• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 5
  • 2
  • 1
  • Tagged with
  • 23
  • 23
  • 9
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Development of a new screening system for the identification of RNF43-related genes and characterisation of other PA-RING family members

Merenda, Alessandra January 2017 (has links)
The E3 ubiquitin ligase RNF43 (RING finger protein 43) is an important negative modulator of the WNT signalling pathway that acts at the plasma membrane by targeting Frizzled and its co-receptor LRP for degradation. In the small intestine, this prevents uncontrolled expansion of the stem cell compartment and so it is essential to the maintenance of normal tissue homeostasis. However, despite its crucial role in fine-tuning the WNT pathway and its role as a tumour suppressor, it is unclear whether RNF43 has further binding partners and what their functional relevance is to the modulation of WNT signalling. Here, I describe the development of a new screening strategy which combines CRISPR/Cas9 technology with 3D-intestinal organoid culture for the identification of novel molecular interactors of RNF43. Overall, this study and the technology developed provide a tool to enable the detailed description of the mechanism of action of RNF43, which is important not only in order to increase our understanding of WNT pathway regulation but also to gain potential new insights into RNF43 paralogs, by analogy. The investigation of paralogs is crucial as RNF43 belongs to a newly identified family of E3 ubiquitin ligases, named the PA-RING family, whose members are still poorly characterised. The majority of PA-RING family members have not been linked to any signalling pathway, most of their targets are still unknown and in many cases their in vivo function has not been addressed. In this context, my work has specifically focused on the investigation of the potential involvement of additional PA-RING family members in WNT pathway modulation and also on target identification for selected members. The results summarised in this dissertation show that no other PA-RING family member plays a prominent role in WNT pathway modulation aside from Rnf43 and its homologue Znrf3, however, different classes of adhesion molecules are likely to be regulated by certain of these E3 ligases. In conclusion, my work has contributed to unravelling previously unexplored aspects of this protein family, with particular regard to RNF43 and its mechanism of action. Thanks to this original approach, it was possible to identify potential new players involved either in membrane clearance of Frizzled or in RNF43 maturation. In particular, my thesis focuses on the characterisation of the role of DAAM in RNF43-mediated Frizzled internalisation.
12

Characterizing the Expression and Function of FLRT2 in the ATDC5 Chondroprogenitor Cell Line

Flintoff, Kerry Anne 22 November 2012 (has links)
Expression studies have implicated Fibronectin Leucine Rich Transmembrane protein 2 (FLRT2) in cranial neural crest cell migration and pre-chondrogenic cell condensation during craniofacial skeletogenesis. This aim of this study was to characterize the expression of FLRT2 and its relationship to the extracellular matrix (ECM) in ATDC5 chondroprogenitor cells. Immunofluorescence studies localized FLRT2 to the cell membrane as well as exracellularly, where it colocalized with fibronectin. FLRT2 was identified in the ATDC5-derived ECM after cell extraction. Further to its colocalization with fibronectin, FLRT2 associated with fibronectin-coated beads in cell cultures. Co-immunoprecipitation confirmed that FLRT2 and fibronectin interact, either directly or indirectly. Blocking fibronectin fibril formation in ATDC5 cell cultures demonstrated a concomitant decrease in extracellular FLRT2 accumulation. It appears that FLRT2 may exist in both a membrane-bound and a shed form. Either or both of these forms may participate in cell-ECM interactions in cooperation with fibronectin or other ECM proteins.
13

Characterizing the Expression and Function of FLRT2 in the ATDC5 Chondroprogenitor Cell Line

Flintoff, Kerry Anne 22 November 2012 (has links)
Expression studies have implicated Fibronectin Leucine Rich Transmembrane protein 2 (FLRT2) in cranial neural crest cell migration and pre-chondrogenic cell condensation during craniofacial skeletogenesis. This aim of this study was to characterize the expression of FLRT2 and its relationship to the extracellular matrix (ECM) in ATDC5 chondroprogenitor cells. Immunofluorescence studies localized FLRT2 to the cell membrane as well as exracellularly, where it colocalized with fibronectin. FLRT2 was identified in the ATDC5-derived ECM after cell extraction. Further to its colocalization with fibronectin, FLRT2 associated with fibronectin-coated beads in cell cultures. Co-immunoprecipitation confirmed that FLRT2 and fibronectin interact, either directly or indirectly. Blocking fibronectin fibril formation in ATDC5 cell cultures demonstrated a concomitant decrease in extracellular FLRT2 accumulation. It appears that FLRT2 may exist in both a membrane-bound and a shed form. Either or both of these forms may participate in cell-ECM interactions in cooperation with fibronectin or other ECM proteins.
14

