• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 158
  • 105
  • 10
  • 8
  • 8
  • 7
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 338
  • 338
  • 97
  • 85
  • 81
  • 78
  • 72
  • 72
  • 71
  • 66
  • 65
  • 55
  • 44
  • 42
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Topology optimization process for new designs of reconstruction plates used for bridging large mandibular defects

Lemón, Linn January 2016 (has links)
Loss of bone in the mandible as a result from for example resection of bone tumors or trauma, can in more complex cases be reconstructed using a reconstruction plate to provide stability between the remaining mandible stumps. Different studies on reconstruction plates present a fracture rate of 2.8-9.8 %. The rate of plate fracture and plate loosening increases the need to improve the design of the reconstruction plate. A useful tool to find new designs for structures is topology optimization. Topology optimization is a mathematical based method where it is possible to define an optimization problem for a specific load case. Based on the defined problem, the solver calculates the most appropriate design to reach the final goal. The aim of this work is to investigate, describe, and discuss how new designs for reconstruction plates used for bridging large mandibular defects can be achieved by using topology optimization as a tool.   Two software programs handling topology optimization from Altair Engineering were used: SimLab 14.0 and HyperMesh 14.0. Both of them uses the solver OptiStruct to solve the defined topology optimization problem. The topology optimization problem was defined to minimize the compliance of the structure with an upper limit of the allowed volume fraction used for the new design. Three different clenching tasks were examined: right unilateral clench, clenching in the intercuspal position, and incisal clench. All three load cases resulted in different designs, the designs were also affected by the initial amount of screws used, and by the defined value on the allowed thickness of the created parts in the new design. The results gave an initial understanding of topology optimization, and indicated the possibilities a design process with topology optimization has to achieve new designs for reconstruction plates used for large mandibular fractures.
42

Topology optimization for additive manufacture

Aremu, Adedeji January 2013 (has links)
Additive manufacturing (AM) offers a way to manufacture highly complex designs with potentially enhanced performance as it is free from many of the constraints associated with traditional manufacturing. However, current design and optimisation tools, which were developed much earlier than AM, do not allow efficient exploration of AM's design space. Among these tools are a set of numerical methods/algorithms often used in the field of structural optimisation called topology optimisation (TO). These powerful techniques emerged in the 1980s and have since been used to achieve structural solutions with superior performance to those of other types of structural optimisation. However, such solutions are often constrained during optimisation to minimise structural complexities, thereby, ensuring that solutions can be manufactured via traditional manufacturing methods. With the advent of AM, it is necessary to restructure these techniques to maximise AM's capabilities. Such restructuring should involve identification and relaxation of the optimisation constraints within the TO algorithms that restrict design for AM. These constraints include the initial design, optimisation parameters and mesh characteristics of the optimisation problem being solved. A typical TO with certain mesh characteristics would involve the movement of an assumed initial design to another with improved structural performance. It was anticipated that the complexity and performance of a solution would be affected by the optimisation constraints. This work restructured a TO algorithm called the bidirectional evolutionary structural optimisation (BESO) for AM. MATLAB and MSC Nastran were coupled to study and investigate BESO for both two and three dimensional problems. It was observed that certain parametric values promote the realization of complex structures and this could be further enhanced by including an adaptive meshing strategy (AMS) in the TO. Such a strategy reduced the degrees of freedom initially required for this solution quality without the AMS.
43

Design Space Exploration for Structural Aircraft Components : A method for using topology optimization in concept development

Schön, Sofia January 2019 (has links)
When building aircrafts, structural components must be designed for high strength, low cost, and easy assembly.To meet these conditions structural components are often based upon previous designs, even if a new component is developed.Refining previous designs can be a good way of preserving knowledge but can also limit the exploration of new design concepts. Currently the design process for structural aircraft components at SAAB is managed by design engineers. The design engineer is responsible for ensuring the design meets requirements from several different disciplines such as structural analysis, manufacturing, tool design, and assembly.Therefore, the design engineer needs to have good communication with all disciplines and an effective flow of information. The previous design is refined, it is then reviewed and approved by adjacent disciplines.Reviewing designs is an iterative process, and when several disciplines are involved it quickly becomes time consuming.Any time the design is altered it has to be reviewed once more by all disciplines to ensure the change is acceptable.So there is a need for further customizing the design concept to decrease the number of iterations when reviewing. Design Space Exploration DSE is a well known method to explore design alternatives before implementation and is used to find new concepts.This thesis investigates if DSE can be used to facilitate the design process of structural aircraft components and if it can support the flow of information between different disciplines.To find a suitable discipline to connect with design a prestudy is conducted, investigating what information affect structural design and how it is managed.The information flow is concluded in a schematic diagram where structural analysis is chosen as additional discipline. By using topology optimization in a DSE, design and structural analysis are connected.The design space can be explored with regards to structural constraints.The thesis highlights the possibilities of using DSE with topology optimization for developing structural components and proposes a method for including it in the design process.
44

