• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 12
  • 7
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 64
  • 64
  • 31
  • 16
  • 14
  • 14
  • 14
  • 11
  • 11
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Estudo da expressão de Arkadia, proteína E3 de ubiquitinação, em tumores de tiróide e sua relação com a via de sinalização de TGF-Beta. / Study of Arkadia expression, ubiquitination E-3 protein, in thyroid tumors and its relation to the TGF-beta signaling pathway.

Eloiza de Rezende 12 May 2009 (has links)
Arkadia participa do processo de amplificação da sinalização de TGF-b mediada por Smads, via degradação do I-Smad. O objetivo desse estudo foi caracterizar e investigar a influência de Arkadia em linhagens celulares de cânceres de tiróide. A expressão gênica de Arkadia em linhagens celulares de carcinomas papílifero (NPA), folicular (WRO) e anaplásico (ARO), foi avaliada por PCR quantitativo. Em ARO, que apresenta a maior expressão de Arkadia, foram identificados subclones (ARO_1 e ARO_2) com expressão diferencial de Arkadia, ARO_2>ARO_1. A expressão gênica de SMAD2, 3, 4, 7 e de genes do ciclo celular modulados por TGF-b, foi maior em ARO_2. Os subclones respondem ao tratamento com peptídeo de TGF-b1 e activina A. O crescimento in vivo (xenotransplante) mostra que ARO_2 desenvolve um tumor de menor volume. Recentemente a origem de ARO foi questionada e comprovamos sua origem por análises de expressão gênica e morfologias. Desta maneira, observamos que a expressão diferencial de Arkadia indica que ela está envolvida na modulação inibitória da via de TGF-b. / Arkadia is involved in the process of amplification of the TGF-b signaling mediated by Smads, by degradation of I-Smad. The aim of this study was to characterize and investigate the influence of Arkadia in thyroid cancers cell lines. Arkadia gene expression in the papillary (NPA), follicular (WRO) and anaplastic carcinoma cell lines (ARO) was evaluated by quantitative PCR. In ARO, which presents the highest Arkadia expression, we identified subclones (ARO_1 and ARO_2) with differential Arkadia expression ARO_2> ARO_1. The expression of SMAD2, 3, 4, 7 and the cell cycle genes modulated by TGF-b, was also higher in ARO_2. However both the subclones responded to treatment with peptide of TGF-b1 and activin A. The in vivo growth (evaluated by xenotransplant), showed that ARO_2 developed tumors of lower volume. Recently the ARO origin was questioned and we proved its origin by gene expression and morphological analysis. This way, the differential Arkadia expression indicates that it is involved in modulation of the inhibitory TGF-b pathway.
52

Funktionelle Charakterisierung des Hrd1-Proteins – einer Komponente der HRD-Ubiquitinligase

