• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 139
  • 35
  • 27
  • 27
  • 20
  • 8
  • 6
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 321
  • 85
  • 67
  • 46
  • 44
  • 38
  • 34
  • 33
  • 29
  • 28
  • 28
  • 25
  • 24
  • 24
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

O uso da simulação no desenvolvimento de motores diesel / Use of simulation in diesel engines development

Souza, Anderson de Almeida 16 August 2018 (has links)
Orientadores: Pedro Teixeira Lacava, Cristiane Aparecida Martins / Dissertação (mestrado profissional) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-16T17:20:07Z (GMT). No. of bitstreams: 1 Souza_AndersondeAlmeida_M.pdf: 2437052 bytes, checksum: 4d9d2474bf3d815f70a9be4908239d1a (MD5) Previous issue date: 2010 / Resumo: A cada introdução de uma nova norma de emissões de poluentes para motores diesel, modificações se fazem necessárias e um dos sistemas do motor que sofre diretamente tais modificações é o sistema de gerenciamento de ar, que é composto por: turbo-compressor,resfriador EGR e válvula EGR. Assim, todo um ciclo de desenvolvimento do motor é realizado com diversos tipos de ensaios, desde a definição dos componentes até a validação do motor. Com o intuito de reduzir a quantidade de ensaios realizados e o tempo durante a fase de definição dos componentes, uma alternativa é a utilização da simulação computacional. Com a ajuda de softwares específicos, é possível reduzir a quantidade de ensaios para a avaliação dos componentes, deixando para avaliação em dinamômetro apenas os ensaios das configurações que apresentaram os melhores resultados na simulação. Neste trabalho foi utilizado o software GTPOWER, sendo primeiramente realizada a calibração e a validação do modelo para um motor já existente, devido a gama de informações disponíveis sobre esse motor. Na seqüência, foi adicionado ao modelo outros componentes, como o sistema EGR, com o intuito de avaliar o comportamento de diferentes modelos de turbo-compressores em relação às suas características aerodinâmicas e também avaliar diferentes resfriadores EGR em relação à sua capacidade de troca térmica (efetividade) / Abstract: Every introduction of a new pollutant emissions standard for diesel engines, modifications are necessary and one of the engine systems that directly suffer such changes is the air management system, which is composed of turbocharger, EGR cooler and EGR valve. Thus an engine development cycle is carried out with several types of tests, from components definition to engine validation. Aiming at reducing the number of tests performed and the time during the definition phase of the components, an alternative is the use of computer simulation. With the help of specific software, it is possible to reduce the amount of tests for the assessment of the components, leaving only for assessment in the dynamometer testing the configurations that produced the best results in the simulation. In this work used the GT-POWER software. The model was first calibrated and validated for an existing engine, because of the range of information available for the engine. In the sequence, other components, such as the EGR system, were added to the model in order to evaluate the performance of different turbocharger models for aerodynamic characteristics and also evaluate different EGR coolers for thermal exchange capacity (effectiveness) / Mestrado / Motores / Mestre em Engenharia Automobilistica
82

Iterative receivers for digital communications via variational inference and estimation

Nissilä, M. (Mauri) 08 January 2008 (has links)
Abstract In this thesis, iterative detection and estimation algorithms for digital communications systems in the presence of parametric uncertainty are explored and further developed. In particular, variational methods, which have been extensively applied in other research fields such as artificial intelligence and machine learning, are introduced and systematically used in deriving approximations to the optimal receivers in various channel conditions. The key idea behind the variational methods is to transform the problem of interest into an optimization problem via an introduction of extra degrees of freedom known as variational parameters. This is done so that, for fixed values of the free parameters, the transformed problem has a simple solution, solving approximately the original problem. The thesis contributes to the state of the art of advanced receiver design in a number of ways. These include the development of new theoretical and conceptual viewpoints of iterative turbo-processing receivers as well as a new set of practical joint estimation and detection algorithms. Central to the theoretical studies is to show that many of the known low-complexity turbo receivers, such as linear minimum mean square error (MMSE) soft-input soft-output (SISO) equalizers and demodulators that are based on the Bayesian expectation-maximization (BEM) algorithm, can be formulated as solutions to the variational optimization problem. This new approach not only provides new insights into the current designs and structural properties of the relevant receivers, but also suggests some improvements on them. In addition, SISO detection in multipath fading channels is considered with the aim of obtaining a new class of low-complexity adaptive SISOs. As a result, a novel, unified method is proposed and applied in order to derive recursive versions of the classical Baum-Welch algorithm and its Bayesian counterpart, referred to as the BEM algorithm. These formulations are shown to yield computationally attractive soft decision-directed (SDD) channel estimators for both deterministic and Rayleigh fading intersymbol interference (ISI) channels. Next, by modeling the multipath fading channel as a complex bandpass autoregressive (AR) process, it is shown that the statistical parameters of radio channels, such as frequency offset, Doppler spread, and power-delay profile, can be conveniently extracted from the estimated AR parameters which, in turn, may be conveniently derived via an EM algorithm. Such a joint estimator for all relevant radio channel parameters has a number of virtues, particularly its capability to perform equally well in a variety of channel conditions. Lastly, adaptive iterative detection in the presence of phase uncertainty is investigated. As a result, novel iterative joint Bayesian estimation and symbol a posteriori probability (APP) computation algorithms, based on the variational Bayesian method, are proposed for both constant-phase channel models and dynamic phase models, and their performance is evaluated via computer simulations.
83