Otimização topológica aplicada ao projeto de estruturas tradicionais e estruturas com gradação funcional sujeitas a restrição de tensão. / Topology optimization applied to the design of traditional structures and functionally graded structures subjected to stress constraint.

Stump, Fernando Viegas 18 May 2006 (has links)
Este trabalho apresenta a aplicação do Método de Otimização Topológica (MOT) considerando restrição de tensão mecânica em dois problemas de Engenharia: o projeto de estruturas mecânicas sujeitas a restrição de tensão e o projeto da distribuição de material em estruturas constituídas por Materiais com Gradação Funcional (MsGF). O MOT é um método numérico capaz de fornecer de forma automática o leiaute básico de uma estrutura mecânica para que esta atenda a um dado requisito de projeto, como o limite sobre a máxima tensão mecânica no componente. Os MsGF são materiais cujas propriedades variam gradualmente com a posição. Este gradiente de propriedades é obtido através da variação contínua da microestrutura formada por dois materiais diferentes. Neste trabalho o MOT foi implementado utilizando o modelo de material Solid Isotropic Microstructure with Penalization (SIMP) e o campo de densidades foi parametrizado utilizando a abordagem Aproximação Contínua da Distribuição de Material (ACDM). O modelo de material e utilizado em conjunto com um localizador de tensões, de modo a representar as tensões nas regiões com densidade intermediária. O projeto de estruturas tradicionais através do MOT possui dois problemas centrais aqui tratados: o fenômeno das topologias singulares, que consiste na incapacidade do algoritmo de otimização de retirar material de certas regiões da estrutura, onde a tensão mecânica supera o limite de tensão quando os valores da densidade tendem a zero, e o problema do grande número de restrições envolvidas, pois que a tensão mecânica é uma grandeza local e deve ser restrita em todos os pontos da estrutura. Para tratar o primeiro problema é utilizado o conceito de relaxação. Para o segundo são utilizadas duas abordagens: uma é a substituição das restrições locais por uma restrição global e a outra é a aplicação do Método do Lagrangeano Aumentado. Ambas foram implementadas e aplicadas para o projeto de estruturas planas e axissimétricas. No projeto da distribuição de material em estruturas constituídas por MsGF é utilizado um modelo de material baseado na interpolação dos limites de Hashin-Shtrikman. A partir deste modelo as tensões em cada fase são obtidas a partir das matrizes localizadoras de tensão. Para tratar o fenômeno das topologias singulares é proposto um índice estimativo de falha, baseado nas tensões de von Mises em cada fase da microestrutura, que evita tal problema. O grande número de restrições é tratado através da restrição global de tensão. Em ambos os problemas as formulações são apresentadas e sua eficiência é discutida através de exemplos numéricos. / This work presents the Topology Optimization Method (TOM) with stress constraint applied to two Engineering problems: the design of mechanical structures subjected to stress constraint and the design of material distribution in structures made of Functionally Graded Materials (FGMs). The TOM is a numerical method capable of synthesizing the basic layout of a mechanical structure accomplishing to a given design requirement, for example the maximum stress in the structure. The FGMs are materials with spatially varying properties, which are obtained through a continuum change of the microstructuremade of two different materials. In this work, the TOM was implemented with Solid Isotropic Microstructure with Penalization (SIMP) material model and the density field was parameterized with the Continuous Approximations of Material Distribution. To obtain the intermediate density stresses, the material model is applied together with a stress localization matrix. The design of mechanical structures through the TOM has two major problems: the singular topology phenomenon, which is characterized by the optimization algorithm impossibility of removing material from certain regions, where the stress overpasses the limiting stress when the density goes to zero, and the large number of constraints, once the stress is a local value that must be constrained everywhere in the structure. To deal with the first problem, it is applied the \"-realaxation concept, and for the second one two approaches are considered: one is to change the local stress constraint into a global stress constraint and the other is to apply the Augmented Lagrangian Method. Both approaches were implemented and applied to the design of plane and axisymmetric structures. In the design of material distribution in structures made of FGMs a material model based on Hashin-Shtrikman bounds is applied. From this model, stresses in each phase are obtained by the stress localization matrix. To deal with the singular topology phenomenon it is proposed a modified von Mises failure criteria index that avoids such problem. A global stress constraint is applied to deal with the large number of constraints. In both problems formulations are presented and their performance are discussed through numerical examples.
45

