• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 178
  • 22
  • 19
  • 15
  • 8
  • 6
  • 6
  • 5
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 299
  • 299
  • 137
  • 123
  • 55
  • 38
  • 37
  • 36
  • 32
  • 31
  • 31
  • 30
  • 30
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Analysis of Synthetic Cannabinoids by Direct Analysis in Real Time Quadrupole Time-of-Flight Mass Spectrometry and Gas Chromatography Quadrupole Time-of-Flight Mass Spectrometry

Torbet, Tyler S 01 June 2015 (has links)
The aim of this study was to investigate the utility of direct analysis in real time quadrupole time-of-flight mass spectrometry and gas chromatography quadrupole time-of-flight mass spectrometry in the analysis of 162 different synthetic cannabinoids. Direct analysis in real time quadrupole time-of-flight mass spectrometry is shown to be a rapid and accurate analytical method for synthetic cannabinoids. Spectra can be generated with less than 1.5 ng of the drug in under a minute and be successfully searched against previously generated ESI-QTOF libraries in most cases (118/130 drugs tested) as well as can also be applied to the identification of synthetic cannabinoids in a mixture. Gas chromatography quadrupole time-of-flight mass spectrometry, while requiring a much longer analysis time, is shown to accurately distinguish all but 19 compounds (140/159). These two instruments have proven to be viable alternatives in synthetic cannabinoid analysis and will greatly benefit forensic laboratories.
212

Concentration and derivatization in silicone rubber traps for mass spectrometric and gas chromatographic analysis of air and water pollutants

Fernandes-Whaley, Maria Jose 06 January 2009 (has links)
Estrogens, alkylphenols and bisphenol-A, enter the environment through waste water systems and waste disposal of manufactured products e.g. detergents, paints, polycarbonates and flameretardants. These analytes disrupt the endocrine function of living organisms affecting their reproductive health and those of future generations. Gas phase low molecular- mass aldehydes and amines are typically eye, nose, and throat irritants. Formaldehyde is classified as a probable human carcinogen. Given their negative impact on human health it is urgent to monitor pollutants at extremely low levels in both air and water. The aqueous pollutants are often concentrated using solid phase extraction cartridges or liquid-liquid extraction followed by derivatization. Methods that can most effectively and selectively pre-concentrate aldehydes and amines involve in situ derivatization. Unfortunately, the derivatizing reagents as well as their associated solvents or adsorbents, are responsible for problems encountered with these methods. Polydimethylsiloxane (PDMS) has emerged as the ideal concentration and reaction medium for trace analysis. However the expensive commercial devices such as SPME and SBSE both require the samples to be returned to the laboratory for concentration. Due to the open tubular nature of the PDMS multichannel trap (MCT), developed in our laboratory, it is ideally suited for on-site and online sampling. The MCTs have a high analyte capacity owing to the large volume of PDMS available for concentration. The derivatization reaction can be performed in situ providing a “onepot concentration and reaction device”. This allows for reduced risk of contamination of / or losses of the sample and a sampling method that can cater for both air and water samples. To demonstrate the versatility of the PDMS MCT, two approaches for concentration in PDMS were investigated in this study, namely, 1) the on-line concentration and in situ derivatization of volatile polar analytes from air followed by REMPI-TOFMS detection, and 2) the concentration of phenolic lipophilic analytes from water requiring derivatization prior to analysis by GC/MS. 1) Analyte and derivatizing reagent were simultaneously introduced into the PDMS trap using a ypress- fit connector. The reaction occurs in situ followed by thermal desorption using a thermal modulator array alone or in conjunction with a thermal desorption unit. The aldehydes and amine derivatives were successfully detected by the REMPI-TOFMS. Reaction efficiencies were determined at room temperature without catalysts. Formaldehyde yielded a low reaction/concentration efficiency of 41 % with phenylhydrazine in PDMS, while acetaldehyde, acrolein and crotonal displayed much improved values of 92, 61 and 74 % respectively. Both propylamine and butylamine yielded 28 % reaction/concentration efficiency with benzaldehyde in the PDMS matrix. Detection limits obtained with this technique were significantly lower than the permissible exposure limits set by the Occupational Safety and Health Administration. It should be noted that the detection limits were not determined by actual measurement but by extrapolation from a larger signal. 2) Aqueous analytes were concentrated in the PDMS MCT using a gravity flow rate of ~50 ìl/min. The trap was dried and 5 ìl derivatizing reagent added. At room temperature and without the presence of a catalyst, the reaction of alkylphenols with trifluoroacetic acid anhydride in the PDMS matrix was 100% complete after 5 minutes. Bisphenol-A reacted less than 50 % to completion during this period, but the amount of derivative formed remained constant. This study revealed that extraction efficiencies of the alkylphenols and bisphenol-A off the PDMS trap have poor batch-tobatch repeatability indicating that the PDMS matrix was not homogenous. For two different PDMS batches: tert-octylphenol displayed an extraction efficiency of 70 and 79%, nonylphenol displayed 84 and 43% while Bisphenol-A displayed 10 and 26% respectively. The thermally desorbed derivatives were analysed by GC/MS. Despite background contamination in the desorption unit, detection limits were at the ppt level. Detection limits were not determined by actual measurement but by extrapolation from a larger signal. / Thesis (PhD)--University of Pretoria, 2009. / Chemistry / unrestricted
213

