• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 6
  • 4
  • 1
  • Tagged with
  • 46
  • 27
  • 24
  • 19
  • 19
  • 14
  • 13
  • 13
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Les R-loops et leurs conséquences sur l'expression génique chez Escherichia coli.

Baaklini, Imad 02 1900 (has links)
Des variations importantes du surenroulement de l’ADN peuvent être générées durant la phase d’élongation de la transcription selon le modèle du « twin supercoiled domain ». Selon ce modèle, le déplacement du complexe de transcription génère du surenroulement positif à l’avant, et du surenroulement négatif à l’arrière de l’ARN polymérase. Le rôle essentiel de la topoisomérase I chez Escherichia coli est de prévenir l’accumulation de ce surenroulement négatif générée durant la transcription. En absence de topoisomérase I, l’accumulation de ce surenroulement négatif favorise la formation de R-loops qui ont pour conséquence d’inhiber la croissance bactérienne. Les R-loops sont des hybrides ARN-ADN qui se forment entre l’ARN nouvellement synthétisé et le simple brin d’ADN complémentaire. Dans les cellules déficientes en topoisomérase I, des mutations compensatoires s’accumulent dans les gènes qui codent pour la gyrase, réduisant le niveau de surenroulement négatif du chromosome et favorisant la croissance. Une des ces mutations est une gyrase thermosensible qui s’exprime à 37 °C. La RNase HI, une enzyme qui dégrade la partie ARN d’un R-loop, peut aussi restaurer la croissance en absence de topoisomérase I lorsqu’elle est produite en très grande quantité par rapport à sa concentration physiologique. En présence de topoisomérase I, des R-loops peuvent aussi se former lorsque la RNase HI est inactive. Dans ces souches mutantes, les R-loops induisent la réponse SOS et la réplication constitutive de l’ADN (cSDR). Dans notre étude, nous montrons comment les R-loops formés en absence de topoisomérase I ou RNase HI peuvent affecter négativement la croissance des cellules. Lorsque la topoisomérase I est inactivée, l’accumulation d’hypersurenroulement négatif conduit à la formation de nombreux R-loops, ce qui déclenche la dégradation de l’ARN synthétisé. Issus de la dégradation de l’ARNm de pleine longueur, des ARNm incomplets et traductibles s’accumulent et causent l’inhibition de la synthèse protéique et de la croissance. Le processus par lequel l’ARN est dégradé n’est pas encore complètement élucidé, mais nos résultats soutiennent fortement que la RNase HI présente en concentration physiologique est responsable de ce phénotype. Chose importante, la RNase E qui est l’endoribonuclease majeure de la cellule n’est pas impliquée dans ce processus, et la dégradation de l’ARN survient avant son action. Nous montrons aussi qu’une corrélation parfaite existe entre la concentration de RNase HI, l’accumulation d’hypersurenroulement négatif et l’inhibition de la croissance bactérienne. Lorsque la RNase HI est en excès, l’accumulation de surenroulement négatif est inhibée et la croissance n’est pas affectée. L’inverse se produit Lorsque la RNase HI est en concentration physiologique. En limitant l’accumulation d’hypersurenroulement négatif, la surproduction de la RNase HI prévient alors la dégradation de l’ARN et permet la croissance. Quand la RNase HI est inactivée en présence de topoisomérase I, les R-loops réduisent le niveau d’expression de nombreux gènes, incluant des gènes de résistance aux stress comme rpoH et grpE. Cette inhibition de l’expression génique n’est pas accompagnée de la dégradation de l’ARN contrairement à ce qui se produit en absence de topoisomérase I. Dans le mutant déficient en RNase HI, la diminution de l’expression génique réduit la concentration cellulaire de différentes protéines, ce qui altère négativement le taux de croissance et affecte dramatiquement la survie des cellules exposées aux stress de hautes températures et oxydatifs. Une inactivation de RecA, le facteur essentiel qui déclenche la réponse SOS et le cSDR, ne restaure pas l’expression génique. Ceci démontre que la réponse SOS et le cSDR ne sont pas impliqués dans l’inhibition de l’expression génique en absence de RNase HI. La croissance bactérienne qui est inhibée en absence de topoisomérase I, reprend lorsque l’excès de surenroulement négatif est éliminé. En absence de RNase HI et de topoisomérase I, le surenroulement négatif est très relaxé. Il semble que la réponse cellulaire suite à la formation de R-loops, soit la relaxation du surenroulement négatif. Selon le même principe, des mutations compensatoires dans la gyrase apparaissent en absence de topoisomérase I et