Projeto de materiais piezocompósitos baseados no conceito de gradação funcional utilizando o método de otimização topológica. / Design of piezocomposite materials based on functionally graded concept by means of topology optimization method.

Vatanabe, Sandro Luis 09 November 2012 (has links)
Um material piezocompósito é resultante da combinação de um material piezelétrico com outros materiais não-piezelétricos, oferecendo vantagens substanciais em relação aos materiais piezelétricos convencionais. Diferentes propriedades efetivas podem ser obtidas alterando-se a fração de volume dos constituintes ou a própria topologia da célula unitária do piezocompósito. Materiais com Gradação Funcional (MGF) são materiais compósitos avançados, projetados de tal forma que sua composição varie gradualmente numa direção espacial. A vantagem do conceito MGF é não apresentar interface convencional entre os materiais da inclusão e da matriz, reduzindo assim um problema comum em materiais compósitos laminados, como por exemplo, o surgimento de concentração de tensões mecânicas. O Método de Otimização Topológica (MOT) é uma técnica computacional utilizada para se determinar a distribuição de materiais em uma estrutura ou material de forma sistemática, a fim de se extremizar uma determinada função objetivo. Assim, esse trabalho propõe uma metodologia sistemática e genérica para o projeto de materiais piezocompósitos com gradação funcional (MPGF) utilizando o MOT, tanto para aplicações quasi-estáticas, quanto para aplicações dinâmicas. Dessa forma, divide-se o projeto de materiais piezocompósitos em três grupos. O primeiro grupo consiste em um método de projeto de materiais baseado na combinação do método de homogeneização com o MOT para o projeto de MPGF para aplicações quasi-estáticas, onde o objetivo é projetar materiais piezocompósitos que, de modo geral, maximizem a conversão de energia mecânica em elétrica. A aplicação utilizada como exemplo neste trabalho são materiais empregados em dispositivos de coleta de energia. O segundo grupo visa aplicações dinâmicas de materiais piezocompósitos fonônicos, onde a propriedade de interesse é a possibilidade de se ter faixas de frequência, mais conhecidas por band gaps, nas quais ondas elásticas não se propagam. Assim, neste estudo visa-se o projeto de MPGF fonônicos com largura e posição de band gaps prescritos, empregando estruturas unidimensionais, e a maximização de diversos band gaps, empregando estruturas bidimensionais. O terceiro grupo explora o conceito de gradação geométrica, baseado em repetições de padrão ao longo do domínio de projeto, porém cada repetição tem um ou mais comprimentos modificados, de forma gradual. Dessa forma, suas propriedades alteram-se progressivamente ao longo da estrutura, embora a distribuição de materiais seja discreta, contornando assim possíveis dificuldades de manufatura. Esta abordagem é empregada visando à aplicação na coleta de energia, onde se procura maximizar a potência elétrica gerada em um resistor acoplado aos eletrodos, através da obtenção da topologia otimizada de estruturas piezocompósitas. Exemplos numéricos são apresentados de forma a ilustrar as metodologias de projeto propostas, bem como, analisar a influência dos parâmetros de otimização nos resultados. / Piezocomposite materials result from the combination of a piezoelectric material with other non-piezoelectric materials, offering advantages over conventional piezoelectric materials. Different effective properties can be obtained by changing the volume fraction of constituent materials, the shape of inclusions, or even the topology of the unit cell. Functionally Graded Materials (FGM) are composite materials, which are designed so that its composition varies gradually in space. One of the advantages of FGMs is that there is no conventional interface between the constituent materials, which reduces, for instance, microscopic stress concentration problems in composite materials. Topology Optimization Method (TOM) is a computational technique used to determine the material distribution of a structure or material in a systematic way, in order to maximize a determined objective function. Thus, this study proposes a generic and systematic methodology to design Functionally Graded Piezocomposites Materials (FGPM) using TOM, for quasi-static and dynamic applications. The study is divided into three groups. The first group combines the homogenization method with TOM in order to design FGPM for quasi-static applications, where the goal is to maximize the conversion of mechanical energy into electrical energy. The application used as an example in this study focuses materials used in energy harvesting devices. The second group focuses on dynamic applications of phononic piezocomposite materials, where the property of interest is the possibility of having frequency band gaps, in which elastic waves do not propagate. This study aims to design phononic FGPM with prescribed band gap width using one-dimensional model, and to design phononic FGPM with maximized band gaps using two-dimensional model. The third group investigates the pattern gradation concept, based on pattern repetitions over the design domain, but each pattern has one or more dimensions gradually modified. Thus, properties change gradually along the structure, although the material distribution keeps in the discrete form, thereby circumventing potential manufacturing difficulties. The objective function consists of maximizing the electric power generated in a load resistor. A projection scheme is employed to compute the element densities from design variables and control the length scale of the material density. Numerical examples are presented and discussed using the proposed methods.
46

