• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 879
  • 177
  • 107
  • 68
  • 57
  • 32
  • 31
  • 26
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 1677
  • 1677
  • 220
  • 213
  • 209
  • 183
  • 178
  • 166
  • 156
  • 141
  • 137
  • 134
  • 132
  • 128
  • 126
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
711

NANOFILTRATION MEMBRANES FROM ORIENTED MESOPOROUS SILICA THIN FILMS

Wooten, Mary K 01 January 2014 (has links)
The synthesis of mesoporous silica thin films using surfactant templating typically leads to an inaccessible pore orientation, making these films not suitable for membrane applications. Recent advances in thin film synthesis provide for the alignment of hexagonal pores in a direction orthogonal to the surface when templated on chemically neutral surfaces. In this work, orthogonal thin film silica membranes are synthesized on alumina supports using block copolymer poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123) as the template. The orthogonal pore structure is achieved by sandwiching membranes between two chemically neutral surfaces, resulting in 90 nm thick films. Solvent flux of ethanol through the membrane demonstrates pore accessibility and suggests a silica pore size of approximately 10 nm. The permeability of ions and fluorescently tagged solutes (ranging from 4,000 to 70,000 Da) is used to demonstrate the membrane’s size selectivity characteristics. A size cut off occurs at 69,000 Da for the model protein BSA. By functionalizing the silica surface with a long chained alkyl group using n-decyltriethoxysilane (D-TEOS), the transport properties of the membranes can be altered. Contact angle measurements and FTIR results show the surface to be very hydrophobic after functionalization. Solvent flux of ethanol through the silica thin film membrane is similar before and after functionalization, but water flux decreases. Thin film silica membranes show much promise for applications in catalysis, bio-sensing, and affinity separations.
712

Synthesis and Characterization of Amorphous Carbide-based Thin Films

Folkenant, Matilda January 2015 (has links)
In this thesis, research on synthesis, structure and characterization of amorphous carbide-based thin films is presented. Crystalline and nanocomposite carbide films can exhibit properties such as high electrical conductivity, high hardness and low friction and wear. These properties are in many cases structure-related, and thus, within this thesis a special focus is put on how the amorphous structure influences the material properties. Thin films within the Zr-Si-C and Cr-C-based systems have been synthesized by magnetron sputtering from elemental targets. For the Zr-Si-C system, completely amorphous films were obtained for silicon contents of 20 at.% or higher. Modeling of these films, as well as experimental results suggest that the films exhibit a network-type structure where the bond types influence the material properties. Higher hardness and resistivity were observed with high amounts of covalent Si-C bonds. Several studies were performed in the Cr-C-based systems. Cr-C films deposited in a wide composition range and with substrate temperatures of up to 500 °C were found to be amorphous nanocomposites, consisting of amorphous chromium carbide (a-CrCx) and amorphous carbon (a-C) phases. The carbon content in the carbidic phase was determined to about 30-35 at.% for most films. The properties of the Cr-C films were very dependent of the amount of a-C phase, and both hardness and electrical resistivity decreased with increasing a-C contents. However, electrochemical analysis showed that Cr-C films deposited at higher substrate temperature and with high carbon content exhibited very high oxidation resistance. In addition, nanocomposite films containing Ag nanoparticles within an amorphous Cr-C matrix were studied in an attempt to improve the tribological properties. No such improvements were observed but the films exhibited a better contact resistance than the corresponding binary Cr-C films. Furthermore, electrochemical analyses showed that Ag nanoparticles on the surface affected the formation of a stable passive film, which would make the Cr-C/Ag films less resilient to oxidation than the pure Cr-C films.
713

Characterization of Al2O3 as CIGS surface passivation layer in high-efficiency CIGS solar cells

Joel, Jonathan January 2014 (has links)
In this thesis, a novel method of reducing the rear surface recombination in copper indium gallium (di) selenide (CIGS) thin film solar cells, using atomic layer deposited (ALD) Al2O3, has been evaluated via qualitative opto-electrical characterization. The idea stems from the silicon (Si) industry, where rear surface passivation layers are used to boost the open-circuit voltage and, hence, the cell efficiency. To enable a qualitative assessment of the passivation effect, Al/Al2O3/CIGS metal-oxide-semiconductor (MOS) devices with 3-50 nm oxide thickness, some post-deposition treated (i.e. annealed), have been fabricated. Room temperature capacitance-voltage (CV) measurements on the MOS devices indicated a negative fixed charge density (Qf) within the Al2O3 layer, resulting in a reduced CIGS surface recombination due to field effect passivation. After annealing the Al2O3 passivation layers, the field effect passivation appeared to increase due to a more negative Qf. After annealing have also indications of a lower density of interface traps been seen, possibly due to a stronger or activated chemical passivation. Additionally, the feasibility of using ALD Al2O3 to passivate the surface of CIGS absorber layers has also been demonstrated by room temperature photoluminescence (PL) measurements, where the PL intensity was about 20 times stronger for a structure passivated with 25 nm Al2O3 compared to an unpassivated structure. The strong PL intensity for all passivated devices suggests that both the chemical and field effect passivation were active, also for the passivated as-deposited CIGS absorbers.
714

