• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 6
  • 4
  • 4
  • 3
  • 1
  • Tagged with
  • 50
  • 18
  • 12
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Comunicação exossomal na transdiferenciação de células-tronco em cocultivo com células neuronais / Exosome communication in the transdifferentiation of stem cells in co-culture with neuronal cells

Roballo, Kelly Cristine Santos 22 September 2017 (has links)
Células neuronais cocultivadas com células-tronco derivadas do tecido adiposo (ADSC) podem induzir estas últimas à transdiferenciação neuronal. No entanto, os processos de comunicação celular envolvidos nessa indução, e a funcionalidade da ADSC transdiferenciada in vivo, são desconhecidos. Recentemente, um novo tipo de comunicação celular mediada por vesículas extracelulares são indicados na modulação de diferentes eventos celulares como a diferenciação. Portanto, a hipótese, nesta proposta, foi identificar se o processo de diferenciação celular é mediado por vesículas extracelulares e se as células diferenciadas são capazes de atuar na regeneração de tecidos nas lesões do sistema nervoso periférico. Para tal, essa pesquisa foi dividida em duas fases: a primeira consiste no processo in vitro, com o objetivo de observar o processo de transição da ADSC para a linhagem neuronal e analisar a função da comunicação celular no processo de diferenciação; a segunda consistiu na avaliação in vivo da possível funcionalidade das ADSC diferenciadas. O camundongo foi o modelo animal utilizado (C57BL/6 e FVB). As ADSC e as células neuronais foram isoladas, cultivadas em cultivo primário e cocultivadas durante três, sete e 14 dias. Para a comprovação das mudanças fenotípicas das ADSC, realizou-se a imunolocalização com beta tubulina III e SNAP25 e PCR em tempo real (RT-qPCR) dos genes Map2 e Snap25. Seguido de analises de genes relacionados com a neurogênese. Adicionalmente, as vesículas extracelulares foram isoladas e utilizados para análises in vitro da diferenciação e análises gênicas e funcionais. Como resultado, verificou-se que as ADSC em cocultivo com neurônios podem se diferenciar em neuronais-like. Além disso, comprovou-se a comunicação por vesículas extracelulares entre neurônios e ADSC, e as vesículas extracelulares foram correlacionadas neste processo, pelo transporte da proteína SNAP25. Após estes resultados prosseguiu-se para a segunda fase deste trabalho, a etapa in vivo, que incidiu na utilização das ADSC cocultivadas por sete dias e avaliação funcional local e sistêmica no processo de regeneração do nervo ciático após neurotmese. Como resultado desta etapa as células-tronco cocultivadas modularam a lesão, e proporcionaram uma melhoria na funcionalidade após lesão. Conclui-se, através desta pesquisa, que as ADSC diferenciadas em neuronais-like, sob indução dos neurônios e suas vesículas extracelulares podem ser uma fonte celular alternativa no auxílio na regeneração de nervos periféricos. / Neuronal cells co-cultured with stem cells derived from adipose tissue (ADSC) can induce the latter to neuronal transdifferentiation. However, the cellular communication processes involved in this induction, and the functionality of the transdifferentiated ADSC in vivo, are unknown. Recently, a new type of cellular communication measured by extracellular vesicles was indicated in the modulation of different cellular events like differentiation. Therefore, the hypothesis in this proposal was to identify if the process of cellular differentiation is mediated by extracellular vesicles and if the differentiated cells are able to act in the regeneration of tissues in the lesions of the peripheral nervous system. For this, the research was divided in two phases: the first one consisted of the in vitro process, with the objective of observing the transition process of the ADSC to the neuronal lineage and analyzing the cellular communication function in the differentiation process; the second consisted in the in vivo evaluation of the possible functionality of the differentiated ADSCs. Murine was the animal model used (C57BL/6 and FVB). ADSCs and neuronal cells were isolated, cultured in primary culture and co-cultured for three, seven and 14 days. To confirm the phenotypic changes of ADSC, immunolocalization with beta tubulin III and SNAP25 and real-time PCR (RT-qPCR) of the Map2 and Snap25 genes was performed, followed by analysis of genes related to neurogenesis. In addition, extracellular vesicles were isolated and used for in vitro differentiation and gene and functional analysis. As a result, it has been found that ADSCs in co-culture with neurons can differentiate into neuronal-like. The communication by extracellular vesicles between neurons and ADSCs was verified, and the extracellular vesicles were correlated in the differentiation process by the transport of the protein SNAP25. After these results, the second phase of this work was continued, the in vivo step, which focused on the use of the co-cultivated ADSCs for seven days and functional local and systemic evaluation in the process of sciatic nerve regeneration after neurotmese. As a result of this step, the co-cultured stem cells modulated the lesion and provided an improvement in functionality after injury. It is concluded that ADSCs can transdifferentiate neuronal lines in co-culture with neurons, the extracellular vesicles play a certain role in this process and the transdifferentiated ADSC may be an alternative to aid in the regeneration of peripheral nerves.
12