Estudo da obtenção de imagens de tomografia de impedância elétrica do pulmão pelo método de otimização topológica. / Study of electrical impedance tomography image reconstruction of lungs by topology optimization method.

Lima, Cícero Ribeiro de 14 July 2006 (has links)
A Tomografia por Impedância Elétrica (TIE) é uma técnica recente de obtenção de imagens médicas para monitoração de tecidos biológicos. A TIE nos permite obter imagens que representam um plano transverso de qualquer seção do corpo humano (cabeça, tórax, coxa, etc.), onde cada “pixel" na imagem representa a sua impedância ou resistividade elétrica. As imagens são geradas através de valores de voltagens medidos em eletrodos posicionados em torno da seção do corpo humano. Estas voltagens são obtidas aplicando-se uma seqüência de corrente elétrica de baixa amplitude nos eletrodos, de acordo com um padrão da excitação elétrica (adjacente ou diametral). A TIE é baseada na solução de um problema inverso, onde dadas as voltagens medidas no exterior do corpo, essa técnica tenta encontrar a distribuição de condutividades no interior do corpo. O objetivo principal deste trabalho é aplicar o Método de Otimização Topológica (MOT) para obtenção de imagens da seção de um corpo na TIE. A Otimização Topológica (OT) busca a distribuição de material no interior de um domínio de projeto, retirando e adicionado material em cada ponto desse domínio de maneira a minimizar (ou maximizar) uma função objetivo especificada, satisfazendo dadas restrições impostas ao problema de otimização. Neste trabalho, o MOT é um método iterativo, cujo algoritmo computacional (implementado em linguagem C) combina o Método dos Elementos Finitos (MEF) e um algoritmo de otimização conhecido por Programação Linear Seqüencial (PLS). O problema de obtenção da imagem usando MOT consiste em se obter a distribuição de material (ou de condutividade) na seção do corpo que minimize a diferença entre os potenciais elétricos medidos nos eletrodos e os potenciais calculados num modelo computacional. A principal vantagem do MOT, aplicado à obtenção de imagens na TIE, é permitir a inclusão de várias restrições no problema de otimização, reduzindo o espaço de solução e evitando imagens sem significado clínico. Neste trabalho, o MOT utiliza o modelo de material SIMP para relaxar o problema de OT e vários esquemas são implementados com o intuito de regularizar o problema inverso da TIE (resolvido pelo MOT), tais como parâmetro de sintonia da imagem (“tuning"), restrição baseada na condutividade média do domínio da imagem, filtro espacial de controle de gradientes, aumento gradual do fator de penalidade do modelo de material (método de continuação) e aproximação contínua da distribuição de material (“CAMD"). Este trabalho está inserido num projeto temático cujo objetivo é estudar técnicas de reconstrução de imagem aplicadas a um tomógrafo por impedância elétrica para monitorar de forma precisa a ventilação forçada do pulmão e diagnosticar quando alguma parte do pulmão estiver danificada (obstruída ou colapsada) durante o processo de ventilação forçada. Para ilustração, são apresentadas imagens obtidas utilizando-se dados numéricos e experimentais de voltagem de domínios 2D bem conhecidos. / The Electrical Impedance Tomography (EIT) is a recent monitoring technique on biological tissues. The EIT allows us to obtain images representing a transversal plane of any section of human body (head, thorax, thigh, etc). Each image pixel is related to its corresponding value of electrical impedance (or resistivity). The images are generated from voltage values measured on electrodes positioned around the section of human body. These voltages are obtained by applying to the electrodes an alternated sequence of low intensity electrical currents in according to an excitation pattern (adjacent or diametral). The EIT is based on an inverse problem, where given the voltages measured outside of body, this technique tries to find the conductivity distribution inside of the body. In this work, the main objective is to apply Topology Optimization Method (TOM) to obtain images of body section in EIT. Topology Optimization seeks a material distribution inside of a design domain, determining which points of space should be solid and which points should be void, to minimize (or maximize) an objective function requirement, satisfying specified constraints. In this work, the MOT is an iterative method whose computational algorithm (implemented in C language) combines Finite Element Method (FEM) and an optimization algorithm called Sequential Linear Programming (SLP). The topology optimization problem applied to obtain images consists of finding the material (or conductivity) distribution in the body section that minimizes the difference between electric potential measured on electrodes and electric potential calculated by using a computational model. The main advantage of TOM applied to image reconstruction in EIT is to allow us to include several constraints in optimization problem, which reduces the solution space and avoids images without clinical meaning. In this work, the MOT uses a material model based on SIMP to makes relaxation of topology optimization problem and several regularization schemes are implemented to solve inverse problem of EIT, such as image tuning control, weighted distance interpolation based on average conductivity of domain, spatial filtering technique for gradient control, graduated changing in penalty factor of material model during the optimization process (continuity method), and continuous approximation of material distribution (CAMD). This work belongs to a thematic project whose aim is to study reconstruction image algorithms that could be used in an EIT device to monitor accurately mechanical ventilation of lung and to diagnose when any portion of lung is damaged (obstructed or collapsed) during mechanical ventilation process. To illustrate the implementation of the method, image reconstruction results obtained by using voltage numerical and experimental data of well-know 2D domains are shown.
47