Growth and structure of an ultrathin tin oxide film on Rh (111)

Varga, P., Schmid, M., Muto, S., Tatsumi, K., Matsui, T., Tajima, D., Yuhara, J. 01 1900 (has links)
No description available.
715

Silicon Nanoparticle Synthesis and Modeling for Thin Film Solar Cells

Albu, Zahra 30 April 2014 (has links)
Nanometer-scale silicon shows extraordinary electronic and optical properties that are not available for bulk silicon, and many investigations toward applications in optoelectronic devices are being pursued. Silicon nanoparticle films made from solution are a promising candidate for low-cost solar cells. However, controlling the properties of silicon nanoparticles is quite a challenge, in particular shape and size distribution, which effect device performance. At present, none of the solar cells made from silicon nanoparticle films have an efficiency exceeding the efficiency of those based on crystalline silicon. To address the challenge of controlling silicon nanoparticle properties, both theoretical and experimental investigations are needed. In this thesis, we investigate silicon nanoparticle properties via quantum mechanical modeling of silicon nanoparticles and synthesis of silicon nanoparticle films via colloidal grinding. Silicon nanoparticles with shapes including cubic, rectangular, ellipsoidal and flat disk are modeled using semi-empirical methods and configuration interaction. Their electronic properties with different surface passivation were also studied. The results showed that silicon nanoparticles with hydrogen passivation have higher HOMOLUMO gaps, and also the HOMO-LUMO gap depends on the size and the shape of the particle. In contrast, silicon nanoparticles with oxygen passivation have a lower HOMO-LUMO gap. Raman spectroscopy calculation of silicon nanoparticles show peak shift and asymmetric broadening similar to what has been observed in experiment. Silicon nanoparticle synthesis via colloidal grinding was demonstrated as a straightforward and inexpensive approach for thin film solar cells. Data analysis of silicon particles via SEM images demonstrated that colloidal grinding is effective in reducing the Si particle size to sub-micron in a short grinding time. Further increases in grinding time, followed by filtration demonstrated a narrowing of the Si particle size and size-distribution to an average size of 70 nm. Raman spectroscopy and EDS data demonstrated that the Si nanoparticles contain oxygen due to exposure to air during grinding. I-V characterization of the milled Si nanoparticles showed an ohmic behaviour with low current at low biases then Schottky diode behaviour or a symmetric curve at large biases. / Graduate / 0794 / 0544 / zahraalbu@hotmail.com
716

Synthesis and Characterization of Multifunctional Carbide- and Boride-based Thin Films

Nedfors, Nils January 2014 (has links)
This thesis present research on synthesis, microstructure, and properties of carbide- and boride- based thin films. The films have been synthesized by dc magnetron sputtering, and their microstructures have been characterized mainly by X-ray photoelectron spectroscopy (XPS), X-ray diffraction, and transmission electron microscopy.  One of the main objectives with this research has been to evaluate the thin films potential as materials for sliding electrical contact applications and this have influenced, which properties that have been evaluated. Co-sputtered Nb-C films have a microstructure comprising of nanocrystalline NbCx  (nc-NbCx) grains embedded in a matrix of amorphous C (a-C). A thinner a-C matrix form in the Nb-C films compared to the well-studied Ti-C system. As a consequence, the Nb-C films have a higher hardness and conductivity than previously studied Ti-C sputtered under similar conditions. The promising electrical contact properties are attained for reactively sputtered Nb-C films under industrial conditions, at deposition rates two orders of magnitude higher. A reduction in crystallinity is seen when Si is added to the Nb-C films and amorphous films forms at Si content > 25 at.%. The alloying of Si was however not beneficial for the electrical contact properties. Substoichiometric CrB2-x (B/Cr = 1.5) and NbB2-x (B/Nb = 1.8) films are achieved when deposited from MeB2 targets. Boron segregates to grain boundaries forming a B-rich tissue phase. This result in superhardness for the NbB2-x films (42 ± 4 GPa) as well as a low friction attributed to the formation of a boric acid film. Carbon forms a solid solution in the MeB2 grains as well as segregating to grain boundaries forming an amorphous BCx (a-BCx) phase when alloyed to CrB2-x and NbB2-x films. The formation of the a-BCx phase drastically improves the electrical contact resistance of the NbB2-x films. However, the mechanical properties are degraded, which result in a high friction and wear rate. It was in TEM studies of the metastable amorphous structures for the Nb-Si-C films found that the electron beam induces crystallization. Hence, great care is required when studying these types of metastable structures.
717