réduisent l’accumulation de surenroulement négatif. Ceci supporte fortement l’idée que le surenroulement négatif joue un rôle primordial dans la formation de R-loop. La régulation du surenroulement négatif de l’ADN est donc une tâche essentielle pour la cellule. Elle favorise notamment l’expression génique optimale durant la croissance et l’exposition aux stress, en limitant la formation de R-loops. La topoisomérase I et la RNase HI jouent un rôle important et complémentaire dans ce processus. / Important fluctuations of DNA supercoiling occur during transcription in the frame of the “twin supercoiled domain” model. In this model, transcription elongation generates negative and positive supercoiling respectively, upstream and downstream of the moving RNA polymerase. The major role of bacterial topoisomerase I is to prevent the accumulation of transcription-induced negative supercoiling. In its absence, the accumulation of negative supercoiling triggers R-loop formation which inhibits bacterial growth. R-loops are DNA/RNA hybrids formed during transcription when the nascent RNA hybridizes with the template strand thus, leaving the non-template strand single stranded. In cells lacking DNA topoisomerase I, a constant and selective pressure for the acquisition of compensatory mutations in gyrase genes reduces the negative supercoiling level of the chromosome and allows growth. One of these mutations is a thermosensitive gyrase expressed at 37 °C. The overexpression of RNase HI, an enzyme that degrades the RNA moiety of an R-loop, is also able to correct growth inhibition in absence of topoisomerase I. In the presence of topoisomerase I, R-loops can also form when RNase HI is lacking. In these mutants, R-loop formation induces SOS and constitutive stable DNA replication (cSDR). In our study, we show how R-loops formed in cells lacking topoisomerase I or RNase HI can affect bacterial growth. When topoisomerase I is inactivated, the accumulation of hypernegative supercoiling inhibits growth by causing extensive R-loop formation which, in turn, can lead to RNA degradation. As a result of RNA degradation, the accumulation of truncated and functional mRNA instead of full length ones, is responsible for protein synthesis inhibition that alters bacterial growth. The mechanism by which RNA is degraded is not completely clear but our results strongly suggest that RNase HI is involved in this process. More importantly, the major endoribonuclease, RNase E, is not involved in RNA degradation because RNA is degraded before its action. We show also that there is a perfect correlation between RNase HI concentration, the accumulation of hypernegative supercoiling and bacterial growth inhibition. When RNase HI is in excess, no accumulation of hypernegative supercoiling and growth inhibition are observed. The opposite is true when RNase HI is at its wild type level. By preventing the accumulation of hypernegative supercoiling, the overproduction of RNase HI inhibits extensive R-loop formation and RNA degradation, thus, allowing growth. In absence of RNase HI (rnhA) and in presence of topoisomerase I, R-loops are also responsible for an inhibition in gene expression, including stress genes such as rpoH and grpE. The inhibition of gene expression is not related to RNA degradation as seen in absence of topoisomerase I but it is rather related to a reduction in gene expression. In absence of RNase HI, the diminution of genes expression is responsible for a reduction in the cellular level of proteins, which negatively affects bacterial growth and bacterial survival to heat shock and oxydative stress. Additional mutations in RecA, the protein that activates SOS and cSDR after R-loop formation in rnhA, do not correct this phenotype in rnhA. Thus, SOS and cSDR are not directly involved in the inhibition of gene expression in the absence of RNase HI. In absence of topoisomerase I, growth inhibition resumes when hypernegative supercoiling is reduced. When compared to wild type strains, DNA is very relaxed in absence of RNase HI and topoisomerase I. It seems that R-loop formation induces the relaxation of negatively supercoiled DNA. All this strongly supports the idea that negative supercoiling plays an important role in R-loop formation. Finally, our work shows how essential negative supercoiling regulation is for cell physiology. By preventing R-loop formation, regulation of negative supercoiling allows optimal gene expression, which is crucial for cellular growth and for stress survival. Both topoisomerase I and RNase HI play an important and complementary role in this process.