MALDI-TOF MS for identification of Aspergillus species : A pilot study preceding possible implementation of MALDI-TOF MS to complement morphological assessment

Lindström, Christel January 2020 (has links)
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized the field of bacterial diagnostics and is also used for routine analysis in smaller clinical laboratories. For identification of moulds, pre-analytical steps are more complicated and time consuming than for bacteria, and the choice of reference library has a big impact on the utility of MALDI-TOF MS. The aim of this study was to investigate if MALDI-TOF MS is applicable for identification of moulds belonging to the genus Aspergillus at the hospital laboratory in Gävle. Therefore, strains belonging to the genus Aspergillus and Penicillium, were analysed with MALDI-TOF MS after 2, 4 and 7 days of incubation. Two different extraction protocols were used and compared. Mass spectra were compared to reference spectra in two different databases: MSI-2 and RUO Compass library/BDAL (Bruker). Of the strains included, 97 % were correctly identified to species complex level with MSI-2. Only 25 % were identified to species level with RUO Compass library/BDAL (Bruker). However, totally 56 % were correctly identified to species complex level if a lower score value limit than recommended for identification, were applied. Significantly raised score values were observed with one of the protein extraction protocols used. Although, in most cases, the strains were considered identified to species complex level with either method. This pilot study conveys the feasibility of MALDI-TOF MS for identification of Aspergillus species in a clinical laboratory. While there are still issues to address, applying MALDI-TOF MS has the potential to allow for quicker and more precise identification, also in this specific clinical setting.
214

Development of separation method for analysis of oligonucleotides using LC-UV/MS

Ida, Björs January 2018 (has links)
Introduction Oligonucleotides are short nucleic acid chains, usually 19-27mer long. They bind to their corresponding chain, making a specific inhibition possible. In pharmaceuticals, this can be used to inhibit the expression of a gene or protein of interest. Oligonucleotides are usually analyzed based on separation using both hydrophobic and ion-exchange properties. In this project, the possibility to use a mixed-mode column to separate these oligonucleotides and their impurities were explored. Method Liquid chromatography is used as the separation method and the method of detection is both mass spectrometry and UV. Three different columns are evaluated; C18, DNAPac RP, and mixed-mode RP/WAX. Results and discussion Different compositions of mobile phases and gradients are evaluated based on a literature study. Triethylamine, triethylammonium acetate, ammonium formate, hexafluoroisopropanol is used along with both methanol and acetonitrile. Phosphate buffer is evaluated on LC-UV. The results from the C18 column displays a good separation of the oligonucleotides, whilst the DNAPac RP is not as sufficient using the same mobile phases. The mixed-mode column provides good separation and selectivity using phosphate buffer and UV detection. Conclusion Mixed-mode column has the potential to be used for separation of oligonucleotides and one future focus would be to make the mobile phase compatible with mass spectrometry. Phosphate buffer and UV detection seems to be the go-to mobile phase using mixed-mode column even though MS is a more powerful tool for the characterization and identification of oligonucleotides. This provides a hint about the challenge in making the mobile phase MS compatible.
215

