéaire et couplée a été obtenue (un système d'équation aux dérivées partielles parabolique et hyperbolique non-linéaire couplé avec des conditions aux limites dynamiques). Dans la troisième partie, une méthode numérique des équations thermomécaniques (couplage parabolique-hyperbolique) pour les modèles a été utilisée. Cette étape nous a permis, entre autres, de résoudre ce système couplé. La méthode est basée sur la méthode des éléments finis. Divers résultats expérimentaux obtenus sur ce phénomène de self-heating sont présentés dans ce travail suivi d'une étude de corrélations des résultats théoriques et expérimentaux. Dans la dernière partie de ce travail, ces divers résultats sont repris et leurs conséquences sur la modélisation du comportement de l'hydrogel naturel utilisé dans le domaine biomédical sont discutées. / In the first part, we propose a mathematical tool for treating the dynamic boundary conditions. The simulation within dynamic boundary condition requires sometimes ''switch'' condition in time of the Dirichlet to Neumann boundary condition (St DN). We propose a numerical method validated with experimental measurements for the case of cross-contamination in microelectronics industry. This tool will be used to compute self-heating in the polymers and hydrogels under dynamic loading. In the second part we focus on modeling the self-heating phenomenon in polymers, hydrogels and biological tissues. We develop constitutive law of the hydrogel type HEMA-EGDMA, focusing on the heat e.ects (dissipation) in this material. Then we set up a theoretical model of coupled thermo-mechanical classic continuum for a better understanding of the heat production in this media. We use polynomial invariants theory to define the constitutive law of the media. Two original thermodynamic potentials are proposed. Original non-linear and coupled governing equations were obtained and identified with the experimental measurements (non-linear parabolic-hyperbolic system with the dynamic boundary condition). In the third part, numerical methods were used to solve thermo-mechanical formalism for the model. This step deals with a numerical method of a coupled partial di.erential equation system of the self-heating (parabolic-hyperbolic coupling). Then, is step allows us, among other things, to propose an appropriate numerical methods to solve this system. The numerical method is based on the finite element methods. Numerous experimental results on the self-heating phenomenon are presented in this work together with correlations studies between the theoretical and experimental results. In the last part of the thesis, these various results will be presented and their impact on the modeling of the behavior of the natural hydrogel used in the biomedical field will be discussed.
14

Simulation numérique, à l'aide d'algorithmes thermomécaniques implicites, de matériaux endommageables pouvant subir de grandes vitesses de déformation. Application aux structures aéronautiques soumises à impact.

