• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 437
  • 87
  • 56
  • 36
  • 26
  • 14
  • 9
  • 8
  • 6
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 918
  • 325
  • 203
  • 193
  • 176
  • 155
  • 148
  • 122
  • 104
  • 94
  • 90
  • 85
  • 82
  • 81
  • 78
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Multi-Objective and Multidisciplinary Design Optimisation of Unmanned Aerial Vehicle Systems using Hierarchical Asynchronous Parallel Multi-Objective Evolutionary Algorithms

Damp, Lloyd Hollis January 2007 (has links)
Master of Engineering (Research) / The overall objective of this research was to realise the practical application of Hierarchical Asynchronous Parallel Evolutionary Algorithms for Multi-objective and Multidisciplinary Design Optimisation (MDO) of UAV Systems using high fidelity analysis tools. The research looked at the assumed aerodynamics and structures of two production UAV wings and attempted to optimise these wings in isolation to the rest of the vehicle. The project was sponsored by the Asian Office of the Air Force Office of Scientific Research under contract number AOARD-044078. The two vehicles wings which were optimised were based upon assumptions made on the Northrop Grumman Global Hawk (GH), a High Altitude Long Endurance (HALE) vehicle, and the General Atomics Altair (Altair), Medium Altitude Long Endurance (MALE) vehicle. The optimisations for both vehicles were performed at cruise altitude with MTOW minus 5% fuel and a 2.5g load case. The GH was assumed to use NASA LRN 1015 aerofoil at the root, crank and tip locations with five spars and ten ribs. The Altair was assumed to use the NACA4415 aerofoil at all three locations with two internal spars and ten ribs. Both models used a parabolic variation of spar, rib and wing skin thickness as a function of span, and in the case of the wing skin thickness, also chord. The work was carried out by integrating the current University of Sydney designed Evolutionary Optimiser (HAPMOEA) with Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) tools. The variable values computed by HAPMOEA were subjected to structural and aerodynamic analysis. The aerodynamic analysis computed the pressure loads using a Boeing developed Morino class panel method code named PANAIR. These aerodynamic results were coupled to a FEA code, MSC.Nastran® and the strain and displacement of the wings computed. The fitness of each wing was computed from the outputs of each program. In total, 48 design variables were defined to describe both the structural and aerodynamic properties of the wings subject to several constraints. These variables allowed for the alteration of the three aerofoil sections describing the root, crank and tip sections. They also described the internal structure of the wings allowing for variable flexibility within the wing box structure. These design variables were manipulated by the optimiser such that two fitness functions were minimised. The fitness functions were the overall mass of the simulated wing box structure and the inverse of the lift to drag ratio. Furthermore, six penalty functions were added to further penalise genetically inferior wings and force the optimiser to not pass on their genetic material. The results indicate that given the initial assumptions made on all the aerodynamic and structural properties of the HALE and MALE wings, a reduction in mass and drag is possible through the use of the HAPMOEA code. The code was terminated after 300 evaluations of each hierarchical level due to plateau effects. These evolutionary optimisation results could be further refined through a gradient based optimiser if required. Even though a reduced number of evaluations were performed, weight and drag reductions of between 10 and 20 percent were easy to achieve and indicate that the wings of both vehicles can be optimised.
142

Support System for Landing with an Autonomous Unmanned Aerial Vehicle

Östman, Christian, Forsberg, Anna January 2009 (has links)
<p>There are a number of ongoing projects developing autonomous vehicles, both helicopters and airplanes. The purpose of this thesis is to study a concept for calculating the height and attitude of a helicopter. The system will be active during landing. This thesis includes building an experimental setup and to develop algorithms and software.</p><p>The basic idea is to illuminate the ground with a certain pattern and in our case we used laser pointers to create this pattern. The ground is then filmed and the images are processed to extract the pattern. This provides us with information about the height and attitude of the helicopter. Furthermore, the concept implies that no equipment on the ground is needed. With further development the sensor should be able to calculate the movement of the underlying surface relative to the helicopter. This is very important when landing on a moving surface, e.g. a ship at sea.</p><p>To study the concept empirically an experimental setup was constructed. The setup provides us with the necessary information to evaluate how well the system could perform in reality. The setup is built with simple and cheap materials. In the setup an ordinary web camera and laser pointers that are avaliable for everyone have been used.</p> / <p>Det finns flera pågående projekt inom autonomflygande farkoster, både för helikoptrar och flygplan. Syftet med vårt examensarbetet är att undersöka ett koncept för en landningssensor för autonom landning med helikopter. Examensarbetet innebär att bygga en fysisk modell för test av konceptet samt att utveckla mjukvara.</p><p>Konceptet för sensorn består av att belysa marken med ett speciellt mönster, i vårt fall skapas mönstret av laserpekare, som därefter fotograferas och bildbehandlas. Detta mönster ger sedan information om helikopterns höjd och attityd i luften. Vidare innebär konceptet också att ingen markutrustning krävs för att sensorn ska fungera. I förlängningen ska man med detta koncept kunna beräkna hur underlaget rör sig relativt helikoptern, vilket är väldigt viktigt vid landning på objekt som rör sig, till exempel ett fartyg.</p><p>För att undersöka hur bra sensorn presterar i verkligheten så har en rigg byggts. Riggen är byggd med enkla och billiga material. I det här fallet används en webbkamera och laserpekare som går att köpa i vanliga elektronikaffärer.</p>
143