The Architecture Design and Hardware Implementation of Communications and High-Precision Positioning System

January 2020 (has links)
abstract: Within the near future, a vast demand for autonomous vehicular techniques can be forecast on both aviation and ground platforms, including autonomous driving, automatic landing, air traffic management. These techniques usually rely on the positioning system and the communication system independently, where it potentially causes spectrum congestion. Inspired by the spectrum sharing technique, Communications and High-Precision Positioning (CHP2) system is invented to provide a high precision position service (precision ~1cm) while performing the communication task simultaneously under the same spectrum. CHP2 system is implemented on the consumer-off-the-shelf (COTS) software-defined radio (SDR) platform with customized hardware. Taking the advantages of the SDR platform, the completed baseband processing chain, time-of-arrival estimation (ToA), time-of-flight estimation (ToF) are mathematically modeled and then implemented onto the system-on-chip (SoC) system. Due to the compact size and cost economy, the CHP2 system can be installed on different aerial or ground platforms enabling a high-mobile and reconfigurable network. In this dissertation report, the implementation procedure of the CHP2 system is discussed in detail. It mainly focuses on the system construction on the Xilinx Ultrascale+ SoC platform. The CHP2 waveform design, ToA solution, and timing exchanging algorithms are also introduced. Finally, several in-lab tests and over-the-air demonstrations are conducted. The demonstration shows the best ranging performance achieves the ~1 cm standard deviation and 10Hz refreshing rate of estimation by using a 10MHz narrow-band signal over 915MHz (US ISM) or 783MHz (EU Licensed) carrier frequency. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2020
216

Interactions of slow multiply charged ions with large, free radiosensitizing metallic nanoparticles / Interaction d'ions multichargés lents avec des nanoparticules métalliques radiosensibilisantes

Mika, Arkadiusz 19 December 2017 (has links)
Cette thèse est consacrée à l'étude de l'interaction d'ions multichargés avec des particules métalliques de taille nanométrique. Ce travail a eu pour but d'étudier les processus fondamentaux ainsi que d'éclairer leur rôle comme radio-sensibilisants dans le traitement de cancer par hadronthérapie. Le nouveau dispositif développé dans ce cadre consiste en une source d'agrégats de type magnétron, d'une chambre de dépôt afin de permettre la caractérisation de la taille des nanoparticules neutres par analyse microscopique, et d'un spectromètre de masse par temps de vol capable de détecter des systèmes positivement chargés jusqu'à une masse de 50 000 ua. Les études de collisions ont été réalisées avec des agrégats de Bi (2 nm ; 200 atomes) et de Ag (6 nm ; 5000 atomes). Dans le deux cas, le processus de capture multiélectronique crée un système multichargé. Dans le cas du Bi, une grande partie fragmente par la fission asymétrique émettant des petits fragments. Dans le cas des particules plus grandes (Ag), les systèmes multichargés ne fragmentent pas, par contre des petits fragments sont aussi observés mais ils sont le produit de la pulvérisation de la nano-surface lors de collisions pénétrantes. En perspective, des expériences seront réalisées avec des nanoparticules métalliques fonctionnalisées ainsi que le comptage des électrons émis lors de la collision. / This thesis presents a study of the interaction of multiply charged ions with metallic nano-sized particles both in the context of fundamental processes and possible applications as radiosensitizers in nanoparticle-enhanced hadrontherapy. For this purpose a new experimental set-up has been constructed based on a magnetron-discharge cluster source, a deposition chamber for analyzing the size of neutral nanoparticles with AFM and TEM techniques and a time-of-flight mass spectrometer able to detect positively charged particles with masses up to 50 000 amu. Collision studies were performed with Bi clusters of 2nm in diameter, containing 200 atoms, as well as Ag nanoparticles (6 nm, 5000 atoms). In both cases multi-electron capture leads to the formation of multiply charged systems. In the Bi case a large fraction fragments by asymmetric fission emitting small singly charged fragments. In the case of large Ag nanoparticles multiply charged systems are stable. However, small size fragments are formed due to sputtering of the nano-surface in penetrating collisions. Future experiments will be performed with functionalized metal nanoparticles, aiming to count the number of electrons emitted after ion collisions.
217

