31 |
Behavioral and neurophysiological evidence for increased cognitive flexibility in late childhoodWolff, Nicole, Roessner, Veit, Beste, Christian 27 March 2017 (has links) (PDF)
Executive functions, like the capacity to control and organize thoughts and behavior, develop from childhood to young adulthood. Although task switching and working memory processes are known to undergo strong developmental changes from childhood to adulthood, it is currently unknown how task switching processes are modulated between childhood and adulthood given that working memory processes are central to task switching. The aim of the current study is therefore to examine this question using a combined cue- and memory-based task switching paradigm in children (N = 25) and young adults (N = 25) in combination with neurophysiological (EEG) methods. We obtained an unexpected paradoxical effect suggesting that memory-based task switching is better in late childhood than in young adulthood. No group differences were observed in cue-based task switching. The neurophysiological data suggest that this effect is not due to altered attentional selection (P1, N1) or processes related to the updating, organization, and implementation of the new task-set (P3). Instead, alterations were found in the resolution of task-set conflict and the selection of an appropriate response (N2) when a task has to be switched. Our observation contrasts findings showing that cognitive control mechanisms reach their optimal functioning in early adulthood.
|
32 |
Phosphorus in Preferential Flow Pathways of Forest Soils in Germany.Julich, Dorit, Feger, Karl-Heinz 27 March 2017 (has links) (PDF)
The transport of nutrients in forest soils predominantly occurs along preferential flow pathways (PFP). This study investigated the composition of phosphorus (P) forms in PFPs and soil matrix in several temperate beech forests with contrasting soil P contents in Germany. The PFPs were visualized using dye tracer experiments. Stained and unstained soil was sampled from three profile cuts per plot and analyzed for P fractions. The results show that labile P concentrations were highest in the O-layer and had the same range of values at all sites (240–320 mg·kg−1), although total P (TP) differed considerably (530–2330 mg·kg−1). The ratio of labile P to TP was significantly lower in the P-rich soil compared to the medium and P-poor soils. By contrast, the ratio of moderately labile P to TP was highest at the P-rich site. The shifts in P fractions with soil depth were generally gradual in the P-rich soil, but more abrupt at the others. The contents of labile and moderately labile P clearly differed in PFPs compared to soil matrix, but not statistically significant. The studied soils are characterized by high stone contents with low potential for P sorption. However, indications were found that labile organically bound P accumulates in PFPs such as biopores.
|
33 |
Sulfated hyaluronan alters fibronectin matrix assembly and promotes osteogenic differentiation of human bone marrow stromal cellsVogel, Sarah, Arnoldini, Simon, Möller, Stephanie, Hempel, Ute, Schnabelrauch, Matthias 28 March 2017 (has links) (PDF)
Extracellular matrix (ECM) composition and structural integrity is one of many factors that influence cellular differentiation. Fibronectin (FN) which is in many tissues the most abundant ECM protein forms a unique fibrillary network. FN homes several binding sites for sulfated glycosaminoglycans (sGAG), such as heparin (Hep), which was previously shown to influence FN conformation and protein binding. Synthetically sulfated hyaluronan derivatives (sHA) can serve as model molecules with a well characterized sulfation pattern to study sGAG-FN interaction. Here is shown that the low-sulfated sHA (sHA1) interacts with FN and influences fibril assembly. The interaction of FN fibrils with sHA1 and Hep, but not with non-sulfated HA was visualized by immunofluorescent co-staining. FRET analysis of FN confirmed the presence of more extended fibrils in human bone marrow stromal cells (hBMSC)-derived ECM in response to sHA1 and Hep. Although both sHA1 and Hep affected FN conformation, exclusively sHA1 increased FN protein level and led to thinner fibrils. Further, only sHA1 had a pro-osteogenic effect and enhanced the activity of tissue non-specific alkaline phosphatase. We hypothesize that the sHA1-triggered change in FN assembly influences the entire ECM network and could be the underlying mechanism for the pro-osteogenic effect of sHA1 on hBMSC.