Fichtner, Susanne 26 June 2019 (has links)
In Eukaryoten werden sekretorische Proteine an zytoplasmatischen Ribosomen synthetisiert und in das endoplasmatische Retikulum (ER) transportiert, wo sie ihre biologisch aktive Struktur erhalten. Defekte Proteine, die durch Fehler in diesem Reifungsprozess entstehen, werden über den Prozess der „ER-assoziierten Protein Degradation“ (ERAD) abgebaut. Eine zentrale Komponente dieses Abbauweges ist die HRD‑Ligase, ein membranständiger Proteinkomplex, der das E3‑Enzym Hrd1 enthält. Einige publizierte Arbeiten lassen eine Beteiligung der Transmembrandomäne von Hrd1 an einem neuartigen Transportsystem für den Export von fehlgefalteten Proteinen aus dem ER vermuten. Im Rahmen dieser Arbeit konnten neue Erkenntnisse über die Bedeutung der Transmembranregion von Hrd1 für den Abbau von ERAD‑Substraten in dem Modellorganismus Saccharomyces cerevisiae gewonnen werden. Die Substitution von zwei Aminosäuren in der dritten Transmembranhelix von Hrd1 (Hrd1E84L, H101L) hemmt spezifisch den Abbau von fehlgefalteten ER-luminalen Proteinen, während die Prozessierung membrangebundener Hrd1-Substrate weitestgehend unbeeinflusst blieb. Daher zeigt die Hrd1‑Variante wahrscheinlich eine Störung im Transport von luminalen ERAD‑Substraten durch die ER Membran. Biochemische Analysen zeigen keine starken Veränderungen bei der Zusammensetzung der HRD-Ligase durch die Hrd1‑Variante. Allerdings ließen sich bei Anwendung von zielgerichtetem in vivo photocrosslinking deutliche Veränderungen in der räumlichen Orientierung der Ligaseuntereinheit Der1 zu Hrd1E84L, H101L beobachten. Da Der1 ausschließlich für den Abbau ER-luminaler ERAD-Substrate benötigt wird ist anzunehmen, dass die korrekte Ausrichtung von Der1 zu Hrd1 innerhalb der ER-Membran eine Voraussetzung für den Transport von ERAD‑Substraten in das Zytoplasma ist. Die Ergebnisse dieser Arbeit zeigen erstmals einen direkten Einfluss der Transmembranregion von Hrd1 auf den Abbau luminaler ERAD‑Zielproteine. / In eukaryotes, secretory proteins are synthesized on cytoplasmic ribosomes and transported into the endoplasmic reticulum (ER), where they obtain their biologically active structure. Defect proteins that arise from errors in this maturation process are degraded by the “ER-associated protein degradation” (ERAD) pathway. A central component of ERAD is the HRD-ligase, a membrane-bound protein complex that contains the ubiquitin ligase Hrd1. Some published work raised speculations on an involvement of this trans-membrane domain in a novel transport system for the export of misfolded proteins from the ER. In the course of this work new insights for the importance of the transmembrane domain of Hrd1 for the degradation of ERAD substrates in the model organism Saccharomyces cerevisiae were obtained. The substitution of two amino acids in the third trans-membrane helix of Hrd1 (Hrd1E84L, H101L) specifically impairs the turnover of misfolded ER-luminal proteins whereas the processing of membrane-bound Hrd1 substrates remained largely unaffected. The Hrd1 variant therefore displays most likely a defect in the transport of luminal ERAD substrates through the ER membrane. No major changes in the assembly of the HRD-ligase by the Hrd1 variant were detected. Still, in site specific in vivo photo-crosslinking assays substantial changes in the spatial orientation of the ligase subunit Der1 towards Hrd1E84L, H101L were detected. Der1 is exclusively required for the degradation of ER-luminal ERAD substrates. This implies that the proper alignment of Hrd1 and Der1 within the ER membrane is a prerequisite for the transport of ERAD substrates into the cytoplasm. This work shows for the first time a direct involvement of the trans-membrane region of Hrd1 in the degradation of luminal ERAD client proteins.
53

Onset and Progression of Neurodegeneration in Mouse Models for Defective Endocytosis

Rostosky, Christine Melina 09 November 2018 (has links)
No description available.
54

The Role of RNF157 in Central Nervous System Development / Die Rolle von RNF157 während der Entwicklung des zentralen Nervensystems

Matz, Annika 11 October 2012 (has links)
No description available.
55

The role of ubiquitination and deubiquitination in the regulation of BRCA1 function during genotoxic stress