Bestimmung des neutroneninduzierten Spaltquerschnitts von Pu(242)

Kögler, Toni 23 January 2017 (has links)
Präzise neutroneninduzierte Spaltquerschnitte von Actinoiden wie den Plutoniumisotopen haben für die Entwicklung zukünftiger Transmutationstechnologien eine große Bedeutung. Die Unsicherheiten des Pu(242)-Spaltquerschnitts im schnellen Bereich des Spektrums betragen derzeit etwa 21 %. Aktuelle Sensitivitätsstudien haben gezeigt, dass nur eine Reduzierung dieser Unsicherheiten auf unter 5% verlässliche neutronenphysikalische Simulationen zulässt. Diese anspruchsvolle Aufgabe konnte im Rahmen der vorliegenden Arbeit an der Neutronenfugzeitanlage nELBE durchgeführt werden. Dünne, homogene und großfächige Actinoiden-Proben wurden dem Helmholtz-Zentrum Dresden-Rossendorf innerhalb des TRAKULA-Verbundprojektes zur Verfügung gestellt. Eingesetzt in eine neu entwickelte Spaltionisationskammer ermöglichten sie eine akkurate Bestimmung des Pu(242)- Spaltquerschnitts relativ zu U(235). Die Flächendichten der Plutoniumschichten wurden anhand der spontanen Spaltrate von Pu(242) bestimmt. Aufwändige Teilchentransportsimulationen (durchgeführt mit Geant 4, MCNP 6 und FLUKA) wurden genutzt, um die auftretende Neutronenstreuung zu korrigieren. Die gewonnenen Ergebnisse sind im Rahmen ihrer Unsicherheiten in guter Übereinstimmung mit aktuellen Kerndatenevaluierungen.:1 Einleitung 1.1 Partitionierung und Transmutation 1.2 Die Bedeutung von Pu(242) für P&T 1.3 Bisherige Experimente 1.4 Evaluierungen 1.5 Gliederung dieser Arbeit 2 Spaltwahrscheinlichkeit 2.1 Statistisches Modell und Compoundkern 2.2 Kernreaktionsrechnungen 3 Die Neutronenfugzeitanlage nELBE 4 Spaltionisationskammern 4.1 Die nELBE Spaltkammern 4.1.1 Actinoidenschichten 4.1.2 Aufbau 4.1.3 Gasversorgung 4.1.4 Optimierung des elektrischen Feldes 4.1.5 Simulationen von Impulshöhenverteilungen 4.2 Die PTB U(235) Spaltkammer H19 5 Experimente zur Spaltung von Pu(242) 5.1 Experimentelle Bestimmung neutroneninduzierter Spaltquerschnitte 5.2 Messaufbau 5.3 Datenaufnahme und -verarbeitung 5.4 Datenanalyse 5.4.1 Bestimmung der Spontanspaltrate 5.4.2 Bestimmung des neutroneninduzierten Spaltquerschnitts von Pu(242) 5.5 Ergebnisse und Diskussion 5.5.1 Diskussion 5.5.2 Unsicherheiten 5.5.3 Vergleich mit Kernreaktionsrechnungen 6 Zusammenfassung und Ausblick Anhang A.1 Depositionszelle A.2 Neutronenfugzeitanlagen A.3 Spaltfragmentverteilungen mit GEF A.4 Experimenteller Aufbau A.5 Aufbau der Datenaufnahme/-verarbeitung A.5.1 Verwendete Elektronik A.6 Stabilität der Datenaufnahme A.7 Konsistenzbetrachtung der Querschnittsbestimmung Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Liste der verwendeten Akronyme Publikationen / Neutron induced fssion cross sections of actinides like the Pu-isotopes are of relevance for the development of nuclear transmutation technologies. For Pu(242), current uncertainties are of around 21%. Sensitivity studies show that the total uncertainty has to be reduced to below 5% to allow for reliable neutron physics simulations. This challenging task was performed at the neutron time-of-fight facility of the new German National Center for High Power Radiation Sources at HZDR, Dresden. Within the TRAKULA project, thin, large and homogeneous deposits of U(235) and Pu(242) have been produced successfully. Using two consecutively placed fssion chambers allowed the determination of the neutron induced fssion cross section of Pu(242) relative to U(235). The areal density of the Plutonium targets was calculated using the measured spontaneous fssion rate. Experimental results of the fast neutron induced fssion of Pu(242) acquired at nELBE will be presented and compared to recent experiments and evaluated data. Corrections addressing the neutron scattering are discussed by using results of different neutron transport simulations (Geant 4, MCNP 6 and FLUKA).:1 Einleitung 1.1 Partitionierung und Transmutation 1.2 Die Bedeutung von Pu(242) für P&T 1.3 Bisherige Experimente 1.4 Evaluierungen 1.5 Gliederung dieser Arbeit 2 Spaltwahrscheinlichkeit 2.1 Statistisches Modell und Compoundkern 2.2 Kernreaktionsrechnungen 3 Die Neutronenfugzeitanlage nELBE 4 Spaltionisationskammern 4.1 Die nELBE Spaltkammern 4.1.1 Actinoidenschichten 4.1.2 Aufbau 4.1.3 Gasversorgung 4.1.4 Optimierung des elektrischen Feldes 4.1.5 Simulationen von Impulshöhenverteilungen 4.2 Die PTB U(235) Spaltkammer H19 5 Experimente zur Spaltung von Pu(242) 5.1 Experimentelle Bestimmung neutroneninduzierter Spaltquerschnitte 5.2 Messaufbau 5.3 Datenaufnahme und -verarbeitung 5.4 Datenanalyse 5.4.1 Bestimmung der Spontanspaltrate 5.4.2 Bestimmung des neutroneninduzierten Spaltquerschnitts von Pu(242) 5.5 Ergebnisse und Diskussion 5.5.1 Diskussion 5.5.2 Unsicherheiten 5.5.3 Vergleich mit Kernreaktionsrechnungen 6 Zusammenfassung und Ausblick Anhang A.1 Depositionszelle A.2 Neutronenfugzeitanlagen A.3 Spaltfragmentverteilungen mit GEF A.4 Experimenteller Aufbau A.5 Aufbau der Datenaufnahme/-verarbeitung A.5.1 Verwendete Elektronik A.6 Stabilität der Datenaufnahme A.7 Konsistenzbetrachtung der Querschnittsbestimmung Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Liste der verwendeten Akronyme Publikationen
218