|
34 |
Brain-Derived Neurotrophic Factor (Val66Met) and Serotonin Transporter (5-HTTLPR) Polymorphisms Modulate Plasticity in Inhibitory Control Performance Over Time but Independent of Inhibitory Control TrainingEnge, Sören, Fleischhauer, Monika, Gärtner, Anne, Reif, Andreas, Lesch, Klaus-Peter, Kliegel, Matthias, Strobel, Alexander 31 March 2017 (has links) (PDF)
Several studies reported training-induced improvements in executive function tasks and also observed transfer to untrained tasks. However, the results are mixed and there is a large interindividual variability within and across studies. Given that training-related performance changes would require modification, growth or differentiation at the cellular and synaptic level in the brain, research on critical moderators of brain plasticity potentially explaining such changes is needed. In the present study, a pre-post-follow-up design (N = 122) and a 3-weeks training of two response inhibition tasks (Go/NoGo and Stop-Signal) was employed and genetic variation (Val66Met) in the brain-derived neurotrophic factor (BDNF) promoting differentiation and activity-dependent synaptic plasticity was examined. Because Serotonin (5-HT) signaling and the interplay of BDNF and 5-HT are known to critically mediate brain plasticity, genetic variation in the 5-HTT gene-linked polymorphic region (5-HTTLPR) was also addressed. The overall results show that the kind of training (i.e., adaptive vs. non-adaptive) did not evoke genotype-dependent differences. However, in the Go/NoGo task, better inhibition performance (lower commission errors) were observed for BDNF Val/Val genotype carriers compared to Met-allele ones supporting similar findings from other cognitive tasks. Additionally, a gene-gene interaction suggests a more impulsive response pattern (faster responses accompanied by higher commission error rates) in homozygous l-allele carriers relative to those with the s-allele of 5-HTTLPR. This, however, is true only in the presence of the Met-allele of BDNF, while the Val/Val genotype seems to compensate for such non-adaptive responding. Intriguingly, similar results were obtained for the Stop-Signal task. Here, differences emerged at post-testing, while no differences were observed at T1. In sum, although no genotype-dependent differences between the relevant training groups emerged suggesting no changes in the trained inhibition function, the observed genotype-dependent performance changes from pre- to post measurement may reflect rapid learning or memory effects linked to BDNF and 5-HTTLPR. In line with ample evidence on BDNF and BDNF-5-HT system interactions to induce (rapid) plasticity especially in hippocampal regions and in response to environmental demands, the findings may reflect genotype-dependent differences in the acquisition and consolidation of task-relevant information, thereby facilitating a more adaptive responding to task-specific requirements.
|
35 |
Work-related exposures and disorders among physical therapists: experiences and beliefs of professional representatives assessed using a qualitative approachGirbig, Maria, Freiberg, Alice, Deckert, Stefanie, Druschke, Diana, Kopkow, Christian, Nienhaus, Albert, Seidler, Andreas 31 March 2017 (has links) (PDF)
Background
According to international study results, physical therapists are afflicted with work-related musculoskeletal, psychosocial and dermal disorders as well as infections. The few existing studies in German-speaking regions focus mainly on dermal and psychosocial exposures and resulting complaints. An overview of all relevant work-related exposures and complaints of physical therapists is currently lacking.
We sought to identify work-related exposures based on the subjective experiences and beliefs of physiotherapeutic representatives, in order to identify relevant work-related complaints and diseases. Likewise we aimed to compare the international evidence with the actual situation of physical therapists in Germany.
Methods
Two complementary qualitative approaches were used: 1) a focus group discussion with representatives of professional physiotherapy associations as well as health and safety stakeholders and 2) qualitative semi-structured telephone interviews incorporating currently employed physical therapists. The group discussion was conducted applying a moderation technique, and interviews were analyzed using the content analysis approach by Mayring.
Results
The focus group discussion with five participants and the 40 semi-structured interviews with physical therapists identified comparable results. The main exposures of physiotherapeutic work were considered to be musculoskeletal (e.g., awkward body postures during treatment, patient transfers, passive mobilization), psychosocial (e.g., statutory audit of prescriptions and the associated conflicts with doctors and health insurance providers) and partly dermal and infectious (e.g., wet work and risk of infection) factors. Diseases of the spine, wrist or finger joints, burnout syndrome and infections were mentioned as possible consequences.
Conclusions
The subjective data generated by both groups (focus group discussion and interviews) were comparable and consistent with the current state of research. The results provide new insight regarding work-related exposures and diseases of physical therapists working in Germany. These findings aided the design of a German-wide representative survey of practicing physical therapists.
|
36 |
A peroxygenase from Chaetomium globosum catalyzes the selective oxygenation of testosteroneKiebist, Jan, Schmidtke, Kai-Uwe, Zimmermann, Jörg, Kellner, Harald, Jehmlich, Nico, Ullrich, René, Zänder, Daniel, Hofrichter, Martin, Scheibner, Katrin 03 April 2017 (has links) (PDF)
Unspecific peroxygenases (UPO, EC 1.11.2.1) secreted by fungi open an efficient way to selectively oxyfunctionalize diverse organic substrates, including less-activated hydrocarbons, by transferring peroxide-borne oxygen. We investigated a cell-free approach to incorporate epoxy and hydroxyl functionalities directly into the bulky molecule testosterone by a novel unspecific peroxygenase (UPO) that is produced by the ascomycetous fungus Chaetomium globosum in a complex medium rich in carbon and nitrogen. Purification by fast protein liquid chromatography revealed two enzyme fractions with the same molecular mass (36 kDa) and with specific activity of 4.4 to 12 U mg−1. Although the well-known UPOs of Agrocybe aegerita (AaeUPO) and Marasmius rotula (MroUPO) failed to convert testosterone in a comparative study, the UPO of C. globosum (CglUPO) accepted testosterone as substrate and converted it with total turnover number (TTN) of up to 7000 into two oxygenated products: the 4,5-epoxide of testosterone in β-configuration and 16α-hydroxytestosterone. The reaction performed on a 100 mg scale resulted in the formation of about 90 % of the epoxide and 10 % of the hydroxylation product, both of which could be isolated with purities above 96 %. Thus, CglUPO is a promising biocatalyst for the oxyfunctionalization of bulky steroids and it will be a useful tool for the synthesis of pharmaceutically relevant steroidal molecules.