Jeunechamps, Pierre-Paul 10 October 2008 (has links)
La thèse de Monsieur Jeunechamps est intitulée "Simulation numérique, à l'aide d'algorithmes thermomécaniques implicites, de matériaux endommageables pouvant subir de grandes vitesses de déformation. Application aux structures aéronautiques soumises à impact". Elle comporte neuf chapitres et deux annexes. La bibliographie compte 285 références. Les développements informatiques ont été implémentés dans le code de calcul par éléments finis Metafor, développé au sein du département LTAS-MC&T et MN²L de l'Université de Liège. Le travail est divisé en trois parties principales. La première partie (chapitres 2 à 4) concerne la description et la modélisation thermomécanique des phénomènes à dynamique rapide sans dégradation irréversible des propriétés du matériau utilisé. La deuxième partie (chapitres 5 à 7) est consacrée à l'étude du comportement des matériaux dits endommageables éventuellement soumis à rupture, c'est-à-dire des matériaux dont les propriétés se dégradent de façon irréversible au cours de la déformation. La troisième partie (chapitre 8) est une application à l'échelle industrielle des méthodes proposées tout au long de cet ouvrage. Le chapitre 2 propose un inventaire des lois constitutives des matériaux, permettant de décrire le comportement de la structure lors de sollicitations rapides. L'accent est mis sur les principales lois d'évolution de la limite élastique implémentées dans les codes de calcul commerciaux, ainsi que sur les variantes de ces lois d'évolution. L'aspect numérique de l'intégration thermomécanique de ces lois est également abordé. Le deuxième aspect abordé dans cette première partie concerne les algorithmes d'intégration temporelle des équations de conservation de la quantité de mouvement. Le chapitre 3 décrit les algorithmes d'intégration utilisés dans ce travail, en mettant l'accent sur l'aspect dynamique et le couplage thermomécanique des phénomènes à dynamique rapide. Le chapitre 4 présente quelques applications illustrant les méthodes de calcul utilisées et permettant la validation de l'implémentation des modèles programmés dans Metafor. Les comparaisons sont effectuées dans la mesure du possible par rapport à des données expérimentales quand celles-ci sont disponibles et également par rapport à des résultats issus de codes de calcul commerciaux. Le chapitre 5 présente une modélisation de la dégradation du matériau au cours de la déformation. En effet, le matériau, sous l'effet des sollicitations et des efforts résultants, perd de ses propriétés de résistance à l'effort, et ce, de manière irréversible. Il est alors endommagé. Dans ce travail, nous avons choisi d'utiliser la théorie de l'endommagement continu pour décrire ces phénomènes. Le chapitre 5 rappelle les fondements de cette théorie ainsi que les principales lois d'endommagement continu. Une méthode générale et originale d'intégration de ces modèles d'endommagement est également proposée. Une fois que la structure est soumise à de trop fortes sollicitations, la rupture consécutive à l'endommagement du matériau apparaît. Le chapitre 6 décrit la méthode numérique développée pour modéliser le déchirement d'une structure ainsi que les différents critères de rupture utilisés. Encore une fois, nous nous limitons à une approche phénoménologique et pragmatique : il ne s'agit pas ici d'implémenter des critères complexes multi-échelles. Cependant, la structure du code de calcul est conçue pour permettre aisément de telles extensions. Le chapitre 7 présente une série d'applications permettant de valider l'implémentation des lois d'endommagement et de rupture ainsi que la formulation proposée de la théorie d'endommagement. Nous étudierons également le coût CPU engendré par la modélisation de l'endommagement et de la rupture du matériau. Enfin, le chapitre 8 présente une application industrielle proposée par la société Techspace Aero S.A. Il s'agit de l'étude du flambement d'une aube de compresseur basse pression d'un moteur d'avion lors du contact accidentel de celle-ci avec le carter du moteur. Tous les développements présentés dans les chapitres précédents sont alors utilisés pour simuler au mieux le phénomène. Les apports principaux du travail sont les suivants : utilisation d'algorithmes thermomécaniques de type étagé, dont l'intégration temporelle des équations de conservation du mouvement prend en compte les effets d'inertie ; amélioration de la technique d'intégration des lois constitutives avec endommagement, utilisant la théorie de l'endommagement continu, par l'utilisation d'un algorithme itératif ; méthode unifiée de calcul de la matrice de raideur tangente matérielle analytique pour un matériau hypoélastique avec endommagement, selon la théorie de l'endommagement continu, dans le cadre thermomécanique ; couplage thermomécanique général des modèles d'endommagement et des lois constitutives à grandes vitesses de déformation ; utilisation d'algorithmes implicites thermomécaniques dans la modélisation de la déchirure de structure par la méthode d'érosion ; établissement d'une plate-forme numérique d'accueil permettant l'implémentation future de lois matérielles, avec ou sans endommagement, ainsi que de techniques de modélisation de propagation de fissure ; processus complet de description d'un phénomène d'impact, par la modélisation du comportement thermomécanique du matériau par des lois de comportement avec endommagement adaptées au phénomène étudié et l'utilisation d'algorithmes implicites couplés à une méthode de déchirure de la structure.
15

Identification expérimentale de modèles de zones cohésives à partir de techniques d'imagerie thermomécanique / Identification of cohesive zone models using thermomechanical imaging techniques