Characterization of Secondary Organic Aerosol Precursors Using Two-Dimensional Gas Chromatography with Time of Flight Mass Spectrometry (GC×GC/TOFMS)

Roskamp, Melissa Jordan 05 September 2013 (has links)
The oxidation of volatile organic compounds (VOCs) plays a role in both regional and global air quality through the formation of secondary organic aerosols (SOA). More than 1000TgC/yr of non-methane VOCs are emitted from biogenic sources (significantly greater than from anthropogenic sources). Despite this magnitude and potential importance for air quality, the body of knowledge around the identities, quantities and oxidation processes of these compounds is still incomplete (e.g., Goldstein & Galbally, 2007; Robinson et al., 2009). Two-dimensional gas chromatography paired with time-of-flight mass spectrometry (GC×GC/TOFMS) is a powerful analytical technique which is explored here for its role in better characterizing biogenic VOCs (BVOCs) and thus SOA precursors. This work presents measurements of BVOCs collected during two field campaigns and analyzed using GC×GC/TOFMS. The first campaign, the Bio-hydro-atmosphere Interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS), took place in a Ponderosa pine forest in Colorado. The second campaign, Particle Investigations at a Northern Ozarks Tower: NOx, Oxidant, Isoprene Research (PINOT NOIR) Study, was conducted in the Ozark region of Missouri. Tens to hundreds of BVOCs were quantified in each set of samples, including primary emissions, atmospheric oxidation products, stress indicators and semi-volatile leaf surface compounds. These findings highlight that there is a largely uncharacterized diversity of BVOCs in ambient samples. Our findings demonstrate that GC×GC can distinguish between compounds with the same molecular weight and similar structures, which have highly variable potentials for production of SOA (Lee et al., 2006). This work represents some of the first analysis of ambient BVOCs with this technology, which is anticipated to contribute greatly to characterization of atmospheric SOA precursors and ultimately, regional and global modeling of SOA and fine particulate matter.
219