42

Rôle des topoisomérases de type IA dans la ségrégation des chromosomes chez Escherichia coli

Tanguay, Cynthia 12 1900 (has links)
Les topoisomérases I (topA) et III (topB) sont les deux topoisomérases (topos) de type IA d’Escherichia coli. La fonction principale de la topo I est la relaxation de l’excès de surenroulement négatif, tandis que peu d’information est disponible sur le rôle de la topo III. Les cellules pour lesquelles les deux topoisomérases de type IA sont manquantes souffrent d’une croissance difficile ainsi que de défauts de ségrégation sévères. Nous démontrons que ces problèmes sont majoritairement attribuables à des mutations dans la gyrase qui empêchent l’accumulation d’excès de surenroulement négatif chez les mutants sans topA. L’augmentation de l’activité de la gyrase réalisée par le remplacement de l’allèle gyrB(Ts) par le gène de type sauvage ou par l’exposition des souches gyrB(Ts) à une température permissive, permet la correction significative de la croissance et de la ségrégation des cellules topos de type IA. Nous démontrons également que les mutants topB sont hypersensibles à l’inhibition de la gyrase par la novobiocine. La réplication non-régulée en l’absence de topA et de rnhA (RNase HI) augmente la nécessité de l’activité de la topoisomérase III. De plus, en l’absence de topA et de rnhA, la surproduction de la topoisomérase III permet de réduire la dégradation importante d’ADN qui est observée en l’absence de recA (RecA). Nous proposons un rôle pour la topoisomérase III dans la ségrégation des chromosomes lorsque l’activité de la gyrase n’est pas optimale, par la réduction des collisions fourches de réplication s’observant particulièrement en l’absence de la topo I et de la RNase HI. / E. coli possesses two type IA topoisomerases (topos), namely topo I (topA) and topo III (topB). The major function of topo I is the relaxation of excess negative supercoiling. Much less is known about the function of topo III. Cells lacking both type IA topos suffer from severe chromosome segregation and growth defects. We show that these defects are mostly related to the presence of gyrase mutations that prevent excess negative supercoiling in topA null mutants. Indeed, increasing gyrase activity by spontaneous mutations, by substituting a gyrB(Ts) allele for a wild-type one or by exposing cells carrying the gyrB(Ts) allele to permissive temperatures, significantly corrected the growth and segregation defects of cells lacking type IA topo activity. We also found that topB mutants are hypersensitive to novobiocin due to gyrase inhibition. Our data also suggest that unregulated replication occurring in the absence of topA and rnhA (RNase HI) exacerbates the need for topo III activity. Moreover, when topA and rnhA were absent, we found that topo III overproduction reduced the extensive DNA degradation that took place in the absence of recA (RecA). All together, our results lead us to propose a role for topo III in chromosome segregation when gyrase activity is suboptimal, thus reducing replication forks collapse, especially when replication is unregulated due to the absence of topo I and RNase HI.
43

Les R-loops et leurs conséquences sur l'expression génique chez Escherichia coli

Baaklini, Imad 02 1900 (has links)
No description available.