Pak, Helen 04 1900 (has links)
BRCA1 est un suppresseur de tumeur majeur jouant un rôle dans la transcription, la réparation de l’ADN et le maintien de la stabilité génomique. En effet, des mutations dans le gène BRCA1 augmentent considerablement le risque de cancers du sein et de l’ovaire. BRCA1 a été en majorité caractérisé pour son rôle dans la réparation de l’ADN par la voie de recombinaison homologue (HR) en présence de bris double brins, par example, induits par l’irradiation gamma (IR). Cependant, la fonction de BRCA1 dans d’autres voies de réparation de l’ADN, comme la réparation par excision de nucléotides (NER) ou par excision de base (BER), demeurent toutefois obscures. Il est donc important de comprendre la régulation de BRCA1 en présence d’agents génotoxiques comme le méthyle méthanesulfonate (MMS) ou l’UV, qui promouvoient le BER et le NER respectivement. Nos observations suggèrent que BRCA1 est dégradée par le protéasome après traitement avec le MMS ou les UV, et non avec l’IR. Par ailleurs, cette dégradation semble compromettre le recrutement de Rad51, suggérant que la voie de HR est inhibée. Nos résultats suggèrent que la HR est inhibée afin d’éviter l’activation simultanée de multiples voies de réparation. Nous avons aussi observé que la dégradation BRCA1 est réversible et que la restauration des niveaux de BRCA1 coïncide avec le recrutement de Rad51 aux sites de dommages. Cela suggère que la HR est réactivée tardivement par les bris double brins générés suite à l’effondrement des fourches de réplication. Ayant observé que BRCA1 est hautement régulé par l’ubiquitination et est ciblé par le protéasome pour dégradation, nous avons émis une hypothèse que BRCA1 est régulé par des déubiquitinases. Cela amène à caractériser plus en profondeur par un criblage en déplétant les déubiquitinases individuellement par RNAi et en observant leur effet sur le recrutement de BRCA1 et des protéines reliées à cette voie. Un criblage préliminaire nous a permi d’identifié candidats potentiels tel que BAP1, CXORF53, DUB3, OTUB1 et USP36. / BRCA1 is a tumour suppressor involved in transcription, DNA repair and maintenance of genomic stability. Indeed, BRCA1 mutation carriers have an exceptionally higher risk of breast and ovarian cancers. BRCA1 is mainly known for its role in homologous recombination repair (HR) by recruiting HR proteins to chromatin upon double strand break (DSBs) formation, e.g., following treatment with ionizing irradiation (IR). However, the function of BRCA1 in other DNA repair pathways such as nucleotide excision repair (NER) or base excision repair (BER) is still obscure. It is thus of fundamental and clinical importance to investigate BRCA1 function following exposure to diverse genotoxic agents. Using human cultured cell, we observed that BRCA1 is downregulated by the proteasome upon treatment with MMS or UV, but not with IR. Moreover, this downregulation prevents Rad51 recruitment to chromatin following exposure to MMS. Given that DNA damage induced by UV and MMS trigger NER and BER pathways respectively, this implies that HR could be inhibited in order to prevent competition between independent DNA repair pathways. We also found that BRCA1 downregulation is reversible and the recovery of BRCA1 levels correlates with the reappearance of BRCA1 and Rad51 on chromatin. This implies that the HR has been reactivated at the late stage of DNA damage for the repair of double strand breaks generated by replication fork collapse. Since BRCA1 stability is highly regulated by ubiquitination and is downregulated following MMS treatment, one would expect that a deubiquitinase is responsible for relieving this downregulation to promote the reactivation of the HR pathway. To characterize this aspect further, we conducted DUB RNAi screens in which a particular DUB is depleted and the localization of BRCA1 and other related proteins were observed. According to a preliminary screen, a few DUBs (BAP1, CXORF53, DUB3, OTUB1, and USP36) were identified as potential regulators of the stability and localization of BRCA1 and proteins involved in homologous recombination.
56

Role of the CBL Family of E3-Ubiquitin Ligases in the Humoral Immune Response

Li, Xin 04 1900 (has links)
No description available.
57

Nouveau regard sur la signalisation AMPK : multiples fonctions de nouveaux interacteurs