Diferenciação neuronal de células-tronco de dente decíduo esfoliado / Stem cell from human expholiated deciduous teeth neuronal differentiation

Cruz, Raphael Marques de Almeida Rosa da 29 September 2016 (has links)
As células-tronco (CT) são células que apresentam propriedades de auto-renovação, capazes de gerar diferentes tipos celulares e reconstituir diversos tipos de tecidos, por isso têm sido vistas como uma alternativa terapêutica para o tratamento de muitas doenças cujo tratamento convencional não é eficiente. Além disso, por sua plasticidade, as CT podem ser usadas para produzir modelos in vitro para o estudo de doenças, o que tem sido particularmente interessante para doenças que acometem o sistema nervoso. As células-tronco humanas de dente decíduo esfoliado (Stem cell from Human Esfoliated Deciduous teeth, SHED) são descritas em alguns trabalhos como capazes de se diferenciarem em células neuronais através da transdiferenciação direta, um processo simples que possibilita a diferenciação de um tipo celular em outro por meio da utilização de agentes químicos. No entanto, a diferenciação de SHED em neurônios é contestada como sendo um artefato de cultura devido ação citotóxica destes agentes. Com base nesta premissa, o objetivo deste trabalho foi realizar protocolos para a produção de neurônios a partir das SHED utilizando modificações de métodos descritos na literatura e utilizados na diferenciação neuronal. Durante um dos protocolos utilizados, foi possível verificar a morfologia de células semelhantes à neurônio, porém após alguns dias de manutenção, as células voltavam ao formato fusiforme original. Com este trabalho podemos afirmar que, de acordo com os resultados obtidos, as SHED não geram neurônios funcionais / Stem cells (SC) are cells that present self-renewal properties, capable of generating cells types and reconstitute several tissue types. For this reason, they have been seen as a therapeutic alternative to the treatment of many diseases which conventional treatment is not efficient. Besides, because of its plasticity, SC may be used to produce in vitro models in order to study diseases, what is interesting to diseases that affect the nervous system. Human SC from SHED (Stem cell from Human Exfoliated Deciduous teeth, SHED) are described in some papers as being capable of self-differentiation in neuronal cells through the direct transdifferentiation, a simple process that makes possible the differentiation of a cell type in another through the use of chemical agents. Nevertheless, SHED differentiation is refuted as being a artifact of culture due to cytotoxic action of these agents. Based on this premise, the aim of this study was to carry out protocols in order to produce neurons from SHED, using modifications and methods of neuronal differentiation described in the literature and used in the neuronal differentiation. During one of the protocols used, it was possible to verify the morphology of the cells as neuron-like, however, after some days of maintenance, they turn back to their original fusiform format. In this study, we can state, according to the obtained results, that SHED do not generate functional neurons
13

