Spelling suggestions: "subject:"transient itinerating"" "subject:"transient ingratiating""
11 |
Ultrafast spectroscopy of semiconductor nanostructuresWen, Xiaoming, n/a January 2007 (has links)
Semiconductor nanostructures exhibit many remarkable electronic and optical properties.
The key to designing and utilising semiconductor quantum structures is a physical understanding
of the detailed excitation, transport and energy relaxation processes. Thus the nonequilibrium
dynamics of semiconductor quantum structures have attracted extensive attention in recent years.
Ultrafast spectroscopy has proven to be a versatile and powerful tool for investigating transient
phenomena related to the relaxation and transport dynamics in semiconductors.
In this thesis, we report investigations into the electronic and optical properties of various
semiconductor quantum systems using a variety of ultrafast techniques, including up-conversion
photoluminescence, pump-probe, photon echoes and four-wave mixing. The semiconductor
quantum systems studied include ZnO/ZnMgO multiple quantum wells with oxygen ion
implantation, InGaAs/GaAs self-assembled quantum dots with different doping, InGaAs/InP
quantum wells with proton implantation, and silicon quantum dots. The spectra of these
semiconductor nanostructures range from the ultraviolet region, through the visible, to the
infrared. In the UV region we investigate excitons, biexcitons and oxygen implantation effects in
ZnO/ZnMgO multi-quantum wells using four-wave mixing, pump-probe and photoluminescence
techniques. Using time-resolved up-conversion photoluminescence, we investigate the relaxation
dynamics and state filling effect in InGaAs self-assembled quantum dots with different doping,
and the implantation effect in InGaAs/InP quantum wells. Finally, we study the optical properties
of silicon quantum dots using time-resolved photoluminescence and photon echo spectroscopy on
various time scales, ranging from microseconds to femtoseconds.
|
12 |
Optical and Material Properties of Colloidal Semiconductor NanocrystalsHuxter, Vanessa 01 March 2010 (has links)
This thesis presents an exploration of the photophysics of colloidal semiconductor nanocrystals using both linear and non-linear optical measurement techniques. These optical methodologies are used to follow population dynamics in both singly and multiply excited nanocrystal systems as well as determine material properties of the ensemble. Topics covered in the thesis include, the identification and characterization of bulk-like nanocrystals, study of the fine structure states of the lowest energy exciton, single and multiexciton population dynamics, acoustic phonon modes, elasticity and surface stress properties of a colloidal ensemble in solution.Through linear spectroscopy, the properties of both quantum confined and bulk-like colloidal semiconductor nanocrystals are compared. The identification of a model system of bulk-like nanocrystals with a non-standard absorption profile serves to resolve an ambiguity in literature concerning their characterization. The remainder of the thesis is focused on the size-dependent properties of quantum confined CdSe colloidal nanocrystals. The population dynamics and material properties of these systems are studied using a nonlinear optical technique called transient grating. A third order transient grating measurement with a cross-polarized configuration, which follows the relaxation within the fine structure levels of the lowest energy exciton state, is demonstrated and used to compare systems with different crystal field splittings. Transient grating experiments performed with specific polarization sequences allow for selective observation of the dynamics amongst nearly degenerate levels at room temperature. Cross-polarized transient grating is also used to observe a quantized acoustic phonon mode in a series of nanocrystal samples. The observation of this mode allows experimental determination of the elasticity and surface stress of the nanocrystal ensemble in solution. The anisotropic origin of the acoustic phonon is discussed using a combination of theoretical analysis, modelling and experimental data. In addition, third- and fifth-order transient grating experiments are used to study exciton and multiexciton population relaxation dynamics. The work presented here spans the optical and material properties of quantum confined and `bulk' nanocrystals. This thesis attempts to illustrate the broad scope of the observed behaviour of colloidal nanocrystal systems and to contribute to a greater understanding of their physical properties.
|
13 |
Optical and Material Properties of Colloidal Semiconductor NanocrystalsHuxter, Vanessa 01 March 2010 (has links)
This thesis presents an exploration of the photophysics of colloidal semiconductor nanocrystals using both linear and non-linear optical measurement techniques. These optical methodologies are used to follow population dynamics in both singly and multiply excited nanocrystal systems as well as determine material properties of the ensemble. Topics covered in the thesis include, the identification and characterization of bulk-like nanocrystals, study of the fine structure states of the lowest energy exciton, single and multiexciton population dynamics, acoustic phonon modes, elasticity and surface stress properties of a colloidal ensemble in solution.Through linear spectroscopy, the properties of both quantum confined and bulk-like colloidal semiconductor nanocrystals are compared. The identification of a model system of bulk-like nanocrystals with a non-standard absorption profile serves to resolve an ambiguity in literature concerning their characterization. The remainder of the thesis is focused on the size-dependent properties of quantum confined CdSe colloidal nanocrystals. The population dynamics and material properties of these systems are studied using a nonlinear optical technique called transient grating. A third order transient grating measurement with a cross-polarized configuration, which follows the relaxation within the fine structure levels of the lowest energy exciton state, is demonstrated and used to compare systems with different crystal field splittings. Transient grating experiments performed with specific polarization sequences allow for selective observation of the dynamics amongst nearly degenerate levels at room temperature. Cross-polarized transient grating is also used to observe a quantized acoustic phonon mode in a series of nanocrystal samples. The observation of this mode allows experimental determination of the elasticity and surface stress of the nanocrystal ensemble in solution. The anisotropic origin of the acoustic phonon is discussed using a combination of theoretical analysis, modelling and experimental data. In addition, third- and fifth-order transient grating experiments are used to study exciton and multiexciton population relaxation dynamics. The work presented here spans the optical and material properties of quantum confined and `bulk' nanocrystals. This thesis attempts to illustrate the broad scope of the observed behaviour of colloidal nanocrystal systems and to contribute to a greater understanding of their physical properties.