Recherche d'antigènes spécifiques de tumeurs et analyse des cellules souches de glioblastomes / Tumor specific antigens research and glioblastoma stem cells analysis

Robil, Noemie 08 October 2015 (has links)
Les glioblastomes sont les tumeurs du système nerveux central les plus fréquentes et agressives. Avec une survie médiane inférieure à 2 ans, les thérapies actuelles restent inefficaces. Cet échec pourrait être expliqué en partie par l’existence de cellules particulières, les cellules souches cancéreuses. Ces cellules ont plusieurs propriétés communes aux cellules souches, qui les rendent résistantes aux traitements des glioblastomes. Il est donc important de pouvoir les identifier et les cibler pour pouvoir éliminer totalement la tumeur. L’objectif de ce travail de thèse est de déterminer des biomarqueurs des cellules souches de glioblastomes (gCSCs). Pour cela, nous avons d’abord développé une méthode générique permettant de prédire des antigènes spécifiques de cancer à partir de données de puces d’expression. Puis, nous avons travaillé sur les gCSCs, en identifiant des biomarqueurs potentiels, puis en étudiant les modifications du signal calcium, dérégulé dans de nombreux cancers. / Glioblastoma are the most common and aggressive nervous system tumors. With a median overall survival smaller than 2 years, usual therapies remain inefficient. This failure could be explained in part by the existence of cancer stem cells. These cells share several properties with stem cells which make them resistant to glioblastoma treatments. This is why it is important to identify and target them to suppress the whole tumor.The goal of this thesis work is to identify glioblastoma stem cells (gCSCs) biomarkers. To this end, we first developed a global method predicting cancer antigens from microarray data. Then, by studying gCSCs we identified several putative biomarkers and generated insights concerning the calcium signals which are deregulated in numerous cancers.
15

Lipogenic Proteins in Plants: Functional Homologues and Applications

Cai, Yingqi 12 1900 (has links)
Although cytoplasmic lipid droplets (LDs) are the major reserves for energy-dense neutral lipids in plants, the cellular mechanisms for packaging neutral lipids into LDs remain poorly understood. To gain insights into the cellular processes of neutral lipid accumulation and compartmentalization, a necessary step forward would be to characterize functional roles of lipogenic proteins that participate in the compartmentalization of neutral lipids in plant cells. In this study, the lipogenic proteins, Arabidopsis thaliana SEIPIN homologues and mouse (Mus Musculus) fat storage-inducing transmembrane protein 2 (FIT2), were characterized for their functional roles in the biogenesis of cytoplasmic LDs in various plant tissues. Both Arabidopsis SEIPINs and mouse FIT2 supported the accumulation of neutral lipids and cytoplasmic LDs in plants. The three Arabidopsis SEIPIN isoforms play distinct roles in compartmentalizing neutral lipids by enhancing the numbers and sizes of LDs in various plant tissues and developmental stages. Further, the potential applications of Arabidopsis SEIPINs and mouse FIT2 in engineering neutral lipids and terpenes in plant vegetative tissues were evaluated by co-expressing these and other lipogenic proteins in Nicotiana benthamiana leaves. Arabidopsis SEIPINs and mouse FIT2 represent effective tools that may complement ongoing strategies to enhance the accumulation of desired neutral lipids and terpenes in plant vegetative tissues. Collectively, our findings in this study expand our knowledge of the broader cellular mechanisms of LD biogenesis that are partially conserved in eukaryotes and distinct in plants and suggest novel targets that can be introduced into plants to collaborate with other factors in lipid metabolism and elevate oil content in plant tissues.
16