Role of NG2 expressing cells in murine terminal phalanx regeneration

January 2013 (has links)
Research using the adult mammalian model shows that regeneration in the limb is limited to the distal most portion of the terminal phalanx. Recent studies suggest that the cellular contributions made to the regenerating system are lineage restricted and that the niche bone marrow hematopoietic stem cell population’s contributions are minimal. These studies however, do not address other residing populations within the bone marrow, specifically the mesenchymal and endothelial stem cell populations. One of the residing populations, the reputed pericyte or perivascular cells, possesses the ability to differentiate into multiple other cell types. To assess the potential contribution of perivascular cells to the regeneration competency of the terminal phalanges, we began by identifying perivascular cells within the terminal phalanx by using two accepted pericyte markers: nerve-glial antigen 2 (NG2) and endosialin (TEM1). Using NG2 and TEM1 in conjunction with vascular marker Tie2 in the Tie2-EGFP murine reporter line, we confirm a large number of perivascular cells in the bone marrow’s unusually well-developed and organized vasculature and a lower density within the connective tissue microvasculature; implicating a great potential contribution from the bone marrow. Post-amputation, we observe a large population of NG2+ and TEM1+ cells within the regenerating blastema region. Co-immunohistochemical studies reveal the blastema have cells that co-express osteogenic and pericyte markers; strongly suggestive of a transdifferentiation event. We attempt to confirm our hypotheses made in our initial assessment by utilizing two independent cell tracing studies: a DiI labeling of the bone marrow of the terminal phalanx to identify a marrow derived cellular contribution to the regenerate and a genetic fate tracing study using transgenic NG2CreERTamR26REYFP mice to confirm a transdifferentiation event. Using a novel in vivo method , we DiI-label the bone marrow content before amputation and trace DiI labeled bone marrow derived cellular contributions to the regenerate. DiI labeled cells were observed within the blastema expressing either endothelial, perivascular, or osteogenic markers, confirming the bone marrow contributes multiple cell types during the regeneration process. Using a similar experimental design, we genetically label the terminal phalanx NG2 expressing cells using systemic tamoxifen induction of NG2CreERTamR26REYFP mice. We fate trace the initially labeled population during blastema formation and re-differentiation and observed transdifferentiation events of the perivascular cells into two distinctive lineages, endothelial and osteoprogenitor cells. Establishing a direct correlation between peri-vasculature and re-differentiation, we address NG2/perivascular necessity with a series of temporal loss of function studies using a blocking antibody (iNG2). We implant iNG2 soaked microcarrier beads into various regions of the terminal phalanx and during different stages of the regeneration process. The experiments confirm the necessity of NG2 expression for distal bone elongation, as well as ascertain the temporal nature of the NG2 expression in different microenvironments. These results establish the importance of NG2+ cells in the bone marrow during early stages of regeneration, with early iNG2 bone marrow implantation resulting in a complete failure of the regeneration process. In an attempt to rescue this iNG2 failed regeneration we employ an established position-specific fibroblast cell line that displays a surprising plasticity as a cell-based therapeutic. Through a series of RNAi lentiviral transfection of inhibitors of the TGFβ-BMP pathway we induce osteogenic plasticity in the line. These results reveal regeneration competency associated with the mammalian terminal phalanx is in part due to the ability to recruit local perivascular multipotent populations, which has great translational relevancy. / acase@tulane.edu
14

Exploring the Plasticity of Cellular Fate Using Defined-Factor Reprogramming

Son, Yesde 02 November 2012 (has links)
Cellular fate, once established, is usually stable for the lifetime of the cell. However, the mechanisms that restrict the developmental potential of differentiated cells are in principle reversible, as demonstrated by the success of animal cloning from a somatic genome through somatic cell nuclear transfer (SCNT). An increased understanding of the molecular determinants of cell fate has also enabled the reprogramming of cell fate using defined transcription factors; recently, these efforts have culminated in the discovery of four genes that convert somatic cells into induced pluripotent stem cells (iPSCs), which resemble embryonic stem cells (ESCs) and can give rise to all the cell types in the body. As a first step toward generating clinically useful iPSCs, we identified a small molecule, RepSox, that potently and simultaneously replaces two of the four exogenous reprogramming factors, Sox2 and cMyc. This activity was mediated by the inhibition of the Transforming Growth Factor-\(\beta\) \((Tgf-\beta)\) signaling pathway in incompletely reprogrammed intermediate cells. By isolating these stable intermediates, we showed that RepSox acts on them to rapidly upregulate the endogenous pluripotency factor, Nanog, allowing full reprogramming to pluripotency in the absence of Sox2. We also explored lineage conversion as an alternative approach for producing a target cell type in a patient-specific manner, without first generating iPSCs. A combination of pro-neural as well as motor neuron-selective factors could convert fibroblasts directly into spinal motor neurons, the cells that control all voluntary movement. The induced motor neurons (iMNs) displayed molecular and functional characteristics of bona fide motor neurons, actuating muscle contraction in vitro and even engrafting in the developing chick spinal cord when transplanted. Importantly, functional iMNs could be produced from fibroblasts of adult patients with the fatal motor neuron disease, amyotrophic lateral sclerosis (ALS). Given the therapeutic value of generating patient-specific cell types on demand, defined-factor reprogramming is likely to serve as an important tool in regenerative medicine. It is hoped that the different approaches presented here can complement existing technologies to facilitate the study and treatment of intractable human disorders.
15