Optimisation de précodeurs linéaires pour les systèmes MIMO à récepteurs itératifs / Optimization of linear precoders for coded MIMO systems with iterative receivers

Nhan, Nhat-Quang 05 October 2016 (has links)
Les standards « Long-term evolution » (LTE) et LTE-Advanced (LTE-A) devraient influencer fortement l’avenir de la cinquième génération (5G) des réseaux mobiles. Ces normes exigent de hauts débits de données et une qualité de service de très bon niveau, ce qui permet d’assurer un faible taux d’erreur, avec une faible latence. Par ailleurs, la complexité doit être limitée. Dans le but de déterminer des solutions technologiques modernes qui satisfont ces contraintes fortes, nous étudions dans la thèse des systèmes de communication sans fil MIMO codés. D’abord, nous imposons un simple code convolutif récursif systématique (RSC) pour limiter la complexité et la latence. En considérant des récepteurs itératifs, nous optimisons alors la performance en termes de taux d’erreur de ces systèmes en définissant un précodage linéaire MIMO et des techniques de mapping appropriées. Dans la deuxième partie de la thèse, nous remplaçons le RSC par un LDPC non-binaire (NB-LDPC). Nous proposons d’utiliser les techniques de précodage MIMO afin de réduire la complexité des récepteurs des systèmes MIMO intégrant des codes NB-LDPC. Enfin, nous proposons également un nouvel algorithme de décodage itératif à faible complexité adapté aux codes NB-LDPC. / The long-term evolution (LTE) and the LTE-Advanced (LTE-A) standardizations are predicted to play essential roles in the future fifth-generation (5G) mobile networks. These standardizations require high data rate and high quality of service, which assures low error-rate and low latency. Besides, as discussed in the recent surveys, low complexity communication systems are also essential in the next 5G mobile networks. To adapt to the modern trend of technology, in this PhD thesis, we investigate the multiple-input multiple-output (MIMO) wireless communication schemes. In the first part of this thesis, low-complex forward error correction (FEC) codes are used for low complexity and latency. By considering iterative receivers at the receiver side, we exploit MIMO linear precoding and mapping methods to optimize the error-rate performance of these systems. In the second part of this thesis, non-binary low density parity check (NB-LDPC) codes are investigated. We propose to use MIMO precoders to reduce the complexity for NB-LDPC encoded MIMO systems. A novel low complexity decoding algorithm for NB-LDPC codes is also proposed at the end of this thesis.
84

Advanced receivers for space-time block-coded single-carrier transmissions over frequency-selective fading channels