STUDYING TRANSMEMBRANE PROTEIN TRANSPORT IN PRIMARY CILIA WITH SINGLE MOLECULE TRACKING

Ruba, Andrew January 2019 (has links)
The primary cilium is an immotile, microtubule-based protrusion on the surface of many eukaryotic cells and contains a unique complement of proteins that function critically in cell motility and signaling. Critically, the transport of membrane and cytosolic proteins into the primary cilium is essential for its role in cellular signaling. Since cilia are incapable of synthesizing their own protein, nearly 200 unique ciliary proteins need to be trafficked between the cytosol and primary cilia. However, it is still a technical challenge to map three-dimensional (3D) locations of transport pathways for these proteins in live primary cilia due to the limitations of currently existing techniques. To conquer the challenge, this work employed a high-speed virtual 3D super-resolution microscopy, termed single-point edge-excitation sub-diffraction (SPEED) microscopy, to determine the 3D spatial location of transport pathways for both cytosolic and membrane proteins in primary cilia of live cells. Using SPEED microscopy and single molecule tracking, we mapped the movement of membrane and soluble proteins at the base of the primary cilium. In addition to the well-known intraflagellar transport (IFT) route, we identified two new pathways within the lumen of the primary cilium - passive diffusional and vesicle transport routes - that are adopted by proteins for cytoplasmic-cilium transport in live cells. Independent of the IFT path, approximately half of IFT motors (KIF3A) and cargo (α-tubulin) take the passive diffusion route and more than half of membrane-embedded G protein coupled receptors (SSTR3 and HTR6) use RAB8A-regulated vesicles to transport into and inside cilia. Furthermore, ciliary lumen transport is the preferred route for membrane proteins in the early stages of ciliogenesis and inhibition of SSTR3 vesicle transport completely blocks ciliogenesis. Furthermore, clathrin-mediated, signal-dependent internalization of SSTR3 also occurs through the ciliary lumen. These transport routes were also observed in Chlamydomonas reinhardtii flagella, suggesting their conserved roles in trafficking of ciliary proteins. While the 3D transport pathways in this work are always replicated multiple times with a high degree of consistency, several experimental parameters directly affect the 3D transport routes’ error, such as single molecule localization precision and the number of single molecule localizations. In fact, if these experimental parameters do not meet a minimum threshold, the resultant 3D transport pathways may not have significant resolution to determine any biological details. To estimate the 3D transport routes’ error, this work will explain in detail the component of SPEED microscopy that estimates 3D sub-diffraction-limited structural or dynamic information in rotationally symmetric bio-structures, such as the primary cilium. This component is a post-localization analysis that transforms 2D super-resolution images or 2D single-molecule localization distributions into their corresponding 3D spatial probability distributions based on prior known structural knowledge. This analysis is ideal in cases where the ultrastructure of a cellular structure is known but the sub-structural localization of a particular protein is not. This work will demonstrate how the 2D-to-3D component of SPEED microscopy can be successfully applied to achieve 3D structural and functional sub-diffraction-limited information for 25-300 nm subcellular organelles that meet the rotational symmetry requirement, such as the primary cilium and microtubules. Furthermore, this work will provide comprehensive analyses of this method by using computational simulations which investigate the role of various experimental parameters on the 3D transport pathway error. Lastly, this work will demonstrate that this method can distinguish different types of 3D transport pathway distributions in addition to their locations. / Biology
17

Multifaceted roles of the transmembrane nuclear envelope protein, Samp1

Jaffer Ali, Mohammed Hakim January 2017 (has links)
The eukaryotic nuclear envelope (NE), separates the nucleoplasm from cytoplasm and is made up of two concentric lipid membranes, the outer and the inner nuclear membranes (ONM and INM), the nuclear pore complexes (NPCs) and an underlying filamentous nuclear lamina. The INM contains hundreds of unique transmembrane proteins of which only a handful have been characterized. In this thesis, I aimed to understand the functional organization of proteins in the nuclear envelope and I focused on investigating the functions of a recently identified INM transmembrane protein, Samp1. We have developed a novel and robust approach, MCLIP, to identify specific protein-protein interactions taking place in live cells. Using MCLIP, we have shown that Samp1 interacts with proteins of the LINC complex, the nuclear lamina and components of the mitotic spindle. Samp1's specific interactions with a variety of binding partners, suggest that Samp1 plays important roles both in interphase and in mitosis.  We have also shown that Samp1 can provide a binding site at the INM for the GTPase Ran, a master regulator of protein interactions in interphase and in mitosis. Furthermore, we have also investigated the role of Samp1 in cell differentiation using two independent model systems. In human iPSCs, ectopic expression of Samp1 promoted differentiation despite pluripotent culture conditions. In C2C12 myoblast, depletion of Samp1 completely blocked differentiation into myotubes. The two studies complement each other and suggest that Samp1 has a strong differentiation promoting activity. Taken together, the findings in this thesis, give insights on the unexpected and unforeseen roles played by a transmembrane protein in different fundamental cellular process. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript. Paper 5: Manuscript.</p>
18