L’expression induite et ectopique de Neurog3 dans les cellules adultes de canaux pancréatiques révèle leur plasticité / Neurog3 misexpression in adult pancreatic duct cells reveals their plasticity

Vieira, Andhira 20 March 2015 (has links)
Le pancréas est constitué de deux tissus : exocrine et endocrine. Le tissu endocrine est organisé en îlots de Langerhans, comprenant 5 sous-types cellulaires dont les deux principaux (α et β) sécrètent respectivement le glucagon et l’insuline. Le diabète de type 1 est une maladie auto-immune caractérisée par la perte des cellules β et donc une hyperglycémie chronique. Les thérapies actuelles sont efficaces mais contraignantes, amenant une partie de la recherche actuelle à déchiffrer les mécanismes de la genèse des cellules β et/ou de leur régénération pour tenter d’établir des thérapies alternatives. Des études ont permis de caractériser la cascade de facteurs de transcription différentiant les cellules progénitrices pancréatiques durant le développement, dont Neurog3 spécifiant le lignage endocrine et le gène Pax4 favorisant le lignage β. De précédents résultats nous ont amenés à établir l’hypothèse que les cellules canalaires pancréatiques contiendraient une source potentielle de précurseurs, qui par la réexpression de Neurog3 pourraient devenir endocrine, ce que nous avons analysé in vivo après avoir généré les souris transgéniques correspondantes. Nous avons observé un accroissement considérable de la taille des îlots, dû à une augmentation du nombre de chaque sous-type cellulaire endocrine. Nous démontrons que ces cellules endocrines supplémentaires ont bien une origine canalaires, tandis que des études physiologiques indiquent une réponse fonctionnelle de l’insuline suite à une injection de glucose. Finalement, nos analyses apportent également la preuve que le devenir de ces nouvelles cellules endocrines peut être modulé en agissant sur l’activité du gène Pax4. / The pancreas can be divided into two tissue types: exocrine and endocrine. The endocrine tissue is organized into clusters of cells named islets of Langerhans, comprising five cell subtypes of which the two main (α and β) secrete respectively glucagon and insulin. Type 1 diabetes is an auto-immune disease resulting in the loss of pancreatic β-cells and, consequently, in chronic hyperglycemia. Current therapies are efficient but remain highly binding, leading current research to aim at deciphering the β-cell genesis and/or regeneration to potentially establish new therapies. Many studies characterized the specific cascade of transcription factors differentiating pancreatic progenitor cells during development, including Neurog3 specifying the endocrine lineage and Pax4 favoring the β-cell lineage. Previous results obtained in the lab led us to establish the hypothesis that pancreatic ducts may contain a potential source of progenitor cells, which could become endocrine cells through re-expression of Neurog3. Thus, we investigated the consequences of the ectopic misexpression of Neurog3 in pancreatic duct cells in vivo. Using this strategy, we observed a dramatic increase in islet size, due to an augmentation in all endocrine cells types. Lineage tracing allowed us to demonstrate that the new endocrine cells have a ductal origin, while physiological studies displayed functional insulin response upon a glucose bolus. Finally, our analyses also demonstrated that the fate of these newly generated endocrine cells could be modulated by acting on the Pax4 gene.
16

Analyse des mécanismes assurant la robustesse d’un événement de transdifférenciation : rôle de l’ubiquitine ligase E3 SEL-10 / Analysis of robustness in a transdifferentiation event : role of ubiquitin ligase E3 SEL-10