44

Étude de l'effet de l'antibiothérapie et de l'anticoagulothérapie sur le développement de la sclérodermie expérimentale chez la souris

Goulet, Philippe-Olivier 08 1900 (has links)
La sclérose systémique (SSc) est une maladie auto-immune chronique incurable caractérisée par une présentation clinique complexe et hétérogène. Notre laboratoire a développé un modèle murin de fibrose pulmonaire et cutanée qui est induit par l’immunisation répétitive avec des cellules dendritiques chargées avec des peptides de la topoisomérase I, et qui partage de nombreuses caractéristiques avec la SSc humaine. Premièrement, nous avons caractérisé la maladie expérimentale quant à sa persistance à long terme (objectif 1) et son caractère progressif (objectif 2). Une cascade de coagulation dérégulée est impliquée dans le développement de la fibrose dans la SSc. La thrombine, un médiateur clé de la coagulation, semble contribuer à ce processus. Deuxièmement, nous avons étudié l’efficacité d’un inhibiteur de la thrombine, i.e. dabigatran, dans ce modèle (objectif 3). Le microbiote intestinal semble jouer un rôle déterminant dans plusieurs pathologies, y compris les maladies auto-immunes. Troisièmement, nous avons évalué l’effet de la manipulation du microbiote des souris par l’administration de streptomycine (objectif 4). Les souris immunisées développent une maladie persistante et la fibrose observée est précédée d’une phase inflammatoire. Le dabigatran aggrave la fibrose pulmonaire et cutanée lorsqu’administré durant la période inflammatoire et n’a aucun effet protecteur durant la phase fibrotique. La manipulation du microbiote par la streptomycine aggrave l’atteinte pulmonaire lorsque l’antibiothérapie est donnée en début de vie et exacerbe l’atteinte cutanée lorsqu’administrée à l’âge adulte. Notre modèle expérimental représente donc un outil important pour évaluer différentes approches thérapeutiques pour la SSc de par sa persistance et son caractère progressif. En se basant sur nos résultats, le dabigatran ne semble pas constituer un choix thérapeutique adéquat pour traiter la fibrose chez les patients atteints de SSc. L’exposition à la streptomycine à certaines périodes de la vie affecte différentiellement le développement et les manifestations cliniques de la maladie expérimentale. / Systemic sclerosis (SSc) is an incurable and chronic autoimmune disease characterized by a complex and heterogeneous clinical presentation. Our laboratory has developed a mouse model of lung and skin fibrosis that shares many features with human SSc, and is induced by repeated immunization with dendritic cells loaded with peptides of topoisomerase I. First, the long term persistence (objective 1) and progressive nature (objective 2) of this experimental disease model was characterized. A dysregulated coagulation cascade is implicated in the development of fibrosis in SSc. Thrombin, a key mediator of coagulation, appears to contribute to this process. Next, the efficacy of dabigatran, a thrombin inhibitor, to ameliorate lung and skin fibrosis was studied in this model (objective 3). Intestinal microbiota appears to play a key role in several diseases including autoimmune diseases. Finally, the effect of manipulating gut microbiota by administration of streptomycin on disease pathogenesis was evaluated in this model (objective 4). Immunized mice developed persistent fibrosis that was preceded by an inflammatory phase. Dabigatran aggravated pulmonary and skin fibrosis when administered during the inflammatory period and was not protective when given during the fibrotic phase. Manipulation of intestinal microbiota by streptomycin aggravated lung fibrosis when it was given early in life and exacerbated skin disease when administered in adulthood. Our model of experimental SSc with progressive and persistent disease represents an important tool to evaluate different therapeutic approaches for SSc. Furthermore, our results caution against the use of dabigatran as a therapeutic option to treat fibrosis in patients with SSc. Exposure to streptomycin for certain periods of life differentially affects the development and clinical manifestations of experimental SSc.