Wen, Shuang 14 December 2012 (has links)
Ce travail porte sur l'identification de modèles de zones cohésives. Ces modèles, proposés initialement dans les années 60 sont maintenant de intensivement utilisés dans les simulations numériques pour rendre compte de l'initiation et de la propagation de fissures pour différents matériaux et structures.L'identification de ces modèles reste encore aujourd'hui une problématique délicate. Les développements récents de techniques d'imagerie permettent d'accéder à des champs de mesures locales (e.g. déformation et température, …). On se propose dans ce travail d'utiliser la richesse des informations issues de ces techniques d'imagerie pour mettre en place une procédure d'identification qui prenne en compte à la fois le développement de la localisation (effet de structure) mais aussi la nature des différentes irréversibilités mises en jeu (comportement thermo-mécanique). On s'intéresse à des comportements élasto-plastiques endommageables de matériaux ductiles. L'endommagement est associé à un comportement cohésif de l'interface entre les éléments volumiques supposés purement élasto-plastiques.La procédure d'identification comporte deux étapes. La première consiste à caractériser la forme et les paramètres de la loi cohésive sur des essais de traction standard à partir d'une analyse des champs mécaniques localement développés. La seconde étape consiste à vérifier la cohérence thermo-mécanique du modèle identifié en confrontant les mesures calorimétriques déduites des champs de température avec les prévisions du modèle identifié.Cette méthode est appliquée avec succès sur différents matériaux (acier Dual Phase et cuivre). Une attention particulière est portée sur la caractérisation de la longueur caractéristique qui est nécessairement introduite dans l'identification. On montre que cette longueur peut être estimée au regard des différents paramètres introduits dans les traitements d'images.Cette méthode est appliquée sur différents matériaux (acier et cuivre). Une attention particulière est portée sur la caractérisation de la longueur caractéristique qui est nécessairement introduite dans l'identification. On montre que cette longueur peut-être corrélée à l'échelle d'identification des processus d'endommagement sous-jacents. Ainsi les modèles cohésifs identifiés sont fournis au modélisateur avec l'échelle physique à laquelle ils résument l'endommagement volumique du matériau. / This work deals with the identification of cohesive zone models. These models were intially proposed in the 1960s. They are now more and more frequently used in numerical simulations to account for crack initiation and propagation in different materials and structures.The identification of these models still remains a delicate issue. The recent developments in imaging techniques now allow reaching local measurement fields (e.g. strain, temperature,…). We propose here to use the large amount of information given by these techniques to set up an identification procedure accounting for either the localization development (structural effect) and also the character of the different irreversibility sources encountered (thermo-mechanical behavior). We study damageable elasto-plastic ductile materials. Damage is associated to a cohesive behavior of the interface between volumic elements supposed to remain purely elasto-plastic.The identification procedure involves two steps. The first one consists in characterizing the shape and the parameters of the cohesive zone on tensile tests by analyzing the mechanical fields locally developed. The second one consists in checking the thermo-mechanical consistency of the identified model by confronting the calorimetric measurements deduced from temperature fields with the previsions of the identified model.This method is applied on different materials (Dual Phase steel and copper). A specific caution is conferred to the characterization of the characteristic length necessarily introduced by the identification. It is shown that this length can be estimated regarding the different parameters introduced in the image processing.
16