Delance, Cécile 17 January 2018 (has links)
Les cellules différenciées peuvent changer de destin cellulaire de manière induite ou naturelle. Afin de comprendre et connaître les acteurs et mécanismes contrôlant les processus de reprogrammation, notre laboratoire étudie le changement d'identité (ou transdifférenciation, Td) naturel d’une cellule épithéliale rectale (nommée Y) en motoneurone (nommé PDA) chez Caenorhabditis elegans. Les travaux préliminaires ont montré qu’il existe une synergie entre les modifications d’histone (jmjd-3.1 et wdr-5.1) et l’ubiquitination (sel-10). SEL-10 est une ubiquitine ligase E3 possédant un domaine Fbox et une répétition de domaines WD40. Dans cette étude, nous avons pu mettre en évidence : i) une implication du domaine Fbox, des indications sur la localisation intracellulaire de SEL-10 et un rôle inattendu du protéasome au sein de la Td. ii) un rôle de SEL-10 dans la robustesse de la Td (résistance aux stress environnementaux). iii) sel-10, jmjd-3.1 et wdr-5.1 agissent sur la transcription de gènes impliqués dans la transdifférenciation (testé par smFISH). Ainsi qu’une caractérisation du motif d’expression marqueur de Td cog-1 au cours de la redifférenciation. / Differentiated cells can change their cellular fate induced or naturally. In order to understand the mechanisms controlling reprogramming processes, our laboratory is studying the natural change in identity (or transdifferentiation, Td) of a rectal epithelial cell (named Y) and motor neuron (named PDA) in Caenorhabditis elegans.Preliminary work has shown that there is a synergy between histone modifications (jmjd-3.1 and wdr-5.1) and ubiquitination (sel-10). SEL-10 is an E3 ubiquitin ligase with a Fbox domain and WD40 repeat domain.In this study, we highlight: i) the Fbox domain involvement in the Td, indications about the intracellular localization of SEL-10 and an unexpected role of the proteasome within TD. ii) a role of SEL-10 in the robustness of the Td. iii) sel-10, jmjd-3.1 and wdr-5.1 act on gene transcription in transdifferentiation. This one was tested by smFISH and allowed the characterization of the cog-1 transdifferentiation marker expression pattern during redifferentiation.
17

Diferenciação neuronal de células-tronco de dente decíduo esfoliado / Stem cell from human expholiated deciduous teeth neuronal differentiation

Raphael Marques de Almeida Rosa da Cruz 29 September 2016 (has links)
As células-tronco (CT) são células que apresentam propriedades de auto-renovação, capazes de gerar diferentes tipos celulares e reconstituir diversos tipos de tecidos, por isso têm sido vistas como uma alternativa terapêutica para o tratamento de muitas doenças cujo tratamento convencional não é eficiente. Além disso, por sua plasticidade, as CT podem ser usadas para produzir modelos in vitro para o estudo de doenças, o que tem sido particularmente interessante para doenças que acometem o sistema nervoso. As células-tronco humanas de dente decíduo esfoliado (Stem cell from Human Esfoliated Deciduous teeth, SHED) são descritas em alguns trabalhos como capazes de se diferenciarem em células neuronais através da transdiferenciação direta, um processo simples que possibilita a diferenciação de um tipo celular em outro por meio da utilização de agentes químicos. No entanto, a diferenciação de SHED em neurônios é contestada como sendo um artefato de cultura devido ação citotóxica destes agentes. Com base nesta premissa, o objetivo deste trabalho foi realizar protocolos para a produção de neurônios a partir das SHED utilizando modificações de métodos descritos na literatura e utilizados na diferenciação neuronal. Durante um dos protocolos utilizados, foi possível verificar a morfologia de células semelhantes à neurônio, porém após alguns dias de manutenção, as células voltavam ao formato fusiforme original. Com este trabalho podemos afirmar que, de acordo com os resultados obtidos, as SHED não geram neurônios funcionais / Stem cells (SC) are cells that present self-renewal properties, capable of generating cells types and reconstitute several tissue types. For this reason, they have been seen as a therapeutic alternative to the treatment of many diseases which conventional treatment is not efficient. Besides, because of its plasticity, SC may be used to produce in vitro models in order to study diseases, what is interesting to diseases that affect the nervous system. Human SC from SHED (Stem cell from Human Exfoliated Deciduous teeth, SHED) are described in some papers as being capable of self-differentiation in neuronal cells through the direct transdifferentiation, a simple process that makes possible the differentiation of a cell type in another through the use of chemical agents. Nevertheless, SHED differentiation is refuted as being a artifact of culture due to cytotoxic action of these agents. Based on this premise, the aim of this study was to carry out protocols in order to produce neurons from SHED, using modifications and methods of neuronal differentiation described in the literature and used in the neuronal differentiation. During one of the protocols used, it was possible to verify the morphology of the cells as neuron-like, however, after some days of maintenance, they turn back to their original fusiform format. In this study, we can state, according to the obtained results, that SHED do not generate functional neurons
18