45

L’identification de nouvelles activités chez les complexes Polycomb les lient aux structures d’ADN non-canoniques

Alecki, Célia 06 1900 (has links)
Les protéines du groupe Polycomb (PcG) sont des protéines essentielles et conservées, qui forment deux complexes principaux, PRC1 et PRC2, qui sont recrutés au niveau de la chromatine et qui répriment stablement l’expression génique. Chez Drosophila melanogaster, les complexes Polycomb sont recrutés à des éléments d’ADN appelés éléments de réponse Polycomb (PREs) pour réprimer la transcription. PREs sont des éléments mémoires permutables qui peuvent maintenir la répression ou l’expression génique. Malgré des dizaines d’années d’étude, des questions fondamentales sur le fonctionnement du système PcG subsistent. 1) Comment les protéines PcG sont recrutées aux PREs uniquement lors du contexte développemental approprié, et comment les PREs peuvent conduire à la fois à l’activation et à la répression stable. 2) Comment les complexes PcG répriment la transcription, et si cela implique de nouvelles activités biochimiques et interactions. 3) Comment la répression dépendante des PcG peut-elle être propagé à travers le cycle cellulaire. La recherche de nouvelles activités biochimiques pour les complexes PcG pouvant répondre à ces questions fait l’objet de cette thèse. Les PREs sont transcrits en ARN qui pourraient donner la spécificité de contexte pour recruter les protéines PcG. Nous avons supposé que des R-loops puissent se former aux PREs, et être reconnues par les complexes Polycomb, ce que vous avons testé dans le chapitre 2. Nous avons identifié les séquences formant des R-loops dans des embryons et une lignée cellulaire de Drosophila melanogaster, et nous avons trouvé que ~30% des PREs forment des R-loops. Nous avons découvert que les PREs ayant formé des R-loops ont une plus forte probabilité d’être liés par les protéines PcG in vivo et in vitro. PRC2 lie des milliers d’ARN in vivo, mais aucune fonction claire n’y a été associée. En utilisant des expériences in vitro, nous avons identifié une activité d’invasion de brins pour PRC2 qui induit la formation d’hybride ARN-ADN, la partie principale d’une R-loop. Dans ce chapitre, nous avons trouvé que les PREs forment des R-loops, et sont impliquées dans le recrutement des protéines PcG qui induisent la répression génique stable. Nous avons découvert une activité d’invasion de brins pour PRC2 qui pourrait impliquer ce complexe Polycomb dans la formation de R-loops in vivo. Dans le chapitre 3, nous avons identifié une activité similaire à celle de la topoisomérase I associée avec PRC1 et la région C-terminale de sa sous-unité PSC (PSC-CTR). PRC1 et PSC-CTR peuvent relaxer un plasmide surenroulé négativement et ajouter des supertours négatifs à un plasmide relaxé en absence de topoisomérase. Cette activité suggère que la régulation de la topologie de l’ADN puisse être un nouveau mécanisme utilisé par les complexes PcG. PRC1 peut résoudre les R-loops formées sur un ADN négativement surenroulé in vitro. Une fonction possible pour cette activité de topoisomérase peut être la régulation des R-loops, dont la stabilité dépend à la fois de la séquence d’ADN et de la topologie de l’ADN environnant, in vivo. Dans cette thèse, nous avons identifié de nouvelles activités chez les complexes PcG : une activité d’invasion de brins pour PRC2 et une activité similaire à celle des topoisomérases pour PRC1. Ces deux activités impliquent les complexes PcG dans la formation et la résolution de R-loops. De plus, ces deux complexes peuvent reconnaitre les R-loops et sont recrutés aux PREs ayant formé ces structures. En conclusion, nous avons identifié de nouvelles activités pour les complexes Polycomb PRC1 et PRC2 qui les lient à la formation, la reconnaissance et la résolution de R-loops. / Polycomb group (PcG) proteins are conserved, essential proteins, which assemble in two main complexes, PRC1 and PRC2, which are targeted to chromatin and stably repress gene expression. In Drosophila melanogaster, Polycomb complexes are targeted to DNA elements called Polycomb response elements (PREs) to repress transcription. PREs are switchable memory elements that can maintain either gene repression or gene activation. Despite decades of study, fundamental questions about how the PcG system functions