Aplicação de algoritmos genéticos na otimização da topologia e geometria do layout de um estaleiro / Topology and geometry shipyard layout optimization applying genetic algorithms

Alvear, Diana Maria Chauvin 10 December 2018 (has links)
Apesar de o problema de layout de fábrica (FLP) ser amplamente estudado, esse esforço não tem se refletido no estudo de layout para estaleiros; pelo contrário, na prática, a maioria de layouts de estaleiros foi projetada com base nas experiências adquiridas pelos especialistas desta indústria, não seguindo um método analítico e sistematizado. Por essa razão, é significativo o trabalho dos autores Choi et al (2017), no sentido de propor um método quantitativo baseado nas técnicas de planejamento de layout de fábrica (FLP) e de layout arquitetônico para o problema de layout de estaleiros (ShLP); consistindo na otimização da topologia e na otimização da geometria do layout do estaleiro. Nesta dissertação, replicou-se e adequou-se o problema proposto pelos autores, aplicando um algoritmo genético baseado em ordem para a primeira etapa, e a replicação do modelo para a segunda etapa. Além disso, propõe-se também a incorporação de uma terceira etapa para a otimização geométrica, baseado em um algoritmo genético geral, no intuito de atingir melhorias no layout geométrico final. Os testes executados apontaram uma redução de 6% nos custos de manuseio de materiais, MHC. Verificou-se também a qualidade dos layouts obtidos mediante a utilização de índices de desempenho de layout de fábrica propostos pela literatura, com a finalidade de obter uma comparação correta entre o layout final reportado pelos autores e o obtido nesta dissertação. / Although the facility layout problem (FLP) has been extensively studied, this effort has not been reflected in the layout study for shipyards layout; on the contrary, in practice the majority of shipyard layouts were designed based on the experiences acquired by the specialists in this industry, and not following an analytical and systematized methodology. For this reason, the work of the authors Choi et al (2017) is significant in order to propose a quantitative method based on the techniques of facility layout planning methodology (FLP) and architectural layout focused for the shipyard layout problem (ShLP); consisting of optimization of the topology and geometry of a shipyard. In this study, the problem proposed by the authors was replicated and adapted, applying a genetic algorithm based on order for the first step; and the replication of the model to the second. In addition, it is also proposed the incorporation of a third step for the geometric optimization, based on a general genetic algorithm, in order to achieve significant improvements in the final geometric layout. The tests carried out indicated a 6% reduction in materials handling costs, MHC. Moreover, it was verified the quality of the layouts obtained through the use of the factory layout performance indexes proposed by the literature, in order to obtain a correct comparison between the final layout reported by the authors and the one obtained in this study.
48