|
37 |
A Global Approach for Quantitative Super Resolution and Electron Microscopy on Cryo and Epoxy Sections Using Self-labeling Protein TagsMüller, Andreas, Neukam, Martin, Ivanova, Anna, Sönmez, Anke, Münster, Carla, Kretschmar, Susanne, Kalaidzidis, Yannis, Kurth, Thomas, Verbavatz, Jean-Marc, Solimena, Michele 04 April 2017 (has links) (PDF)
Correlative light and electron microscopy (CLEM) is a powerful approach to investigate the molecular ultrastructure of labeled cell compartments. However, quantitative CLEM studies are rare, mainly due to small sample sizes and the sensitivity of fluorescent proteins to strong fixatives and contrasting reagents for EM. Here, we show that fusion of a self-labeling protein to insulin allows for the quantification of age-distinct insulin granule pools in pancreatic beta cells by a combination of super resolution and transmission electron microscopy on Tokuyasu cryosections. In contrast to fluorescent proteins like GFP organic dyes covalently bound to self-labeling proteins retain their fluorescence also in epoxy resin following high pressure freezing and freeze substitution, or remarkably even after strong chemical fixation. This enables for the assessment of age-defined granule morphology and degradation. Finally, we demonstrate that this CLEM protocol is highly versatile, being suitable for single and dual fluorescent labeling and detection of different proteins with optimal ultrastructure preservation and contrast.
|
38 |
Statistischer Jahresbericht06 April 2017 (has links) (PDF)
No description available.
|
39 |
Towards an optimal contact metal for CNTFETsFediai, Artem, Ryndyk, Dmitry A., Seifert, Gotthard, Mothes, Sven, Claus, Martin, Schröter, Michael, Cuniberti, Gianaurelio 07 April 2017 (has links) (PDF)
Downscaling of the contact length Lc of a side-contacted carbon nanotube field-effect transistor (CNTFET) is challenging because of the rapidly increasing contact resistance as Lc falls below 20–50 nm. If in agreement with existing experimental results, theoretical work might answer the question, which metals yield the lowest CNT–metal contact resistance and what physical mechanisms govern the geometry dependence of the contact resistance. However, at the scale of 10 nm, parameter-free models of electron transport become computationally prohibitively expensive. In our work we used a dedicated combination of the Green function formalism and density functional theory to perform an overall ab initio simulation of extended CNT–metal contacts of an arbitrary length (including infinite), a previously not achievable level of simulations. We provide a systematic and comprehensive discussion of metal–CNT contact properties as a function of the metal type and the contact length. We have found and been able to explain very uncommon relations between chemical, physical and electrical properties observed in CNT–metal contacts. The calculated electrical characteristics are in reasonable quantitative agreement and exhibit similar trends as the latest experimental data in terms of: (i) contact resistance for Lc = ∞, (ii) scaling of contact resistance Rc(Lc); (iii) metal-defined polarity of a CNTFET. Our results can guide technology development and contact material selection for downscaling the length of side-contacts below 10 nm.
|
40 |
Crystallographic insights into (CH3NH3)3(Bi2I9): a new lead-free hybrid organic–inorganic material as a potential absorber for photovoltaicsEckhardt, Kai, Bon, Volodymyr, Getzschmann, Jürgen, Grothe, Julia, Wisser, Florian M., Kaskel, Stefan 17 March 2017 (has links) (PDF)
The crystal structure of a new bismuth-based light-absorbing material for the application in solar cells was determined by single crystal X-ray diffraction for the first time. (CH3NH3)3(Bi2I9) (MBI) is a promising alternative to recently rapidly progressing hybrid organic–inorganic perovskites due to the higher tolerance against water and low toxicity. Single crystal X-ray diffraction provides detailed structural information as an essential prerequisite to gain a fundamental understanding of structure property relationships, while powder diffraction studies demonstrate a high degree of crystallinity in thin films.
|
Page generated in 0.0504 seconds