remain. These include: 1) how PcG proteins are targeted to PREs only in the appropriate developmental context, and how PREs can mediate both stable activation and repression; 2) how PcG complexes repress transcription, and whether it involves novel biochemical mechanisms and interactions; 3) how PcG repression can be propagated through cell cycles. The search for new biochemical activities for PcG complexes that may answer these questions is the topic of this thesis. PREs are transcribed into RNAs which may give the context specificity to recruit PcG proteins. We hypothesized that R-loops may form at PREs, and be recognized by PcG complexes, which we tested in Chapter 2. We identified R-loop forming sequences in Drosophila melanogaster embryos and tissue culture cells, and found that ~30% of the PREs form R-loops. We found that PREs which have formed R-loops are more likely to be bound by PcG proteins both in vivo and in vitro. PRC2 binds to thousand RNA in vivo but no clear activity has been associated with it. Using in vitro assays, we identified a strand exchange activity for PRC2 which induces the formation of RNA-DNA hybrid, the main part of an R-loop. In this chapter, we have found that PREs form R-loops and are involved in the targeting of PcG proteins which induce stable gene repression. We have discovered an RNA strand exchange activity for PRC2 which may involve this Polycomb complex in the formation of R-loops in vivo. In Chapter 3, we identified a type I topoisomerase-like activity associated with PRC1 and the C-terminal region of its subunit PSC (PSC-CTR). PRC1 and PSC-CTR can relax a negatively supercoiled plasmid and add negative coils to a relaxed plasmid in absence of topoisomerase. This activity suggests regulation of DNA topology may be a novel mechanism used by PcG complexes. PRC1 can resolve R-loops formed on negatively supercoiled DNA in vitro. One role for the topoisomerase-like activity may be to regulate R-loops, whose stability of depends on both the DNA sequence and the topology of the surrounding DNA, in vivo. In this thesis, we identified new activities for Polycomb group complexes: an RNA strand exchange activity for PRC2 and a topoisomerase-like activity for PRC1. Both activities link PcG complexes to the formation and resolution of R-loops. In addition, both complexes can recognize R-loops and are recruited to PREs which have formed these structures. In conclusion, we have identified new nucleic acid-based activities for the Polycomb complexes PRC1 and PRC2, which link them to the formation, recognition and resolution of R-loops.
46

Activation fibroblastique et nouvelles approches thérapeutiques dans la Sclérodermie systémique / Fibroblast activation and new therapeutic approaches in systemic sclerosis

Kavian, Niloufar 20 June 2012 (has links)
Le stress oxydant joue un rôle majeur dans le déclenchement et le développement de la sclérodermie systémique (ScS). Nous avons mis au point un modèle murin où la maladie est déclenchée par divers types de stress oxydant, puis nous avons exploré les différentes voies d'activation des fibroblastes sous l'effet des formes réactives de l'oxygène, afin de déterminer d'éventuelles cibles thérapeutiques. Pour apprécier les effets d’un stress oxydant chronique, des solutions contenant différents oxydants ont été injectées dans la peau de souris BALB/c et BALB/c SCID. Les solutions contenant le radical hydroxyl OH° ou HOCl ont induit une maladie caractérisée, comme la ScS diffuse, par une fibrose cutanée et viscérale, et des auto-anticorps anti-ADN topoisomérase-1. Les sérums de ces souris contenaient de grandes quantités de dérivés oxydés des protéines et induisaient la prolifération des fibroblastes et la production de formes réactives de l’oxygène par les cellules endothéliales. Une fibrose pulmonaire de moindre importance était induite chez les souris BALB/c SCID. Grâce à ce nouveau modèle murin de SSc, nous avons démontré que le stress oxydant était directement responsable des anomalies observées dans les fibroblastes, les cellules endothéliales et le système immunitaire. Nous avons ensuite utilisé ce modèle pour analyser les voies d’activation fibroblastique dans la ScS. Dans les fibroblastes des souris exposées à HOCl, on observe une dérégulation des voies des récepteurs Notch, des récepteurs