Chemical analysis of hazardous substances in permanent tattoo inks available on the market / Kemisk analys av skadliga substanser i permanenta tatueringsfärger tillgängliga på marknaden

Bevin, Anna, Lay, An Na, Ullmark, Daniel, Hagman, Jessika January 2020 (has links)
As permanent tattoos are becoming more popular and common, an increased number of allergic reactions to tattoos is reported. The purpose of this project was to analyze tattoo inks for hazardous substances, and whether they comply to current Swedish and European legislative requirements. The tattoo inks were qualitatively analyzed for pigments, and quantitatively analyzed for metals. A total of 73 tattoo inks were collected from various sources such as a tattoo ink supplier, online retailers, and provided directly from tattoo artists. The labels of each tattoo ink bottle were inspected to investigate their compliance with the Council of Europe and the Swedish Medical Products Agency. Matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-ToF-MS) was used to qualitatively analyze 20 selected tattoo inks for different pigments. Inductively coupled plasma mass spectrometry (ICP-MS) was used to quantitatively analyze trace metals in 70 of the samples. A large majority (90%) of the tested samples violated the requirements and criteria in the European resolution ResAP 2008(1), such as information on name and address of the manufacturer, minimum date of durability, sterility, batch number, and storage. Patch and allergy testing were incorrectly recommended for many samples in a way that is not accepted by dermatologists. In a worst-case scenario, this testing could be a sensitizing step. Also, it can not prevent future allergic reactions from occurring or provide any juridical insurance. Only one brand, World Famous, fulfilled the requirements for labeling for six of the seven samples (one sample failed due to a faulty declared pigment). The brands Tang Dragon and Dynamic did not fulfill any of the requirements listed in ResAP 2008(1). The list of ingredients was incorrect for all samples from Tang Dragon (bought prior to 2019 online). Also, six of the other 50 samples from different brands (World Famous, Intenze, Fusion Tattoo Ink, Eternal Ink, Solid Ink) declared at least one pigment incorrectly in their ingredients list. 25% of the declared and theoretically detectable pigments were detected by means of MALDI-ToF-MS, whereas the other pigments were either absent or below the limit of detection. Future analyses should include an MS/MS analysis. Polyethylene glycol (PEG) was identified qualatively in 15 of the 20 samples analyzed with MALDI-ToF-MS but was not listed in any of the ingredients lists. ICP-QQQ-MS is a very sensitive technique and could both detect and verify the presence of all metal-containing pigments, as well as the level of impurities. Copper was clearly more present in green and blue colors, regardless of the brand. The metal content was evidently dependent on the brand for arsenic, aluminum, bismuth, chromium, nickel, zinc, and strontium. Elevated levels of barium and strontium (partially very high levels: up to 727 mg/kg barium and up to 8.06 g/kg strontium) were found in several samples. High amounts of aluminum (4 to 11,0 g/kg) and titanium (as judged from white precipitates and ingredients lists) were present in most samples. Nickel (0.1 to 41 mg/kg) and chromium (0.1 to 139 mg/kg) were also present in the samples. Some other impurities were also present (arsenic – 3.8 mg/kg, mercury – 1.6 mg/kg, and lead – 5.4 mg/kg for one sample, respectively). Known sensitizing pigments were declared and partially confirmed by MALDI-ToF-MS in 17 of 53 samples of the brands Radiant Colour, Eternal Ink, Fusion Tattoo Ink, and Kuro Sumi. Four samples (from Intenze, Eternal Ink, and Kuro Sumi) also declared pigments listed as non-suitable substance according to the European Commission regulation on cosmetic products from 2009.
220