Modellreduktion thermischer Felder unter Berücksichtigung der Wärmestrahlung

Rother, Stephan 15 November 2019 (has links)
Transiente Simulationen im Rahmen von Parameterstudien oder Optimierungsprozessen erfor-dern die Anwendung der Modellordnungsreduktion zur Minimierung der Berechnungs¬zeiten. Die aus der Wärmestrahlung resultierende Nichtlinearität bei der Analyse thermischer Felder wird hier als äußere Last betrachtet, wodurch die entkoppelte Ermittlung der strahlungs-beding¬ten Wärmeströme gelingt. Darüber hinaus ermöglichen die infolgedessen konstanten System¬matrizen die Reduktion des Temperaturvektors mit etablierten Verfahren für lineare Systeme, wie beispielsweise den Krylov-Unterraummethoden. Die aus der in der Regel großflächigen Verteilung der thermischen Lasten folgende hohe Anzahl von Systemeingängen limitiert allerdings die erzielbare reduzierte Dimension. Deshalb werden zustandsunabhängige, sich synchron verändernde Lasten zu einem Eingang zusammengefasst. Die aus der Strahlung resultierenden Wärmeströme sind im Gegensatz dazu durch die aktuelle Temperaturverteilung bestimmt und lassen sich nicht derart gruppieren. Vor diesem Hintergrund wird ein Ansatz basierend auf der Singulärwertzerlegung von aus Trai¬ningssimulationen gewonnenen Beispiellastvektoren vorgeschlagen. Auf diese Weise gelingt eine erhebliche Verringerung der Eingangsanzahl, sodass im reduzierten System ein sehr geringer Freiheitsgrad erreicht wird. Im Vergleich zur Proper Orthogonal Decomposition (POD) genügen dabei deutlich weniger Trainingsdaten, was den Rechenaufwand während der Offline-Phase erheblich vermindert. Darüber hinaus dehnt das entwickelte Verfahren die Gültigkeit des reduzierten Modells auf einen weiten Parameterbereich aus. Die Berechnung der strahlungsbedingten Wärmeströme in der Ausgangsdimension bestimmt dann den numerischen Aufwand. Mit der Discrete Empirical Interpolation Method (DEIM) wird die Auswertung der Nichtlinearität auf ausgewählte Modellknoten beschränkt. Schließlich erlaubt die Anwendung der POD auf die Wärmestrahlungsbilanz die schnelle Anpassung des Emissionsgrades. Somit hängt das reduzierte System nicht mehr vom ursprünglichen Freiheitsgrad ab und die Gesamt-simulationszeit verkürzt sich um mehrere Größenordnungen. / Transient simulations as part of parameter studies or optimization processes require the appli-cation of model order reduction to minimize computation times. Nonlinearity resulting from heat radiation in thermal analyses is considered here as an external load. Thereby, the determi-nation of the radiation-induced heat flows is decoupled from the temperature equation. Hence, the system matrices become invariant and established algorithms for linear systems, such as Krylov Subspace Methods, can be used for the reduction of the temperature vector. However, in general the achievable reduced dimension is limited as the thermal loads distributed over large parts of the surface lead to a high number of system inputs. Therefore, state-independent, synchronously changing loads are combined into one input. In contrast, the heat flows resulting from radiation are determined by the current temperature distribution and cannot be grouped in this way. Against this background, an approach based on the singular value decomposition of snapshots obtained from training simulations is proposed allowing a considerable decreased input number and a very low degree of freedom in the reduced system. Compared to Proper Orthogonal Decomposition (POD), significantly less training data is required reducing the computational costs during the offline phase. In addition, the developed method extends the validity of the reduced model to a wide parameter range. The computation of the radiation-induced heat flows, which is performed in the original dimension, then determines the numerical effort. The Discrete Empirical Interpolation Method (DEIM) restricts the evaluation of the nonlinearity to selected model nodes. Finally, the application of the POD to the heat radiation equation enables a rapid adjustment of the emissivity. Thus, the reduced system is no longer dependent on the original degree of freedom and the total simulation time is shortened by several orders of magnitude.
17

MECHANICS, VIBRATIONS, AND TENSION MEASUREMENT OF THIN WEBS IN ROLL-TO-ROLL MANUFACTURING FOR FLEXIBLE AND PRINTED ELECTRONICS

Dan Feng (10723848) 29 April 2021 (has links)
<div>Roll-to-roll processes provide a low-cost and high-throughput scheme for scalable flexible devices manufacturing. Multiple processes are used in roll-to-roll manufacturing, such as functional printing, evaporation/drying, UV curing, hot embossing, laser/heat annealing, laser ablation, plasma/ chemical growth, and sputtering. These processes change the web temperature field and/ or local properties. In addition, residual stresses by the process and web tension can destabilize the process and lead to wrinkling or undesirable performance of the products.</div><div>This dissertation investigates three different multi-physics problems relevant to the roll-to-roll processes, which are web thermomechanics, air-coupled web vibrations, and the measuring of nonuniform web tension. First, a mathematical model for predicting the in-plane temperature and heat induced stress distributions in a flexible, axially moving web under arbitrary shape of heat flux is presented. The computational approach is validated on experiments performed on moving paper and PET webs with infrared laser heating source. Second, a closed-form, semi-analytical, universal hydrodynamic functions is developed to accurately predict the lowest symmetric and anti-symmetric transverse frequency responses for any uniaxially tensioned web of arbitrary material and aspect ratio used in roll-to-roll processes with the surrounding air acting as distributed added mass. Experimental validation is carried out by using pointwise laser measurements of acoustically excited webs with different pre-tensions, web materials, and aspect ratios. Finally, we develop and test a non-contact resonance method and a gentle contact stiffness mapping method based on the first principles mechanical models of a tensioned plate to accurately measure the average web tension and its linear variation for a wide range of web properties, web path, web tension, measurement configurations, and environmental conditions. The two methods are cross-validated on a stationary test stand and the non-contact resonance method is used to study the web tension distribution within a commercial roll-to-roll system.</div><div><br></div>
18