Zorman, Sarah 08 November 2013 (has links) (PDF)
La protéine kinase activée par AMP (AMPK) est un senseur et régulateur central de l'état énergétique cellulaire, mais ces voies de signalisation ne sont pour le moment que partiellement comprises. Deux criblages non-biaisés pour la recherche de partenaires d'interaction et de substrats d'AMPK ont précédemment été réalisés dans le laboratoire. Ces derniers ont permis l'identification de plusieurs candidats (protéines), mais leur rôle fonctionnel et physiologique n'était pas encore établi. Ici nous avons caractérisé la fonction de la relation entre AMPK et quatre partenaires d'interaction : gluthation S-transferases (GSTP1 and GSTM1), fumarate hydratase (FH), l'E3 ubiquitine-ligase (NRDP1), et les protéines associées à la membrane (VAMP2 and VAMP3). Chacune de ces interactions parait avoir un rôle différent dans la signalisation AMPK, agissant en amont ou en aval de la protéine AMPK. GSTP1 et GSTM1 contribueraient à l'activation d'AMPK en facilitant la S-glutathionylation d'AMPK en conditions oxydatives moyennes. Cette régulation non-canonique suggère que l'AMPK peut être un senseur de l'état redox cellulaire. FH mitochondrial est l'unique substrat AMPK clairement identifié. Etonnamment le site de phosphorylation se trouve dans le peptide signal mitochondrial, ce qui pourrait affecter l'import mitochondrial. NRDP1, protéine pour laquelle nous avons pour la première fois développé un protocole de production de la protéine soluble, est faiblement phosphorylée par l'AMPK. L'interaction ne sert pas à l'ubiquitination d'AMPK, mais affecte le renouvellement de NRDP1. Finalement, l'interaction de VAMP2/3 avec AMPK n'implique pas d'évènement de phosphorylation ou d'activation d'un des partenaires. Nous proposons un mécanisme de recrutement d'AMPK par VAMP2/3 (" scaffold ") au niveau des vésicules en exocytose. Ce recrutement favoriserait la phosphorylation de substrats de l'AMPK à la surface des vésicules en exocytoses. Une fois mis en commun, nos résultats enrichissent les connaissances sur les voies de signalisation AMPK, et suggèrent une grande complexité de ces dernières. Plus que les kinases en amont et des substrats en aval, la régulation de la signalisation d'AMPK se fait via des modifications secondaires autres que la phosphorylation, via des effets sur le renouvellement de protéines, et probablement via un recrutement spécifique de l'AMPK dans certains compartiments cellulaires.
58

The role of ubiquitination and deubiquitination in the regulation of BRCA1 function during genotoxic stress

Pak, Helen 04 1900 (has links)
BRCA1 est un suppresseur de tumeur majeur jouant un rôle dans la transcription, la réparation de l’ADN et le maintien de la stabilité génomique. En effet, des mutations dans le gène BRCA1 augmentent considerablement le risque de cancers du sein et de l’ovaire. BRCA1 a été en majorité caractérisé pour son rôle dans la réparation de l’ADN par la voie de recombinaison homologue (HR) en présence de bris double brins, par example, induits par l’irradiation gamma (IR). Cependant, la fonction de BRCA1 dans d’autres voies de réparation de l’ADN, comme la réparation par excision de nucléotides (NER) ou par excision de base (BER), demeurent toutefois obscures. Il est donc important de comprendre la régulation de BRCA1 en présence d’agents génotoxiques