Cross-linked polymersomes as nanoreactors for controlled and stabilized single and cascade enzymatic reactions

Gräfe, David, Gaitzsch, Jens, Appelhans, Dietmar, Voit, Brigitte 16 December 2019 (has links)
Polymeric vesicles or polymersomes are one of the supramolecular entities at the leading edge of synthetic biology. These small compartments have shown to be feasible candidates as nanoreactors, especially for enzymatic reactions. Once cross-linked and equipped with a pH sensitive material, the reaction can be switched off (pH 8) and on (pH 6) in accordance with the increased permeability of the polymersome membranes under acidic conditions. Thus cross-linked and pH sensitive polymersomes provide a basis for pH controlled enzymatic reactions where no integrated transmembrane protein is needed for regulating the uptake and release of educts and products in the polymersome lumen. This pH-tunable working tool was further used to investigate their use in sequential enzymatic reactions (glucose oxidase and myoglobin) where enzymes are loaded in one common polymersome or in two different polymersomes. Crossing membranes and overcoming the space distance between polymersomes were shown successfully, meaning that educts and products can be exchanged between enzyme compartments for successful enzymatic cascade reactions. Moreover the stabilizing effect of polymersomes is also observable by single enzymatic reactions as well as a sequence. This study is directed to establish robust and controllable polymersome nanoreactors for enzymatic reactions, describing a switch between an off (pH 8) and on (pH 6) state of polymersome membrane permeability with no transmembrane protein needed for transmembrane exchange.
19

Posttranslational modifications and virus restriction activity of IFITM3

McMichael, Temet M. 09 October 2018 (has links)
No description available.
20

Mécanismes d'adressage de Pom33, protéine transmembranaire associée aux pores nucléaires chez la levure Saccharomyces cerevisiae levure Saccharomyces cerevisiae / Mechanisms contributing to the targeting of Pom33, a nuclear pore associated transmembrane protein, in the yeast Saccharomyces cerevisiae