Etude du comportement thermique et thermomécanique des récepteurs solaires sous haut flux radiatif / Study of the thermomechanical behavior of a ceramic solar absorber submitted to high solar flux

Leray, Cedric 21 February 2017 (has links)
Dans le contexte énergétique qui se profile, la production d’électricité par voie solaire thermodynamique s’avère une solution prometteuse, que ce soit pour des considérations économiques, d’échelle de production ou environnementales. Une voie d’amélioration du rendement des centrales solaires à tour consiste à utiliser des cycles thermodynamiques à haut rendement type cycles combinés. Cela nécessite de pouvoir fournir un fluide de travail pressurisé à très haute température (10bar et 1000°C minimum). Ce manuscrit présente les travaux menés afin de développer et de viabiliser un concept d’absorbeur solaire surfacique modulaire en céramique (carbure de silicium) capable de répondre à ces exigences. Le choix du carbure de silicium s’est imposé pour sa résistance aux hautes températures et aux problèmes d’oxydation. Cependant, l’utilisation d’une céramique comme matériau implique un risque de casse des modules. Les céramiques sont en effet fragiles lorsqu’elles sont soumises à des contraintes de traction. C’est la connaissance et la maitrise de ce risque qui fait l’objet de cette étude. L’approche adoptée combine le développement d’outils numériques et d’études expérimentales réalisées sur le site de la centrale solaire Thémis (Targassonne, 66, France). La méthodologie desimulation développée permet de prédire le comportement thermique et le comportement mécanique de l’absorbeur. Ceci permet de réduire les risques encourus par l’absorbeur et d’en connaitre les performances. Cette méthodologie a été éprouvée à l’aide des résultats expérimentaux. / For the future, using thermodynamical solar power plant seems to be a good solution to ensure electrical production. Solar tower plants are able to produce electricity in significant amount, are environmentally friendly and economically competitive. One way to increase the yield of these plants is using high efficiency thermodynamical cycles, like combined cycle. That requires to providing a working fluid at high temperature and high pressure (10bar and 1000°C at least). This PHD thesis presents the works performed to develop and enhance a concept of modular plate solar ceramic absorber that can ensure the required air production. We chose the silicon carbide as material due to its resistance to high temperatures and oxidation problems. The drawback is ceramic modules are weak to traction stresses. The study focuses on the knowledge and the control of this phenomenon. This work combines the developments of numerical tools and experimental studies performed at Thémis power plant (Targassonne, 66, FRANCE). The numerical method permits simulations to predict the thermal behavior and the mechanical behavior of a solar module absorber. It allows the reduction of the mechanical stresses undergone by solar receiver and the prediction of its performances. This methodology was tested using experimental results.
19

Étude thermomécanique avancée de différents types d’enrobés recyclés tièdes avec additifs / Advanced thermomechanical study of different types of warm recycled asphalt with additives