Positionsindikering i bilder och video för WITAS dialogsystem / Position specification in images and video for the WITAS dialog system

Lindblom, Hannes January 2004 (has links)
<p>Denna rapport beskriver arbetet med en utökning av ett dialogsystem till en UAV (Unmanned Aerial Vehicle, obemannad flygande farkost). Arbetet är utfört i WITAS-projektet (Wallenberg laboratory for research on Information Technology and Autonomous Systems), ett projekt som har som mål att utveckla en helikopter som ska kunna verka autonomt i t.ex. en trafikmiljö. Syftet med dialogsystemet är att en operatör med talspråk ska kunna ge kommandon till och få information från helikoptern. Detta examensarbete har som mål att utöka dialogen till att bli multimodal, dvs. att även innefatta pekningar och rörelser med musen. Operatören ska alltså kunna peka ut platser och objekt i en karta för att komplettera ett talat kommando eller få data utritat i kartan som svar på en förfrågan.</p>
144

Performance estimation of a ducted fan UAV

Eriksson, Mattias, Wedell, Björn January 2006 (has links)
<p>The ducted fan UAV is an unmanned aerial vehicle consisting mainly of a propeller enclosed in a open ended tube. The UAV has the same basic functions as an ordinary helicopter UAV but has several advantages to the same.</p><p>This thesis aims to estimate the performance of the concept of the ducted fan UAV. The company where this thesis has been written, DST Control AB, is currently investigating the economical possibilities to continue the development of this kind of UAV. This thesis shall provide DST Control AB with a theoretical as well as experimental ground for the investigation by estimation the lift capacity, position accuracy and wind tolerance.</p><p>A ducted fan UAV prototype and a mathematical model for that UAV have been developed by DST Control AB and a student project at Linköping University. The model is constructed through pure physical modeling. Several noise sources have been added to better fit the reality. Several experiments have been conducted to validate the model with satisfying results. Experiments to determine the lift capacity of the craft have also been conducted. These experiments showed a slightly smaller lift capacity than the theoretically calculated lift capacity. The wind tolerance has not been tested in experiments because of the lack of available wind tunnels but simulations have given an estimation of this tolerance.</p><p>To estimate the position accuracy, two different control systems have been implemented. The simplest control system is a system consisting of several PID controllers. The system is divided into two separate subsystems connected in cascade. The inner subsystem takes the pitch, roll and yaw angle as inputs and gives the rudder angles as outputs. The outer subsystem takes the inertial position as input and gives roll, pitch and yaw as outputs. Together, the two subsystems can be used to control the entire craft. The inner subsystem has also been replaced with a small LQ Compensator. An LQ Compensator for the entire system is also implemented giving about as good performance as the PID controller and better performance than the PID/LQ combination.</p>
145

Assembly of a UAV : hardware design of a UAV

BOZKURT, Ugur, Aslan, Mustafa January 2009 (has links)
<p><em>This bachelor thesis is dedicated to assemble the hardware system of a UAV (Unmanned Aerial Vehicle) in order to prepare the platform for an autonomous flight in the air for a given path through the pre-programmed check points. A UAV is an aircraft that contains sensors, GPS, radio system, servomechanisms and computers, which provide the capability of an autonomous flight without a human pilot in the cockpit. A stable flight requires sensing the roll, pitch, and yaw angles of aircraft. Roll and pitch angles were ensured by a sensor system of FMA Direct Company called co-pilot flight stabilization system (CPD4), which allows controlling ailerons and elevator manually.</em></p><p><em>An autopilot is required for steering the aircraft autonomously according the GPS data and the establish waypoints that the airplane have to pass by. The GPS gives heading information to the autopilot, and this uses the information of the next waypoint to decide which direction to go. Hereby an autonomous flight is provided. In this project a lego mindstorm NXT was used as an autopilot that is product of LEGO Company [1]. The output of the autopilot is used to control the airplane servos to fly in the desired direction. A software and hardware interface was designed to allow the autopilot to receive the data from the co-pilot sensor and to transmit data to the co-pilot processor, which will finally steer the actuator servos. Experiments were performed with different parts of the system and the results reported.</em></p>
146