comme le méthyle méthanesulfonate (MMS) ou l’UV, qui promouvoient le BER et le NER respectivement. Nos observations suggèrent que BRCA1 est dégradée par le protéasome après traitement avec le MMS ou les UV, et non avec l’IR. Par ailleurs, cette dégradation semble compromettre le recrutement de Rad51, suggérant que la voie de HR est inhibée. Nos résultats suggèrent que la HR est inhibée afin d’éviter l’activation simultanée de multiples voies de réparation. Nous avons aussi observé que la dégradation BRCA1 est réversible et que la restauration des niveaux de BRCA1 coïncide avec le recrutement de Rad51 aux sites de dommages. Cela suggère que la HR est réactivée tardivement par les bris double brins générés suite à l’effondrement des fourches de réplication. Ayant observé que BRCA1 est hautement régulé par l’ubiquitination et est ciblé par le protéasome pour dégradation, nous avons émis une hypothèse que BRCA1 est régulé par des déubiquitinases. Cela amène à caractériser plus en profondeur par un criblage en déplétant les déubiquitinases individuellement par RNAi et en observant leur effet sur le recrutement de BRCA1 et des protéines reliées à cette voie. Un criblage préliminaire nous a permi d’identifié candidats potentiels tel que BAP1, CXORF53, DUB3, OTUB1 et USP36. / BRCA1 is a tumour suppressor involved in transcription, DNA repair and maintenance of genomic stability. Indeed, BRCA1 mutation carriers have an exceptionally higher risk of breast and ovarian cancers. BRCA1 is mainly known for its role in homologous recombination repair (HR) by recruiting HR proteins to chromatin upon double strand break (DSBs) formation, e.g., following treatment with ionizing irradiation (IR). However, the function of BRCA1 in other DNA repair pathways such as nucleotide excision repair (NER) or base excision repair (BER) is still obscure. It is thus of fundamental and clinical importance to investigate BRCA1 function following exposure to diverse genotoxic agents. Using human cultured cell, we observed that BRCA1 is downregulated by the proteasome upon treatment with MMS or UV, but not with IR. Moreover, this downregulation prevents Rad51 recruitment to chromatin following exposure to MMS. Given that DNA damage induced by UV and MMS trigger NER and BER pathways respectively, this implies that HR could be inhibited in order to prevent competition between independent DNA repair pathways. We also found that BRCA1 downregulation is reversible and the recovery of BRCA1 levels correlates with the reappearance of BRCA1 and Rad51 on chromatin. This implies that the HR has been reactivated at the late stage of DNA damage for the repair of double strand breaks generated by replication fork collapse. Since BRCA1 stability is highly regulated by ubiquitination and is downregulated following MMS treatment, one would expect that a deubiquitinase is responsible for relieving this downregulation to promote the reactivation of the HR pathway. To characterize this aspect further, we conducted DUB RNAi screens in which a particular DUB is depleted and the localization of BRCA1 and other related proteins were observed. According to a preliminary screen, a few DUBs (BAP1, CXORF53, DUB3, OTUB1, and USP36) were identified as potential regulators of the stability and localization of BRCA1 and proteins involved in homologous recombination.
59