|
14 |
Spectroscopie de phase multi-dimensionnelle de l'émission attoseconde moléculaire / Multidimensionnal Phase Spectroscopy of the Attosecond Molecular EmissionCamper, Antoine 31 January 2014 (has links)
Une molécule soumise à un champ laser infra-rouge intense (dans la gamme des 10 14 W.cm−2) peut être ionisée par effet tunnel. Le paquet d’ondes électroniques (POE) ainsi libéré est alors accéléré par le champ laser et, lorsqu’il repasse à proximité de l’ion parent, il a une certaine probabilité de se recombiner dans son état fondamental. Lors de cette recombinaison, le POE libère son énergie sous la forme d’un flash attoseconde (1as=10 −18s) de rayons XUV. Cette émission cohérente est produite à chaque demi-cycle laser résultant en un train d’impulsions attosecondes. Dans le domaine spectral, ce train correspond à un spectre discret d’harmoniques de la fréquence lasers. L’étape de recombinaison de l’électron avec l’ion parent peut être considérée comme une sonde de la structure des orbitales de valence moléculaires participant à la génération d’harmoniques et de la dynamique ayant lieu dans l’ion pendant l’excursion de l’électron dans le continuum. En caractérisant en amplitude, phase et polarisation, l’émission harmonique associée à cette recombinaison, il est possible de remonter à ces informations structurales et dynamiques avec une précision de l’ordre de l’Ångström et une résolution attoseconde. En particulier, la phase de l’émission harmonique qui est difficile à caractériser, encode des informations indispensables à la bonne compréhension des processus ayant lieu dans le milieu de génération. Nous présentons les principes et testons de nouvelles techniques permet tant de caractériser la phase de l’émission attoseconde suivant plusieurs dimensions à la fois et dans un laps de temps optimisé. Dans une première partie, nous présentons une méthode permettant de caractériser rapidement la phase spectrale de l’émission harmonique, fondée sur un modèle en champ fort de la photoionisation à deux couleurs (RABBIT). Nous introduisons ensuite une nouveau dispositif interférométrique à deux sources, permettant de mesurer les variations de phase de l’émission attoseconde induites par l’excitation d’un paquet d’ondes rotationnelles ou vibrationnelles. Ce dispositif très stable, compact et sobre énergétiquement repose sur l’utilisation d’un élément optique de diffraction (DOE) binaire. Après avoir qualifié notre dispositif par des simulations numériques et des expériences préliminaires, nous montrons qu’il est si sensible qu’il permet de mesurer les variations de phase en fonction du paramètre d’excitation pour différentes trajectoires électroniques dans le continuum. Pour l’azote et le dioxyde de carbone, les mesures expérimentales montrent des variations de phase très différentes pour les deux premières trajectoires électroniques. Ce DOE est ensuite utilisé pour mesurer la phase de l’émission harmonique dans les molécules alignées dans les mêmes conditions expérimentales que le RABBIT. Les deux expériences menées successivement donnent des résultats compatibles que nous combinons par deux méthodes différentes : le CHASSEUR et le MAMMOTH. Enfin, nous proposons de combiner le DOE avec un réseau transitoire pour caractériser simultanément la phase de l'émission attoseconde moléculaire suivant deux axes de polarisation différents. Ces différentes techniques de mesure de phase nous ont permis d’étudier précisément l’émission harmonique suivant différentes dimensions (angle d’alignement, intensité de génération, trajectoire électronique) et d’en tirer de nouvelles informations sur le mécanisme de génération dans les molécules. / When a low-frequency laser pulse is focused to a high intensity into a gas, the electric field of the laser light may become of comparable strength to that felt by the electrons bound in an atom or molecule. A valence electron can then be 'freed' by tunnel ionization, accelerated by the strong oscillating laser field and can eventually recollide and recombine with the ion. The gained kinetic energy is then released as a burst of coherent XUV light which is spectrally organized as harmonics of the fundamental driving field frequency.In high-harmonic molecular spectroscopy, the recombining electron wave-packet probes the structure of the molecule and the dynamics occurring in the ion left after tunnel ionization. The XUV burst is imprinted with this information which can be retrieved through an accurate characterization of the amplitude, phase and polarization of the harmonics. In the case of small molecules as nitrogen and carbon dioxide, impulsive alignment allows to change the direction of recombination of the electron wave-packet with respect to the molecular axis. The XUV burst from the molecular sample should then be characterized both along the spectral dimension and the alignment angle one, and this for the two polarization components. In this report, we present a new experimental scheme to perform two-source interferometry to measure the phase of the emission in aligned molecules along the alignment angle dimension. We how a refined spatio-spectral analysis of the fringe patterns obtained with this very stable interferometer allows one to extend high-harmonic spectroscopy from short to long trajectories. We then show how the combination of this setup together with RABBIT gives access to a bidimensionnal (spectrum and alignment angle) phase map with no arbitrary constant. Finally comparing two-source interferometry with transient grating spectroscopy leads to inconsistent results that can be interpreted taking into consideration polarization effects.
|
Page generated in 0.0877 seconds