Silicon Nanoparticle Synthesis and Modeling for Thin Film Solar Cells

Albu, Zahra 30 April 2014 (has links)
Nanometer-scale silicon shows extraordinary electronic and optical properties that are not available for bulk silicon, and many investigations toward applications in optoelectronic devices are being pursued. Silicon nanoparticle films made from solution are a promising candidate for low-cost solar cells. However, controlling the properties of silicon nanoparticles is quite a challenge, in particular shape and size distribution, which effect device performance. At present, none of the solar cells made from silicon nanoparticle films have an efficiency exceeding the efficiency of those based on crystalline silicon. To address the challenge of controlling silicon nanoparticle properties, both theoretical and experimental investigations are needed. In this thesis, we investigate silicon nanoparticle properties via quantum mechanical modeling of silicon nanoparticles and synthesis of silicon nanoparticle films via colloidal grinding. Silicon nanoparticles with shapes including cubic, rectangular, ellipsoidal and flat disk are modeled using semi-empirical methods and configuration interaction. Their electronic properties with different surface passivation were also studied. The results showed that silicon nanoparticles with hydrogen passivation have higher HOMOLUMO gaps, and also the HOMO-LUMO gap depends on the size and the shape of the particle. In contrast, silicon nanoparticles with oxygen passivation have a lower HOMO-LUMO gap. Raman spectroscopy calculation of silicon nanoparticles show peak shift and asymmetric broadening similar to what has been observed in experiment. Silicon nanoparticle synthesis via colloidal grinding was demonstrated as a straightforward and inexpensive approach for thin film solar cells. Data analysis of silicon particles via SEM images demonstrated that colloidal grinding is effective in reducing the Si particle size to sub-micron in a short grinding time. Further increases in grinding time, followed by filtration demonstrated a narrowing of the Si particle size and size-distribution to an average size of 70 nm. Raman spectroscopy and EDS data demonstrated that the Si nanoparticles contain oxygen due to exposure to air during grinding. I-V characterization of the milled Si nanoparticles showed an ohmic behaviour with low current at low biases then Schottky diode behaviour or a symmetric curve at large biases. / Graduate / 0794 / 0544 / zahraalbu@hotmail.com
718

Ionenstrahlgestützte Schichtabscheidung von Ag und Ge - Zusammenhang zwischen den Eigenschaften des Ionenstrahls, der schichtbildenden Teilchen und der abgeschiedenen Schichten

Feder, René 05 January 2015 (has links) (PDF)
Das Ziel der vorliegenden Arbeit war die erstmalige, umfassende und systematische Untersuchung aller Teilprozesse bei der ionenstrahlgestützten Schichtabscheidung (IBSD). Silber (Metall) und Germanium (Halbleiter) wurden als Beispielsysteme ausgewählt, da auf Grund der unterschiedlichen Eigenschaften der beiden Materialien prinzipielle Unterschiede in der Zerstäubung und Schichtabscheidung zu erwarten sind. Zur Bearbeitung der wissenschaftlichen Fragestellung erfolgte eine Charakterisierung der Primärteilchen sowie der zerstäubten und gestreuten Teilchen bezüglich ihrer Energie und Winkelverteilung sowie eine Charakterisierung der abgeschiedenen Schichten bezüglich ihrer Schichtdicke, Komposition, Struktur, Oberflächentopographie, elektrischen und optischen Eigenschaften unter Variation der Art (Argon und Xenon), der Energie (0.5 keV–1.5 keV) und des Einfallswinkels der Primärteilchen relativ zur Targetnormalen (0°–60°) sowie des betrachteten polaren Emissionswinkels (-40°–90°). Die dargestellten Ergebnisse demonstrieren den systematischen Einfluss der primären Prozessparameter (Ionenart, Energie, Einfallswinkel und Emissionswinkel) auf die Eigenschaften der zerstäubten und gestreuten Teilchen und auf die Eigenschaften der erzeugten Silber- und Germaniumschichten, wobei die Eigenschaften der abgeschiedenen Schichten mit den Eigenschaften der schichtbildenden Teilchen korrelieren. Bei der IBSD von Silber führt der Einfluss der hochenergetischen zerstäubten und gestreuten Teilchen auf die Schichten zu kleineren mittleren Korngrößen und damit zu höheren spezifischen Widerständen und Variationen in den optischen Eigenschaften. Die Untersuchungen zur IBSD von Germanium zeigen, dass der Einbau von Prozessgas in die abgeschiedenen Schichten mit der Anzahl der gestreuten Primärionen, deren Energie hoch genug für eine Implantation in die Schicht ist, korreliert werden kann.
719