Caractérisation des interactions établies par la région riche en prolines de la ligase de l’ubiquitine Itch

Desrochers, Guillaume 12 1900 (has links)
No description available.
60

La régulation de Staufen1 dans le cycle et la prolifération cellulaires

Gonzalez Quesada, Yulemi 02 1900 (has links)
Staufen1 (STAU1) est une protéine de liaison à l’ARN essentielle dans les cellules non-transformées. Dans les cellules cancéreuses, le niveau d’expression de la protéine est critique et étroitement lié à des évènements d’apoptose et des altérations dans la prolifération cellulaire. Le dsRBD2 de STAU1 lie des facteurs protéiques qui sont fondamentaux pour les fonctions de la protéine, telles que la liaison aux microtubules qui garantit sa localisation au fuseau mitotique et l’interaction avec les coactivateurs de l’E3 ubiquitine-ligase APC/C, ce qui garantit la dégradation partielle de STAU1 en mitose. Nous avons cartographié un nouveau motif F39PxPxxLxxxxL50 (motif FPL) dans le dsRBD2 de STAU1. Ce motif est fondamental pour l’interaction de la protéine avec les co-activateurs de l’APC/C, CDC20 et CDH1, et sa dégradation subséquente. Nous avons ensuite identifié un total de 15 protéines impliquées dans le processus inflammatoire qui partagent cette séquence avec STAU1. Nous avons prouvé, par des essais de co-transfection et de dégradation, que MAP4K1, l’une des protéines qui partagent ce motif, est aussi dégradé via ce motif FPL. Cependant, le motif de MAP4K1 n’est pas la cible de l’APC/C. Des techniques de biotinylation des protéines à proximité de STAU1 nous ont permis d’identifier TRIM25, une E3 ubiquitine ligase impliquée dans la régulation immunitaire et l’inflammation, comme protéine impliquée dans la dégradation de STAU1 et de MAP4K1 via le motif FPL. Ceci suggère des rôles de STAU1 dans la régulation du processus inflammatoire, ce qui est consistent avec des études récentes qui associent STAU1 à ce processus. Nous considérons que le motif FPL pourrait être à la base de la coordination de la régulation des protéines impliquées dans l’inflammation et la régulation de la réponse immune. Nos études sur l’effet anti-prolifératif de STAU1 lorsque surexprimé dans les cellules transformées ont identifié le domaine dsRBD2 de STAU1 comme responsable de ce phénotype. Des mutants qui miment les différents états de phosphorylation de la serine 20, située dans le domaine dsRBD2, sont à la base des changements dans la régulation de la traduction et la dégradation des ARNm liés à STAU1. Ces changements dans la régulation des ARNm par STAU1 sont associés aux altérations dans la prolifération des cellules transformées observées lors de la surexpression de STAU1. Nous avons aussi découvert que, après la transfection de STAU1, la cellule déclenche rapidement des évènements d’apoptose, et que ces évènements sont aussi dépendants de l’état de phosphorylation de la sérine 20 dans dsRBD2 de STAU1. Ces résultats suggèrent que STAU1 est un senseur qui contrôle la balance entre la survie et la prolifération cellulaire et que l’état de phosphorylation de son dsRBD2 est à la base de ce contrôle. Nos résultats indiquent que le dsRBD2 de STAU1 est le domaine de régulation du niveau d’expression protéique et un modulateurs des rôles de la protéine comme facteur post-transcriptionnel. Nous pensons que cibler la régulation de STAU1 et ses fonctions situées dans son domaine dsRBD2, serait important dans l’étude des maladies qui impliquent des événements d’apoptose, d’inflammation et de prolifération cellulaire telles que le cancer. / Staufen1 (STAU1) is an RNA-binding protein essential in untransformed cells. In cancer cells, the level of expression of the STAU1 protein is critical and it has been closely linked to events of apoptosis and to cell proliferation impairments. STAU1's dsRBD2 binds protein factors that are fundamental for the protein's functions, such as microtubules components that ensure the protein localization to the mitotic spindle and its interaction with E3 ubiquitin-ligase APC/C coactivators, which guarantees the partial degradation of STAU1 during mitosis. By mapping a novel F39PxPxxLxxxxL50 motif (FPL motif) in the dsRBD2 of STAU1, responsible of the interaction with the co-activators of APC/C, CDC20 and CDH1, and its subsequent degradation, we were able to identify a total of 15 proteins mostly involved in the inflammatory process that share this sequence with STAU1. We proved, by co-transfection and degradation assays that, MAP4K1, one of the proteins that shares this motif, is also degraded via this FPL motif. However, we demonstrated that this motif on MAP4K1 is not the target of APC/C. Biotinylation techniques of proteins near STAU1 allowed us to identify TRIM25, an E3 ubiquitin ligase involved in immune regulation and inflammation, as a protein involved in the degradation of STAU1 and MAP4K1 via the FPL motif. This suggests roles of STAU1 in the regulation of the inflammatory events, which is consistent with recent studies that associate STAU1 with this process. We consider that the FPL motif could be at the basis of the coordination of the regulation of proteins involved in inflammation and the regulation of the immune response. Our studies on the anti-proliferative effect of STAU1 when overexpressed in transformed cells identified the domain dsRBD2 of STAU1 as responsible for this phenotype. Mutants 8 that mimic different phosphorylation states of serine 20, located in dsRBD2, underlie changes in the regulation of translation and degradation of STAU1-linked mRNAs. These STAU1-dependent changes in mRNA regulation are associated with the proliferation impairment of transformed cells that is observed upon overexpression of STAU1. We also discovered that, after STAU1 transfection, the cell rapidly triggers apoptotic events, and that these events are also dependent on the phosphorylation state of serine 20 in dsRBD2 of STAU1. These results suggest that STAU1 is a sensor that controls the balance between cell survival and cell proliferation and that the state of phosphorylation of its dsRBD2 is the basis of this control. Our results indicate that the dsRBD2 of STAU1 is the regulatory domain of the level of protein expression and a modulator of the protein roles as a post-transcriptional factor. We believe that targeting the regulation of STAU1 and its functions located in its dsRBD2 domain, would be important in the study of diseases that involve apoptosis, inflammation and cell proliferation events such as cancer.

Page generated in 0.0611 seconds