Floch, Aurélie 26 September 2014 (has links)
Chez les eucaryotes, les pores nucléaires (NPCs), ancrés dans l’enveloppe nucléaire (EN), régulent les échanges nucléocytoplasmiques. Ces complexes, très conservés, sont composés d’une trentaine de protéines appelées nucléoporines (Nups) présentes en multiples copies au sein de chaque NPC. Chez la levure S. cerevisiae, seules quatre Nups, dont la protéine Pom33, possèdent des domaines transmembranaires. Une étude réalisée en amont de ce projet a permis de caractériser Pom33 et de montrer que le mutant pom33∆ est viable et ne présente pas de défaut apparent de transport nucléocytoplasmique mais se caractérise par un défaut de distribution des NPCs. Pom33 joue également un rôle dans l’assemblage des pores nucléaires au sein de l’EN (biogenèse de novo des NPCs). POM33 appartient à une famille de gènes très conservés. Il possède un paralogue chez S. cerevisiae, PER33, qui code pour une protéine localisée majoritairement au réticulum endoplasmique et minoritairement aux NPCs et qui n’est pas impliquée dans la biogenèse des NPCs. Chez les mammifères, il n’existe qu’un homologue de Pom33/Per33, TMEM33. Dans le cadre de ce doctorat, nous nous sommes demandés quels étaient les déterminants contribuant à l’adressage spécifique de Pom33 au niveau des NPCs et à sa fonction dans la biogenèse de ces structures. La purification de Pom33-ProtA, suivie de spectrométrie de masse, nous a permis d’identifier un nouveau partenaire de Pom33, le facteur d’import Kap123. Des approches in vitro ont montré une interaction directe entre Kap123 et le domaine C-terminal (CTD) de Pom33, qui est perturbée en présence de RanGTP. Par ailleurs, des prédictions in silico ont révélé la présence dans ce domaine CTD de deux hélices amphipathiques, conservées chez l’humain. Des analyses par dichroïsme circulaire et flottaisons ont confirmé la capacité du CTD à s’organiser en hélice en présence de membranes lipidiques et à interagir préférentiellement avec les membranes très courbées. L’expression d’une version mutée de Pom33-CTD, incapable de se lier aux membranes et couplée à la GFP, a révélé la capacité de ce domaine à agir comme un NLS, importé spécifiquement dans le noyau par Kap123. Alors que la délétion du domaine CTD affecte l’adressage de Pom33 aux NPCs et provoque un défaut de distribution des NPCs, la mutation des résidus basiques impliqués dans l’interaction avec Kap123 ou des résidus permettant sa liaison aux membranes lipidiques ne récapitule pas ce phénotype. En revanche, la perte combinée de ces deux déterminants affecte l’adressage de Pom33 aux NPCs et provoque un défaut de distribution des NPCs ainsi qu'une interaction génétique avec le mutant nup133∆, impliqué dans la biogenèse de novo des NPCs. Les résultats obtenus lors de cette étude indiquent donc que l’adressage de Pom33 est un mécanisme actif et multifactoriel, qui met en jeu au moins deux déterminants dans son domaine CTD. Ces données indiquent également un rôle de ce domaine dans la biogenèse de novo des NPCs, qui pourrait néanmoins n’être qu’un effet indirect de son rôle dans l’adressage de Pom33 aux NPCs. Au cours de cette étude, nous avons également mis en évidence d’autres partenaires potentiels de Pom33, en particulier Myo2, une localisation de Pom33 au niveau du bourgeon lors de la division et une interaction génétique entre POM33 et KAP123. Ces observations préliminaires ouvrent de nouvelles pistes de réflexion quant au rôle de Pom33 lors de la division cellulaire. / In eukaryotic cells, nucleocytoplasmic exchanges take place through the nuclear pores complexes (NPCs). These conserved macromolecular assemblies are embedded in the nuclear envelope (NE) and composed of ~30 distinct proteins called nucleoporins (Nups), each presents in multiple copies. In the budding yeast Sacharomyces cerevisiae, there are only four transmembrane Nups, including Pom33. A previous study leds to the characterization of Pom33 and revealed that pom33∆ mutant cells, although viable and without apparent alteration in nucleocytoplasmic transport, display NPCs distribution defect. Pom33 also contributes to the biogenesis of NPCs into the intact NE (de novo biogenesis). Pom33 is highly conserved among species and has a paralogue in S. cerevisiae, Per33, which can associate with NPCs but is mainly localized at the endoplasmic reticulum (ER) and NE. Unlike Pom33, Per33 is not involved in NPCs distribution and biogenesis. In mammalian cells, there is a unique homologue of Pom33/Per33, named TMEM33. In the context of this thesis, we aimed to identify the determinants involved in the specific targeting of Pom33 to NPCs and in its function in pore biogenesis. To characterize these determinants, we first performed affinity-purification experiments followed by mass spectrometry analyses. This identified a novel Pom33 partner, the nuclear import factor Kap123. In vitro experiments revealed a direct interaction between Pom33 C-terminal domain (CTD) and Kap123 that involves positively-charged residues within Pom33-CTD and is altered in the presence of Ran-GTP. Moreover, in silico analyses predicted the presence of two evolutionarily-conserved amphipathic ~-helices within Pom33-CTD. Circular dichroism studies and liposome co-floatation assays confirmed that this CTD domain is able to fold into ~-helices in the presence of liposomes and revealed its preferential binding to highly curved lipid membranes. When expressed in yeast, under conditions abolishing Pom33-CTD membrane association, Pom33-CTD behaves as a Kap123-dependent nuclear localization domain. While deletion of Pom33 C-terminal domain (Pom33-∆CTD-GFP) impairs Pom33 NPC targeting and stability and leads to a NPC distribution phenotype, mutants affecting either Kap123 binding or the amphipathic properties of the ~-helices do not display any detectable defect. However, combined impairment of lipid and Kap123 binding affects Pom33 targeting to NPCs and leads to an altered NPC distribution and a genetic interaction with the deletion of NUP133, a gene coding for a nucleoporin involved in NPCs biogenesis. Together, these results indicate that Pom33 targeting to NPCs is an active and multifactorial process that requires at least two determinants within its CTD. They also suggest a role of Pom33-CTD in the de novo NPCs biogenesis process, which could however only be an indirect consequence of its requirement for Pom33 targeting to NPCs. Our mass spectrometry analysis also identified other partners of Pom33, in particular Myo2, a molecular motor required for the cell cycle-regulated transport of various organelles and proteins and for correct alignment of the spindle during mitosis. Our studies also revealed a specific localization of Pom33 at the bud tip during mitosis and a genetic interaction between POM33 and KAP123. Taken together, these preliminary observations open new perspectives regarding additional functions of Pom33 during cell division.

Page generated in 0.0749 seconds