Fault diagnosis of a Fixed Wing UAV Using Hardware and Analytical Redundancy

Andersson, Michael January 2013 (has links)
In unmanned aerial systems an autopilot controls the vehicle without human interference. Modern autopilots use an inertial navigation system, GPS, magnetometers and barometers to estimate the orientation, position, and velocity of the aircraft. In order to make correct decisions the autopilot must rely on correct information from the sensors. Fault diagnosis can be used to detect possible faults in the technical system when they occur. One way to perform fault diagnosis is model based diagnosis, where observations of the system are compared with a mathematical model of the system. Model based diagnosis is a common technique in many technical applications since it does not require any additional hardware. Another way to perform fault diagnosis is hardware diagnosis, which can be performed if there exists hardware redundancy, i.e. a set of identical sensors measuring the same quantity in the system. The main contribution of this master thesis is a model based diagnosis system for a fixed wing UAV autopilot. The diagnosis system can detect faults in all sensors on the autopilot and isolate faults in vital sensors as the GPS, magnetometer, and barometers. This thesis also provides a hardware diagnosis system based on the redundancy obtained with three autopilots on a single airframe. The use of several autopilots introduces hardware redundancy in the system, since every autopilot has its own set of sensors. The hardware diagnosis system handles faults in the sensors and actuators on the autopilots with full isolability, but demands additional hardware in the UAV.
147

Support System for Landing with an Autonomous Unmanned Aerial Vehicle

Östman, Christian, Forsberg, Anna January 2009 (has links)
There are a number of ongoing projects developing autonomous vehicles, both helicopters and airplanes. The purpose of this thesis is to study a concept for calculating the height and attitude of a helicopter. The system will be active during landing. This thesis includes building an experimental setup and to develop algorithms and software. The basic idea is to illuminate the ground with a certain pattern and in our case we used laser pointers to create this pattern. The ground is then filmed and the images are processed to extract the pattern. This provides us with information about the height and attitude of the helicopter. Furthermore, the concept implies that no equipment on the ground is needed. With further development the sensor should be able to calculate the movement of the underlying surface relative to the helicopter. This is very important when landing on a moving surface, e.g. a ship at sea. To study the concept empirically an experimental setup was constructed. The setup provides us with the necessary information to evaluate how well the system could perform in reality. The setup is built with simple and cheap materials. In the setup an ordinary web camera and laser pointers that are avaliable for everyone have been used. / Det finns flera pågående projekt inom autonomflygande farkoster, både för helikoptrar och flygplan. Syftet med vårt examensarbetet är att undersöka ett koncept för en landningssensor för autonom landning med helikopter. Examensarbetet innebär att bygga en fysisk modell för test av konceptet samt att utveckla mjukvara. Konceptet för sensorn består av att belysa marken med ett speciellt mönster, i vårt fall skapas mönstret av laserpekare, som därefter fotograferas och bildbehandlas. Detta mönster ger sedan information om helikopterns höjd och attityd i luften. Vidare innebär konceptet också att ingen markutrustning krävs för att sensorn ska fungera. I förlängningen ska man med detta koncept kunna beräkna hur underlaget rör sig relativt helikoptern, vilket är väldigt viktigt vid landning på objekt som rör sig, till exempel ett fartyg. För att undersöka hur bra sensorn presterar i verkligheten så har en rigg byggts. Riggen är byggd med enkla och billiga material. I det här fallet används en webbkamera och laserpekare som går att köpa i vanliga elektronikaffärer.
148

Assembly of a UAV : hardware design of a UAV

BOZKURT, Ugur, Aslan, Mustafa January 2009 (has links)
This bachelor thesis is dedicated to assemble the hardware system of a UAV (Unmanned Aerial Vehicle) in order to prepare the platform for an autonomous flight in the air for a given path through the pre-programmed check points. A UAV is an aircraft that contains sensors, GPS, radio system, servomechanisms and computers, which provide the capability of an autonomous flight without a human pilot in the cockpit. A stable flight requires sensing the roll, pitch, and yaw angles of aircraft. Roll and pitch angles were ensured by a sensor system of FMA Direct Company called co-pilot flight stabilization system (CPD4), which allows controlling ailerons and elevator manually. An autopilot is required for steering the aircraft autonomously according the GPS data and the establish waypoints that the airplane have to pass by. The GPS gives heading information to the autopilot, and this uses the information of the next waypoint to decide which direction to go. Hereby an autonomous flight is provided. In this project a lego mindstorm NXT was used as an autopilot that is product of LEGO Company [1]. The output of the autopilot is used to control the airplane servos to fly in the desired direction. A software and hardware interface was designed to allow the autopilot to receive the data from the co-pilot sensor and to transmit data to the co-pilot processor, which will finally steer the actuator servos. Experiments were performed with different parts of the system and the results reported.
149