[pt] DESSORÇÃO IÔNICA INDUZIDA POR ÍONS ENERGÉTICOS PESADOS EM GELOS ASTROFÍSICOS: H2O, C2H2, C2H6 E N2O / [en] IONIC DESORPTION INDUCED BY ENERGETIC HEAVY IONS ON ASTROPHYSICAL ICES: H2O, C2H2, C2H6 AND N2O

26 January 2023 (has links)
[pt] Um espectrômetro de massa PDMS-252Cf-TOF (Time-of-Flight Plasma Dessorption Mass Spectrometry) foi usado para analisar amostras condensadas de água pura e misturas de H2O:C2H2, H2O:C2H6 e H2O:N2O, em temperaturas entre 10 e 100 K. Os íons dessorvidos devido ao impacto foram identificados e seus rendimentos de dessorção determinados. Observa-se que a distribuição desses rendimentos em função da massa dos íons pode ser descrita pela soma de duas exponenciais. Este resultado sugere fortemente que ocorrem dois processos de formação de agregados: um, via emissão direta de fragmentos do sólido e outro, via recombinação de fragmentos na fase gasosa. Para H2O puro, os principais agregados dessorvidos são: ((H2O)nH2O+, (H2O)nH3O+, On +, (H2O)nO−, (H2O)nOH− e On −. Para misturas de gelos H2O:C2H2 e H2O:C2H6, são observadas as séries (C2H2)n + e (C2H6)n +. Para H2O:N2O, as séries Nn +, (O)nN2 +, (O)nN2−, (O)nN4−, e (N2)nNO+ são as mais abundantes. A Teoria do Funcional da Densidade (DFT), no nível B3LYP/6-31G, foi usada para calcular a estabilidade molecular dos íons moleculares secundários emitidos. Cálculos para as estruturas C2Hm + (com m = 1 a 6) geraram 26 estruturas estáveis. As curvas de estabilidade por massa/carga obtidas são comparadas com aquelas obtidas experimentalmente para os rendimentos de dessorção por massa/carga para os mesmos íons. Tal metodologia é utilizada para prever as conformações mais prováveis dos íons dessorvidos. / [en] A PDMS-252Cf-TOF (Time-of-Flight Plasma Desorption Mass Spectrometry) mass spectrometer was used to analyze condensed samples of pure water and mixtures of H2O:C2H2, H2O:C2H6 and H2O:N2O, at temperatures between 10 and 100 K. The ions desorbed due to the projectile impact were identified and their desorption yields determined. It is observed that the yield distributions as a function of the mass of the ions can be described by the sum of two exponentials. This result strongly suggests that two processes of aggregate formation occur: one, via direct emission of fragments from the solid and the other, via recombination of fragments in the gas phase. For pure H2O, the main desorbed aggregates are: ((H2O)nH2O+, (H2O)nH3O+, On +, (H2O)nO−, (H2O)nOH− and On −. For mixtures of ices H2O:C2H2 and H2O:C2H6, the series (C2H2)n + and (C2H6)n + are observed. For H2O:N2O, the series Nn +, (O)nN2 +, (O)nN2−, (O)nN4−, and (N2)nNO+ are the most abundant. Density Functional Theory (DFT), at the B3LYP/6-31G level, was used to calculate the molecular stability of emitted secondary molecular ions. Calculations for the C2Hm + structures (with m = 1 to 6) generated 26 stable structures. The stability curves per mass/charge obtained are compared with those obtained experimentally for the desorption yields per mass/charge for the same ions. Such methodology is used to predict the most likely conformations of the desorbed ions.

Page generated in 0.0478 seconds