Comunicação exossomal na transdiferenciação de células-tronco em cocultivo com células neuronais / Exosome communication in the transdifferentiation of stem cells in co-culture with neuronal cells

Kelly Cristine Santos Roballo 22 September 2017 (has links)
Células neuronais cocultivadas com células-tronco derivadas do tecido adiposo (ADSC) podem induzir estas últimas à transdiferenciação neuronal. No entanto, os processos de comunicação celular envolvidos nessa indução, e a funcionalidade da ADSC transdiferenciada in vivo, são desconhecidos. Recentemente, um novo tipo de comunicação celular mediada por vesículas extracelulares são indicados na modulação de diferentes eventos celulares como a diferenciação. Portanto, a hipótese, nesta proposta, foi identificar se o processo de diferenciação celular é mediado por vesículas extracelulares e se as células diferenciadas são capazes de atuar na regeneração de tecidos nas lesões do sistema nervoso periférico. Para tal, essa pesquisa foi dividida em duas fases: a primeira consiste no processo in vitro, com o objetivo de observar o processo de transição da ADSC para a linhagem neuronal e analisar a função da comunicação celular no processo de diferenciação; a segunda consistiu na avaliação in vivo da possível funcionalidade das ADSC diferenciadas. O camundongo foi o modelo animal utilizado (C57BL/6 e FVB). As ADSC e as células neuronais foram isoladas, cultivadas em cultivo primário e cocultivadas durante três, sete e 14 dias. Para a comprovação das mudanças fenotípicas das ADSC, realizou-se a imunolocalização com beta tubulina III e SNAP25 e PCR em tempo real (RT-qPCR) dos genes Map2 e Snap25. Seguido de analises de genes relacionados com a neurogênese. Adicionalmente, as vesículas extracelulares foram isoladas e utilizados para análises in vitro da diferenciação e análises gênicas e funcionais. Como resultado, verificou-se que as ADSC em cocultivo com neurônios podem se diferenciar em neuronais-like. Além disso, comprovou-se a comunicação por vesículas extracelulares entre neurônios e ADSC, e as vesículas extracelulares foram correlacionadas neste processo, pelo transporte da proteína SNAP25. Após estes resultados prosseguiu-se para a segunda fase deste trabalho, a etapa in vivo, que incidiu na utilização das ADSC cocultivadas por sete dias e avaliação funcional local e sistêmica no processo de regeneração do nervo ciático após neurotmese. Como resultado desta etapa as células-tronco cocultivadas modularam a lesão, e proporcionaram uma melhoria na funcionalidade após lesão. Conclui-se, através desta pesquisa, que as ADSC diferenciadas em neuronais-like, sob indução dos neurônios e suas vesículas extracelulares podem ser uma fonte celular alternativa no auxílio na regeneração de nervos periféricos. / Neuronal cells co-cultured with stem cells derived from adipose tissue (ADSC) can induce the latter to neuronal transdifferentiation. However, the cellular communication processes involved in this induction, and the functionality of the transdifferentiated ADSC in vivo, are unknown. Recently, a new type of cellular communication measured by extracellular vesicles was indicated in the modulation of different cellular events like differentiation. Therefore, the hypothesis in this proposal was to identify if the process of cellular differentiation is mediated by extracellular vesicles and if the differentiated cells are able to act in the regeneration of tissues in the lesions of the peripheral nervous system. For this, the research was divided in two phases: the first one consisted of the in vitro process, with the objective of observing the transition process of the ADSC to the neuronal lineage and analyzing the cellular communication function in the differentiation process; the second consisted in the in vivo evaluation of the possible functionality of the differentiated ADSCs. Murine was the animal model used (C57BL/6 and FVB). ADSCs and neuronal cells were isolated, cultured in primary culture and co-cultured for three, seven and 14 days. To confirm the phenotypic changes of ADSC, immunolocalization with beta tubulin III and SNAP25 and real-time PCR (RT-qPCR) of the Map2 and Snap25 genes was performed, followed by analysis of genes related to neurogenesis. In addition, extracellular vesicles were isolated and used for in vitro differentiation and gene and functional analysis. As a result, it has been found that ADSCs in co-culture with neurons can differentiate into neuronal-like. The communication by extracellular vesicles between neurons and ADSCs was verified, and the extracellular vesicles were correlated in the differentiation process by the transport of the protein SNAP25. After these results, the second phase of this work was continued, the in vivo step, which focused on the use of the co-cultivated ADSCs for seven days and functional local and systemic evaluation in the process of sciatic nerve regeneration after neurotmese. As a result of this step, the co-cultured stem cells modulated the lesion and provided an improvement in functionality after injury. It is concluded that ADSCs can transdifferentiate neuronal lines in co-culture with neurons, the extracellular vesicles play a certain role in this process and the transdifferentiated ADSC may be an alternative to aid in the regeneration of peripheral nerves.
19