Selectively Transparent and Conducting Photonic Crystals and their Potential to Enhance the Performance of Thin-film Silicon-based Photovoltaics and Other Optoelectronic Devices

O'Brien, Paul 26 July 2013 (has links)
The byproducts of human engineered energy production are increasing atmospheric CO2 concentrations well above their natural levels and accompanied continual decline in the natural reserves of fossil fuels, necessitates the development of green energy alternatives. Solar energy is attractive because it is abundant, can be produced in remote locations and consumed on site. Specifically, thin-film silicon-based photovoltaic (PV) solar cells have numerous inherent advantages including their availability, non-toxicity, and they are relatively inexpensive. However, their low-cost and electrical performance depends on reducing their thickness to as great an extent as possible. This is problematic because their thickness is much less than their absorption length. Consequently, enhanced light trapping schemes must be incorporated into these devices. Herein, a transparent and conducting photonic crystal (PC) intermediate reflector (IR), integrated into the rear side of the cell and serving the dual function as a back-reflector and a spectral splitter, is identified as a promising method of boosting the performance of thin-film silicon-based PV. To this end a novel class of PCs, namely selectively transparent and conducting photonic crystals (STCPC), is invented. These STCPCs are a significant advance over existing 1D PCs because they combine intense wavelength selective broadband reflectance with the transmissive and conductive properties of sputtered ITO. For example, STCPCs are made to exhibit Bragg-reflectance peaks in the visible spectrum of 95% reflectivity and have a full width at half maximum that is greater than 200nm. At the same time, the average transmittance of these STCPCs is greater than 80% over the visible spectrum that is outside their stop-gap. Using wave-optics analysis, it is shown that STCPC intermediate reflectors increase the current generated in micromorph cells by 18%. In comparison, the more conventional IR comprised of a single homogeneous transparent conducting oxide film increases the current generated in the same cell by just 8%. Moreover, the benefit of using STCPC IRs in building integrated photovoltaics is also presented.
720

Selectively Transparent and Conducting Photonic Crystals and their Potential to Enhance the Performance of Thin-film Silicon-based Photovoltaics and Other Optoelectronic Devices

O'Brien, Paul 26 July 2013 (has links)
The byproducts of human engineered energy production are increasing atmospheric CO2 concentrations well above their natural levels and accompanied continual decline in the natural reserves of fossil fuels, necessitates the development of green energy alternatives. Solar energy is attractive because it is abundant, can be produced in remote locations and consumed on site. Specifically, thin-film silicon-based photovoltaic (PV) solar cells have numerous inherent advantages including their availability, non-toxicity, and they are relatively inexpensive. However, their low-cost and electrical performance depends on reducing their thickness to as great an extent as possible. This is problematic because their thickness is much less than their absorption length. Consequently, enhanced light trapping schemes must be incorporated into these devices. Herein, a transparent and conducting photonic crystal (PC) intermediate reflector (IR), integrated into the rear side of the cell and serving the dual function as a back-reflector and a spectral splitter, is identified as a promising method of boosting the performance of thin-film silicon-based PV. To this end a novel class of PCs, namely selectively transparent and conducting photonic crystals (STCPC), is invented. These STCPCs are a significant advance over existing 1D PCs because they combine intense wavelength selective broadband reflectance with the transmissive and conductive properties of sputtered ITO. For example, STCPCs are made to exhibit Bragg-reflectance peaks in the visible spectrum of 95% reflectivity and have a full width at half maximum that is greater than 200nm. At the same time, the average transmittance of these STCPCs is greater than 80% over the visible spectrum that is outside their stop-gap. Using wave-optics analysis, it is shown that STCPC intermediate reflectors increase the current generated in micromorph cells by 18%. In comparison, the more conventional IR comprised of a single homogeneous transparent conducting oxide film increases the current generated in the same cell by just 8%. Moreover, the benefit of using STCPC IRs in building integrated photovoltaics is also presented.

Page generated in 0.0709 seconds