TOPOLOGY OPTIMIZATION OF MULTISCALE STRUCTURES COUPLING FLUID, THERMAL AND MECHANICAL ANALYSIS

Tong Wu (5930414) 10 June 2019 (has links)
<div>The objective of this dissertation is to develop new methods in the areas of multiscale topology optimization, thermomechanical topology optimization including heat convection, and thermal-fluid topology optimization. The dissertation mainly focuses on developing five innovative topology optimization algorithms with respect to structure and multistructure coupling fluid, thermal and mechanical analysis, in order to solve customary design requirements. Most of algorithms are coded as in-house code in MATLAB.</div><div><br></div><div><div>In Chapter One, a brief introduction of topology optimization, a brief literature review and the objective is presented. Five innovative algorithms are illustrated in Chapter Two</div><div>to Six. From Chapter Two to Four, the methods with respect to multiscale approach are presneted. and Chapter Five and Six aims to contribute further research associated with</div><div>topology optimization considering heat convection. In Chapter Two, a multiphse topology optimization of thermomechanical structures is presented, in which the optimized structure is composed of several phases of prescribed lattice unit cells. Chapter Three presents a</div><div>Multiscale, thermomechanical topology optimization of self-supporting cellular structures. Each lattice unit cell have a optimised porousity and diamond shape that benefit additive</div><div>manufacturing. In Chapter Four, the multiscale approach is extended to topology optimization involved with fluid mechanics problem to design optimized micropillar arrays in</div><div>microfludics devices. The optimised micropillars minimize the energy loss caused by local fluid drag force. In Chapter Five, a novel thermomechanical topology optimization is developed, in order to generate optimized multifunctional lattice heat transfer structure. The algorithm approximate convective heat transfer by design-dependent heat source and natural convection. In Chapter Six, an improved thermal-fluid topology optimization method is created to flexibly handle the changing of thermal-fluid parameters such as external heat source, Reynolds number, Prandtl number and thermal diffusivity. The results show the</div><div>changing of these parameters lead versatile optimized topologies. Finally, the summary and recommendations are presented in Chapter Seven.</div></div><div><br></div>
49

Projeto de atuadores de múltiplos graus de liberdade baseados em placas piezelétricas utilizando o método de otimização topológica. / Design of multiple degrees of freedom actuators based on piezoelectric plates using the topologic optimization method