Pham, Nguyen Hoang 12 December 2014 (has links)
Cette thèse s’inscrit dans le cadre d’une collaboration entre le Laboratoire Génie Civil et Bâtiment (LGCB)/Laboratoire de Tribologie et Dynamique des Systèmes (LTDS) et l’entreprise Arkema, l’entreprise routière Malet, l’Agence de l’Environnement et de la Maîtrise de l’Énergie (ADEME). L’objectif de la thèse est l’étude du comportement thermomécanique des enrobés bitumineux, et spécifiquement les enrobés tièdes avec et sans agrégat d’enrobé (RAP, Reclaimed Asphalt Pavement), dans le but de prévoir leur durée de vie et d’optimiser leur dimensionnement dans un contexte de développement durable.Sept types d’enrobés bitumineux sont étudiés. Les enrobés diffèrent par leur procédé de fabrication, le pourcentage de RAP, les additifs et le pourcentage d’additif utilisé. Deux types de fabrications sont étudiées : à chaud (Hot Mix –HM) qui sert de référence et tièdes (Warm Mix –WM). Trois pourcentages de RAP sont considérés : 0%, 30% et 50%. Deux types d’additifs fournis par ARKEMA sont utilisés, ETIMA (E) et ETIMA-BIO (B), avec deux pourcentages, 0% et 0.4%. L’utilisation des enrobés tièdes contribue à réduire considérablement la consommation d’énergie, l’impact sanitaire et l’impact environnemental. D’autre part, l’ajout des RAP dans les enrobés permet d’augmenter le taux de recyclage des matières non renouvelables. Ces innovations participent à la prise en compte des enjeux du développement durable et de la préservation de l’environnement.Quatre types d’essais ont été réalisés. Ce sont : l’essai de module complexe, l’essai de fatigue, l’essai de retrait thermique empêché (TSRST) et l’essai de propagation d’ondes. Dans le domaine du comportement viscoélastique linéaire, les essais de module complexe sont réalisés sur une large gamme de températures (de -25°C à 45°C) et de fréquences (de 0.03Hz à 10Hz). Chaque test est dupliqué. Les résultats sont modélisés à l’aide du modèle analogique 2S2P1D qui a été développé au laboratoire LGCB de l’ENTPE. Ce modèle permet de modéliser correctement le comportement tridimensionnel viscoélastique linéaire des enrobés. Ensuite, le comportement en fatigue est étudié grâce à des essais de fatigue. Pour chaque matériau, quatre ou cinq éprouvettes sont testées. Quatre critères sont utilisés pour évaluer la durée de vie des matériaux. Puis, le comportement à basse température est caractérisé à l’aide de l’essai de retrait thermique empêché (TSRST). Pour chaque matériau, trois éprouvettes sont testées. Enfin, des essais de propagation d’ondes sont réalisés. La méthode de détermination du temps de vol des ondes « P » et des ondes « S » ainsi que la méthode Impact Résonance sont utilisées. Ces essais fournissent des mesures non destructives et faciles à réaliser. A partir de ces méthodes, on peut calculer les valeurs de modules et de coefficients de Poisson des matériaux.Soulignons que les essais réalisés permettent d’obtenir certain des paramètres utilisés pour le dimensionnement des chaussées. Un résultat essentiel de l’étude est la bonne performance des enrobés tièdes contenant des agrégats d’enrobés (RAP). / This PhD dissertation is part of the collaboration between the French Agency for Environment and Energy Management (ADEME), the companies Arkema and Malet and the Ecole Nationale de Travaux Publics de l’Etat (ENTPE). The aim of this dissertation is to study the thermo-mechanical behavior of asphalt mixes, specifically warm mix asphalts with and without Reclaimed Asphalt Pavement (RAP) in order to predict their fatigue life and to optimize their design by targeting sustainable development. Seven types of asphalt mixes are studied. They differ in their mixing method, RAP content, additives used and their content. Two types of mixing methods are studied: Hot Mix Asphalt (HMA), which serves as a reference, and Warm Mix Asphalt (WMA). Three RAP contents are considered: 0%, 30% and 50%. Two types of additives provided by Arkema are used : ETIMA (E) and ETIMA-BIO (B) with two contents for each of them (0% and 0.4%). The use of warm mix asphalt helps significantly reducing both energy consumption and the impact on health and environment. These innovations are significant contributions with respect to issues of sustainable development and environmental preservation. Four types of laboratory tests were performed: complex modulus tests, fatigue tests, Thermal Stress Restrained Specimen Tests (TSRST) and wave propagation tests. In the Linear ViscoElastic (LVE) behavior domain, complex modulus tests were performed on a wide range of temperatures (from -25°C to 45°C) and frequencies (from 0.03 Hz to 10 Hz). For each material, two specimens were tested. Values of complex modulus and complex Poisson’s ratio were obtained and modeled using the 2S2P1D analogies model, developed in the Laboratoire Génie Civil et Bâtiement (LGCB) of ENTPE. It was observed that this model can correctly simulate the LVE behavior of asphalt mixes. Fatigue behavior was studied by analyzing fatigue tests results. For each material, four or five specimens were tested. Four different failure criteria were used in order to evaluate fatigue life of materials. Low temperature behavior of materials was characterized using TSRST. For each material, three replicates were performed. Finally, wave propagation tests were carried out. The method to determine the time of flight of « P » and « S » waves and the impact resonance method are presented. These tests provide a non-destructive method to characterize materials, which easy to perform. Using those methods, values of complex modulus and Poisson's ratio of tested materials can be estimated. It is to be underlined that the tests performed in this PhD allow to obtaining some parameters which are required for asphalt pavement design. An important result obtained in this study is that warm mix asphalt combined with RAP and additives (ETIMA ou ETIMA-BIO) could perform as well as hot mix asphalt.

Page generated in 0.0864 seconds