aux cannabinoïdes, et des récepteurs au PDGF. On observe les mêmes dérégulations ex vivo dans les fibroblastes de patients atteints de SSc diffuse. Nous avons ainsi observé une amélioration clinique significative chez les souris sclérodermiques traitées avec un inhibiteur de l’activation de Notch, avec un agoniste des récepteurs aux cannabinoïdes, et avec des inhibiteurs de tyrosine-kinase ciblant le récepteur au PDGF. Puisque les fibroblastes sclérodermiques ont un phénotype activé et produisent de forts taux de formes réactives de l’oxygène, nous avons enfin mis à profit cette particularité pour induire l’apoptose sélective de ces cellules dans le derme des souris. Le trioxyde d’arsenic, molécule cytotoxique utilisée en thérapeutique humaine, augmente la production cellulaire de formes réactives de l’oxygène au-delà d’un seuil létal et induit ainsi l’apoptose des fibroblastes sclérodermiques. L’utilisation in vivo de cette molécule dans notre modèle murin prévient la fibrose cutanée et viscérale, et les anomalies endothéliales. Le trioxyde d’arsenic a un effet comparable dans le modèle murin de ScS associée à la réaction du greffon contre l’hôte en détruisant les lymphocytes T CD4+ alloréactifs activés et les cellules dendritiques plasmacytoïdes responsables de l’activation du système immunitaire. Les formes réactives de l’oxygène sont donc impliquées dans l’induction des lésions observées au cours de la ScS. Dans notre modèle, le rôle du système immunitaire intervient dans l'auto-entretien et l’extension systémique de la maladie. Le stress oxydant contribue à la dérégulation de diverses voies de signalisation dont les voies des récepteurs Notch, des récepteurs aux cannabinoïdes et du PDGF dans les fibroblastes. La modulation de ces voies permet d’obtenir une amélioration clinique chez les souris sclérodermiques, tout comme l’utilisation du trioxyde d’arsenic qui entraîne la délétion spécifique des fibroblastes sclérodermiques surpoduisant des formes réactives de l’oxygène. Le trioxyde d’arsenic montre également une efficacité intéressante dans le modèle de sclérodermie associée à la maladie du greffon contre l’hôte via la délétion des lymphocytes T CD4+ alloréactifs. / We defend the thesis that the oxidative stress plays a major role in the initiation and the development of systemic sclerosis. To demonstrate this thesis, we designed an original mouse model: BALB/c and BALB/SCID mice were injected intra-dermally with prooxidative agents, bleomycin or PBS for 6 weeks. Hypochlorite and hydroxyl radicals induced cutaneous and lung fibrosis in BALB/c mice, in association with anti-DNA topoisomerase-1 auto-antibodies that characterize human diffuse systemic sclerosis. Pulmonary fibrosis was less extensive in BALB/c SCID mice submitted to the same protocol. In this model of HOCl-induced systemic sclerosis, cutaneous fibroblasts display a hyperactivated phenotype that prompted us to investigate several pathways of cellular activation. The NOTCH pathway and the PGDF-receptor pathways were found upregulated in the skin of HOCl-mice. DAPT (a gamma secretase inhibitor that prevents NOTCH cleavage), Sunitinib (an inhibitor of PGDF-receptor phosphorylation), and WIN-55,212, an agonist of the cannabinoid receptors 1 and 2, dramatically improved the clinical, histological and biological signs of systemic sclerosis in the HOCl model.In our model as in patients with SSc, activated fibroblasts produce reactive oxygen species that exert an autocrine effect on their own proliferation and collagen synthesis. By analogy with tumor cells that undergo apoptosis upon cytotoxic treatment that triggers an oxidative stress beyond a lethal threshold, we showed that activated fibroblasts can be selectively killed by the cytotoxic molecule arsenic trioxide (As2O3) that generates intracellular ROS. In the mouse model of sclerodermatous-graft versus host disease (Scl-GVHD), daily intra-peritoneal injections of As2O3 abrogated the clinical symptoms (diarrhea, alopecia, vasculitis, fibrosis of the skin and visceral organs) and specifically induced the apoptosis of activated CD4+ T cells and plasmacytoid dendritic cells. Those data provide a rationale for the evaluation of As2O3 in the management of patients affected by systemic sclerosis or chronic GVHD.

Page generated in 0.0424 seconds