Wavegedara, Kapila Chandika B. 05 1900 (has links)
In recent years, space-time block coding (STBC) has emerged as an effective transmit-diversity technique to combat the detrimental effects of channel fading. In addition to STBC, high-order modulation schemes will be used in future wireless communication systems aiming to provide ubiquitous-broadband wireless access. Hence, advanced receiver schemes are necessary to achieve high performance. In this thesis, advanced and computationally-efficient receiver schemes are investigated and developed for single-carrier space-time (ST) block-coded transmissions over frequency-selective fading (FSF) channels. First, we develop an MMSE-based turbo equalization scheme for Alamouti ST block-coded systems. A semi-analytical method to estimate the bit error rate (BER) is devised. Our results show that the proposed turbo equalization scheme offers significant performance improvements over one-pass equalization. Second, we analyze the convergence behavior of the proposed turbo equalization scheme for Alamouti ST block-coded systems using the extrinsic information transfer (EXIT)-band chart technique. Third, burst-wise (BW)-STBC is applied for uplink transmission over FSF channels in block-spread-CDMA systems with multiuser interference-free reception. The performances of different decision feedback sequence estimation (DFSE) schemes are investigated. A new scheme combining frequency-domain (FD) linear equalization and modified unwhitened-DFSE is proposed. The proposed scheme is very promising as the error-floor behavior observed in the existing unwhitened DFSE schemes is eliminated. Fourth, we develop a FD-MMSE-based turbo equalization scheme for the downlink of ST block-coded CDMA systems. We adopt BW-STBC instead of Alamouti symbol-wise (SW)-STBC considered for WCDMA systems and demonstrate its superior performance in FSF channels. Block spreading is shown to be more desirable than conventional spreading to improve performance using turbo equalization. We also devise approximate implementations (AprxImpls) that offer better trade-offs between performance and complexity. Semi-analytical upper bounds on the BER are derived. Fifth, turbo multicode detection is investigated for ST block-coded downlink transmission in DS-CDMA systems. We propose symbol-by-symbol and chip-by-chip FD-MMSE-based multicode detectors. An iterative channel estimation scheme is also proposed. The proposed turbo multicode detection scheme offers significant performance improvements compared with non-iterative multicode detection. Finally, the impact of channel estimation errors on the performance of MMSE-based turbo equalization in ST block-coded CDMA systems is investigated. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
85

Efecto de la recirculación del gas de escape en el proceso de la renovación de la carga en motores turbo-sobrealimentados

Vera García, Francisco 15 March 2004 (has links)
La recirculación de los gases de escape (EGR) introduce diferentes efectos sobre las prestaciones del motor debido a su influencia sobre los procesos de combustión y renovación de la carga del mismo. Los trabajos realizados en esta tesis doctoral se plantearon con el objetivo de profundizar en el conocimiento de los efectos que introduce la recirculación de los gases de escape en el proceso de renovación de la carga de un motor Diesel turbo-sobrealimentado. La metodología utilizada ha sido la combinación adecuada de resultados experimentales y modelados del motor sujeto a estudio. Se ha diseñado una serie de experimentos que permiten separar los efectos del EGR sobre el proceso de renovación de la carga, evitando y aislando el efecto que el EGR ejerce sobre la combustión. Del análisis de los resultados obtenidos se desprende, por un lado, la influencia que tiene la estrategia de EGR utilizada y los elementos que introducen dicha estrategia sobre las prestaciones del motor, y por otro lado, la influencia que ejerce el EGR sobre la sobrealimentación y el proceso de renovación de la carga. / Vera García, F. (2004). Efecto de la recirculación del gas de escape en el proceso de la renovación de la carga en motores turbo-sobrealimentados [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/62276
86

DEVELOPMENT OF ACOUSTIC MODELS FOR HIGH FREQUENCY RESONATORS FOR TURBOCHARGED IC-ENGINES

Wang, Zheng January 2012 (has links)
Automotive turbo compressors generate high frequency noise in the air intake system. This sound generation is of importance for the perceived sound quality of luxury cars and may need to be controlled by the use of silencers. The silencers usually contain resonators with slits, perforates and cavities. The purpose of the work reported is to develop acoustic models for these resonators where relevant effects such as the effect of realistic mean flow on losses and possibly 3D effects are considered. An experimental campaign has been undertaken where the two-port matrices and transmission loss of four sample resonators has been measured without flow and for two different mean flow speeds (M=0.05 & M=0.1) using two source location technique. Models for the four resonators have been developed using a 1D linear acoustic code (SIDLAB) and a FEM code (COMSOL Multi-physics). Different models, from the literature, for including the effect of mean flow on the acoustic losses at slits and perforates have been discussed. Correct modeling of acoustic losses for resonators with complicated geometry is important for the simulation and development of new and improved silencers, and the present work contributes to this understanding. The measured acoustic properties compared well with the simulated model for almost all the cases.
87

Late Stage Functionalization of 1,2-Azaborines for Application in Biomedical Research:

Armand, Jeremy Richard January 2019 (has links)
Thesis advisor: Shih-Yuan . Liu / Chapter 1. Use of boron as a pharmacophore is as growing but still underdeveloped strategy for expanding chemical space in biomedical research. In addition to more established methods of incorporating boron in drug development, an attractive and emerging method of introducing boron into biologically active compounds is through boron-nitrogen containing heterocycles. In particular, the Liu group has focused on exploring the interactions of monocyclic 1,2-azaborines in biological space. In order to install complicated chemical functionality needed for further studies, methods for late stage functionalization of 1,2-azaborines must be developed. Described herein is a method for functionalizing 1,2-azaborine at the C3- and C5-positions, with bromine and iodine handles, respectively. Chapter 2. Described is the application of the turbo Grignard reaction to 1,2-azaborines bearing a B–Cl bond. The reaction utilizes iPrMgCl·LiCl to form aryl carbon nucleophiles and is tolerant of sensitive functional groups such as nitriles and esters. Development of the reaction obviates the need to use toxic organotin reagents to install aryl groups at the B-position that bear sensitive, electrophilic functionalities. / Thesis (MS) — Boston College, 2019. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
88

Selective Core Boosting: The Return of the Turbo Button

Wamhoff, Jons-Tobias, Diestelhorst, Stephan, Fetzer, Christof, Marlier, Patrick, Felber, Pascal, Dice, Dave 26 November 2013 (has links)
Several modern multi-core architectures support the dynamic control of the CPU's clock rate, allowing processor cores to temporarily operate at speeds exceeding the operational base frequency. Conversely, cores can operate at a lower speed or be disabled altogether to save power. Such facilities are notably provided by Intel's Turbo Boost and AMD's Turbo CORE technologies. Frequency control is typically driven by the operating system which requests changes to the performance state of the processor based on the current load of the system. In this paper, we investigate the use of dynamic frequency scaling from user space to speed up multi-threaded applications that must occasionally execute time-critical tasks or to solve problems that have heterogeneous computing requirements. We propose a general-purpose library that allows selective control of the frequency of the cores - subject to the limitations of the target architecture. We analyze the performance trade-offs and illustrate its benefits using several benchmarks and real-world workloads when temporarily boosting selected cores executing time-critical operations. While our study primarily focuses on AMD's architecture, we also provide a comparative evaluation of the features, limitations, and runtime overheads of both Turbo Boost and Turbo CORE technologies. Our results show that we can successful exploit these new hardware facilities to accelerate the execution of key sections of code (critical paths) improving overall performance of some multi-threaded applications. Unlike prior research, we focus on performance instead of power conservation. Our results further can give guidelines for the design of hardware power management facilities and the operating system interfaces to those facilities.
89

Compressor Surge: Simulation, Modeling and Analysis

Massiquet, Robin January 2022 (has links)
The master thesis subject takes place in the automotive industry and specifically in the internal combustion engine area. The need of improving the efficiency of the engines leads to develop new technologies like turbo compressors. Some of the challenges to overcome are high rotational speed difficulties or extreme load and fatigue in the rotors. By design they are also prone to aerodynamic instabilities like compressor surge. These off design behaviors are not often studied by the manufacturers and therefore not so well known.  The aims are to understand, analyze and possible ameliorate the sources of compressor surge; to identify surge causes; to create a way to reproduce the phenomena with robustness and precision; to be able to study potential solutions to eliminate surge noises. A literature review has been carried out. This would give good metrics to identify surge cycles. Based on the theory developed by Fink et al. (1992) a simulation model has been generated, followed by a process of calibration carried out using data acquired during field experiments. This method uses a fully modifiable simulation model in order to be able to be adapted to a wide range of turbo compressors. The predicted data by the model shows a reasonable agreement with the experimental data. This allows to test control laws with a surge valve or a high pressure gas recirculating valve. The knowledge alongside the simulation would help the team to better apprehend the problem on the future engine generations and have means to avoid the unwanted surge phenomena to occur.
90

Implementation and Performance of an Improved Turbo Decoder on a Configurable Computing Machine

Puckett, W. Bruce 20 July 2000 (has links)
Turbo codes are a recently discovered class of error correction codes that achieve near-Shannon limit performance. Because of their complexity and highly parallel nature, turbo-coded applications are well suited for configurable computing. Field-programmable gate arrays (FPGAs), which are the main building blocks of configurable computing machines (CCMs), allow users to design flexible hardware that is optimized for performance, speed, power consumption, and chip-area. This thesis presents the implementation and performance of an improved turbo decoder on a configurable computing platform. The design's performance and throughput are emphasized in light of its algorithmic improvements, and its flexibility is emphasized as it is ported to a newer, more efficient architecture with more hardware resources. Because this decoder will eventually become the error correction component of a software radio, the design must maintain a high data rate, interface easily with other modules, and conserve hardware resources for future research developments. / Master of Science

Page generated in 0.0258 seconds