Sensorbestyckning av taktiska obemannade flygande farkoster : UAV'er (Unmanned Aerial Vehicle) ; för underrättelseinhämtning och positionsbestämning

Nylander, Martin January 2001 (has links)
Uppgiften har inneburit att utreda och redovisa några av de möjliga sensoralternativ som med ett 10-årigt perspektiv är möjliga att implementera i en svensk UAV motsvarande det svenska UAV - systemet ”Ugglan”. Fokus avseende uppgifter för UAV – systemet har legat på taktisk nivå med inriktning mot spaning och ledning av indirekt eld. Slutligen har uppgiften varit att värdera de olika sensoralternativen och förorda vilken eller vilka sensorer i kombination som ger bäst effekt sett till tänkt användningsområde för UAV´n. Den metod som använts är inledningsvis deskriptiv och därefter komparativ. Ett antal utvalda sensorer har beskrivits avseende egenskaper, fördelar och nackdelar. Vidare har det framtida stridsfältets karaktär beskrivits. Därefter har en jämförelse skett mellan de valda sensorerna i syfte att finna den mest optimala lösningen som svarar mot ställda krav. Den sensorlösning som författaren skulle önskat rekommendera för en framtida svensk taktisk UAV visade sig vara omöjlig att implementera främst pga. en alltför hög vikt samt i viss mån volym. Den valda lösningen har kommit att bli en multisensorlösning bestående av en kamera för navigation, en lågljustv (LLTV) för spaning samt en SAR – radar och en LADAR (laserradar) som huvudsensorer för spaning samt positionsbestämning. Fördelarna med den sensorlösning som föreslagits är bla. goda möjligheter att spana oberoende av yttre atmosfärförhållanden (väder), en mycket god förmåga att upplösa och därmed detektera mål samt en mycket god förmåga att mäta in ett måls position. Främsta nackdelen är att systemets spaningsvinkel blir begränsad. / The purpose of this paper has been to investigate and present some possible sensor alternatives, which in a future perspective of 10 years, will be possible to implement in a Swedish UAV such as the Swedish UAV  system “Ugglan”. A focus on the tasks for the UAV system has been at the tactical level with  an emphasis  on intelligence and directing fire from artillery. Finally, the purpose has been to make an assessment and to propose what sensor alternative or alternatives in combination (multi-sensor solution) will be the most optimum solution for the tactical UAV. The method which has been used in the paper is initially in the form of a description and subsequently in a comparative form. Some possible sensor alternatives have been chosen and described with regard to qualities, both from positive and negative aspects. Furthermore, the future battlefield has been described. After this, a  comparison has been made between the chosen sensor systems in order to find the most optimum sensor solution which can fulfil the demands. The sensor solution which the author would have wished to recommend for a future Swedish tactical UAV has proved to be impossible to implement because it is too heavy and has too great a volume. The chosen sensor solution is a multi-sensor solution consisting of a camera for navigation, a LLTV (Low – Light TV) for recce and finally a SAR – radar (Synthetic Aperture Radar) and a LADAR (laser radar), which are the main sensors for reconnaissance and positioning of targets. The advantages with this sensor solution are the possibilities to carry our surveillance independently of weather conditions, a very good possibility of separating and therefore detecting targets and also a very good possibility of positioning targets. The greatest disadvantage is the system’s low field of view. / Avdelning: ALB - Slutet Mag 3 C-upps.Hylla: Upps. ChP 99-01
150

Omkonstruktion och arkitekturbyte av autopilot för obemannade farkoster

Andersson, Erik January 2012 (has links)
This thesis has been written at Linköping University for the company Instrument Control Sweden AB (ICS). ICS is a small company located in Linköping that develops software and hardware for Unmanned Aerial Vehicles, UAV. At present, ICS has a fully functional autopilot called EasyPilot but they want to reduce the autopilot’s size to make it more attractive. The purpose of this thesis was to investigate if it was possible to reduce the size of the autopilot and how, in that case, it would be done. It was also necessary to examine whether the old processors should be replaced by new ones and how hard it would be to convert the old software to these new processors. To succeed with the goals many of the old components had to be changed for new, smaller ones. Some less necessary parts were also completely removed. The results showed that the size could be reduced quite a bit, exactly how much is hard to say since no PCB-layout were done. By doing some programming tests on the new components it could be shown that some parts of the old code could be reused on the new design. It was mainly algorithms and other calculations. However, a lot of new code still had to be written in order to successfully convert the old software to the new hardware.

Page generated in 0.456 seconds