Demarque, Vinícius Michelan 02 August 2012 (has links)
Atuadores piezelétricos são dispositivos que permitem a conversão de energia elétrica em energia mecânica. Dentre os atuadores piezelétricos, destacam-se os bilaminares, que consistem em duas piezocerâmicas de polarização oposta (ou excitadas com cargas de sinal contrário) com um substrato entre elas. Os atuadores piezelétricos também podem ser miniaturizados, alcançando a escala de MEMS (Micro-Electric-Mechanical System). Este trabalho tem por objetivo desenvolver uma metodologia utilizando o Método de Otimização Topológica (MOT) para o projeto de atuadores piezelétricos com múltiplos graus de liberdade baseados no princípio bilaminar. A fase de projeto consiste na utilização do MOT para a determinação de uma configuração de atuadores que maximizem o deslocamento numa direção e sentido especificados para uma restrição na quantidade de material utilizado em cada camada, considerando a polarização da cerâmica piezelétrica presente nessa configuração e o acoplamento e simetria entre as camadas. Para a simulação do atuador é utilizado o Método dos Elementos Finitos (MEF) através de um elemento de placa piezelétrica isoparamétrico de oito nós expandido. O MOT, neste trabalho, utiliza o modelo de material denominado PEMAP-P (Material Piezelétrico com Penalização e Polarização). A técnica de projeção é utilizada junto ao MOT para a obtenção de um resultado com uma geometria bem definida. O problema de otimização é resolvido através de Programação Matemática Sequencial (PMS) através do algoritmo GCMMA (Globally Convergent Method of Moving Asymptotes). Como exemplo é estudado o projeto de um atuador piezelétrico para microespelhos. Dentre as configurações obtidas pelo MOT, uma é fabricada utilizando as técnicas de corte a laser e colagem e, posteriormente, é caracterizada. Finalmente, é realizada a comparação entre os resultados de simulação e experimentais do protótipo. / Piezoelectric actuators are devices that allow the conversion of electric energy to mechanical energy. Among the piezoelectric, the bimorph stands. It consists of two piezoceramic plates with opposite polarization (or excited with opposite sign charges) with a substrate between them. The piezoelectric actuators can also be miniaturized in a MEMS scale. This work aims the design of a methodology using the Topology Optimization Method (TOM) for the design of piezoelectric actuators with multiple degrees of freedom using the bimorph principle. The design phase applies the TOM to determine an optimized configuration of actuators that maximizes the output displacement in a specified direction and orientation for a constraint in the amount of material used at each layer, by considering the polarization of the piezoelectric ceramic present on this configuration and the coupling and symmetry between layers. The Finite Element Method (FEM) is applied for actuator simulation through an extended piezoelectric plate isoparametric element with 8 nodes. The TOM in this work employs a material model called PEMAP-P (Piezoelectric Material with Penalization and Polarization). The projection technique is implemented with TOM to obtain a result with a well-defined geometry. The optimization problem is solved by using Sequential Mathematical Programming (SMP) through the GCMMA algorithm (Globally Convergent Method of Moving Asymptotes). As an example, the design of a piezoelectric actuator for micromirrors is studied. Among the configurations obtained by the TOM, one is manufactured using laser cutting and bonding techniques and it is tested. Finally, a comparison between the simulated and experimental results from prototype is performed.
50

Projeto de mecanismos flexíveis usando o método de otimização topológica. / Design of compliant mechanisms using topology optimization method.

Lima, Cicero Ribeiro de 16 April 2002 (has links)
Mecanismos flexíveis são mecanismos onde o movimento é dado pela flexibilidade da estrutura ao invés da presença de juntas e pinos. Tem grande aplicação em dispositivos de mecânica de precisão, área biomédica, e mais recentemente na construção de microeletromecanismos (“MEMS" em inglês). Várias técnicas são usadas no projeto de mecanismos flexíveis, sendo que entre elas, a Otimização Topológica tem se mostrado a mais genérica e sistemática. O método de Otimização Topológica combina um método de otimização com o método dos elementos finitos (MEF). A utilização da Otimização Topológica permite que um engenheiro ou cientista projete o mecanismo para a sua aplicação específica sem precisar adquirir conhecimentos específicos sobre estruturas e mecanismos flexíveis. Dessa forma, o objetivo desse trabalho é aplicar o método de Otimização Topológica no projeto de mecanismos flexíveis, usando o modelo de material SIMP (método de densidades). O projeto é definido como sendo um problema de otimização de uma estrutura flexível, sujeito à restrição na quantidade de material, onde a função objetivo é maximizar o deslocamento numa dada região do domínio da estrutura quando submetida a um dado carregamento em outra região. Para ilustrar a implementação do método são apresentados resultados de topologias bidimensionais de mecanismos flexíveis. / Compliant Mechanisms consist of mechanisms where the movement is giving by the structural flexibility rather than the presence of joints and pins. They are applied to precision mechanic devices, biomedical field, and more recently to the design of microelectromechanical systems (MEMS). Many techniques has been applied to design compliant mechanisms. Among them, topology optimization method is a generic and systematic method. Topology optimization combines optimization algorithms with finite element method and allows an engineer or a scientist to design a compliant mechanism for its application without having to acquire specific knowledge about structures or compliant mechanisms. Therefore, the objective of this work is to apply topology optimization to design compliant mechanisms. The topology optimization method implemented is based on the SIMP material model. The design is defined as the optimization problem of a flexible structure, subject to an amount of material constraint, where the objective function is to maximize the output displacement in a certain region of the structure domain due to an applied load to other region. To illustrate the implementation of the method, two-dimensional topologies of compliant mechanisms are presented as a result.

Page generated in 0.1034 seconds