Initiation of Supporting Cell Activation for Hair Cell Regeneration in the Avian Auditory Epithelium: An Explant Culture Model / 鳥類蝸牛器官培養モデルでの有毛細胞再生における支持細胞活性化因子の初期過程

Matsunaga, Mami 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第23094号 / 医博第4721号 / 新制||医||1050(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 髙橋 良輔, 教授 井上 治久, 教授 伊佐 正 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
20

Multipathways for Transdifferentiation of Human Prostate Cancer Cells Into Neuroendocrine-Like Phenotype

Zelivianski, Stanislav, Verni, Michael, Moore, Carissa, Kondrikov, Dmitriy, Taylor, Rodney, Lin, Ming Fong 28 May 2001 (has links)
The neuroendocrine (NE) cell is a minor cell population in normal human prostate glands. The number of NE cells is increased in advanced hormone-refractory prostate carcinomas (PCA). The mechanism of increased NE cell population in these advanced tumors is poorly understood. We examined molecular mechanisms which may be involved in the regulation of the transdifferentiation process of human PCA cells leading to a NE phenotype. We compared PCA cell lines LNCaP and PC-3 in the following medium conditions: steroid-reduced (SR), interleukin-6 (IL-6)-supplemented, or dibutyrate cAMP (db-cAMP)-supplemented. We found that androgen-responsive C-33 LNCaP cells responded to all treatments, having a neuronal-like morphology. In contrast, C-81 LNCaP cells, having a decreased androgen responsiveness, had a less pronounced effect although followed a similar trend. Androgen-unresponsive PC-3 cells showed little change in their morphology. Grown in the SR condition, the level of neuron-specific enolase (NSE), a marker of neuronal cells, was upregulated in C-33 LNCaP cells, while to a lesser degree in the presence of IL-6. In the presence of db-cAMP, the NSE level in C-33 cells was decreased, lower than that in control cells. An opposite effect was observed for C-81 LNCaP cells. Nevertheless, the NSE level was only elevated in db-cAMP-treated PC-3 cells, but no change was found in PC-3 cells grown in the SR- or IL-6-supplemented medium. Thus, a similar gross phenotypic change may correlate with differential molecular expressions. We also analyzed the expression of protein tyrosine phosphatase α (RPTPα) since it plays a critical role in normal neuronal differentiation and signaling. Our results showed that the expression of RPTPα correlates with the NE phenotypic change of LNCaP cells in the SR condition. In summary, our data clearly show that the molecular process by which cultured human prostate cancer cells undergo a transdifferentiation process to a NE cell-like phenotype is accompanied by differential expressions of different markers, and a gross NE cell-like phenotype can occur by exposing PCA cells to different pharmacological agents.

Page generated in 0.1141 seconds