Spelling suggestions: "subject:"ultra Low-K"" "subject:"altra Low-K""
1 |
Requirements and challenges on an alternative indirect integration regime of low-k materialsHaase, Micha, Ecke, Ramona, Schulz, Stefan E. 22 July 2016 (has links) (PDF)
An alternative indirect integration regime of porous low-k materials was investigated. Based on a single Damascene structure the intra level dielectric SiO2 or damaged ULK was removed by using HF:H2O solutions to create free standing metal lines. The free spaces between the metal lines were refilled with a spin-on process of a low-k material. The persistence of barrier materials and copper against HF solutions, the gap fill behavior of the used spin on glass on different structure sizes and the main challenges which have to solve in the future are shown in this study.
|
2 |
Élaboration et caractérisation de matériaux à très faible constante diélectrique de type a-SiOCH élaborés par PECVD : application aux interconnexions des circuits intégrésGourhant, Olivier 10 December 2008 (has links) (PDF)
L'amélioration des performances des circuits intégrés nécessite le développement de nouveaux matériaux comme, par exemple, les diélectriques à très faible permittivité, appelés Ultra Low-K (K<=2,5). Cette étude se focalise sur les matériaux a-SiOCH poreux déposés en couche mince par PECVD suivant une approche dite « porogène ». Cette approche consiste en le dépôt d'une matrice de type a-SiOCH contenant des inclusions organiques qui sont dégradées dans un second temps, grâce à l'utilisation d'un post-traitement, afin de créer la porosité. La première partie de cette étude montre que l'extension de l'approche porogène a permis d'élaborer des matériaux ayant des constantes diélectriques pouvant atteindre 2,25 en utilisant un procédé industriel avec, comme type de post-traitement, un recuit thermique assisté par rayonnement UV. Certains matériaux ont été intégrés dans des démonstrateurs. Puis, dans un second temps, l'impact du procédé d'élaboration sur la structure chimique du matériau a été analysé afin de mieux comprendre son comportement mécanique. Enfin, la mise en place d'une technique de caractérisation a permis la mesure des différentes contributions de la constante diélectrique (électronique, ionique et dipolaire). L'évolution de ces composantes en fonction des paramètres d'élaboration a ainsi pu être étudiée.
|
3 |
Reaction Paths of Repair Fragments on Damaged Ultra-low-k SurfacesFörster, Anja 16 February 2015 (has links) (PDF)
In the present work, the plasma repair for damaged ultra-low-k (ULK) materials, newly developed at the Fraunhofer ENAS, is studied with density functional theory (DFT) and molecular dynamic (MD) methods to obtain new insights into this repair mechanism. The ULK materials owe their low dielectric constant (k-value) to the insertion of k-value lowering methyl groups. During the manufacturing process, the ULK materials are damaged and their k-values increase due to the adsorbtion of hydroxyl groups (OH-damage) and hydrogen atoms (H-damage) that replaced themethyl groups.
The first investigation point is the creation of repair fragments. For this purpose the silylation molecules bis(dimethylamino)-dimethylsilane (DMADMS) and octamethylcyclotetrasiloxane (OMCTS) are fragmented. Here, only fragmentation reactions that lead to repair fragments that contain one silicon atom and at least one methyl group were considered. It is shown that the repair fragments that contain three methyl groups are preferred, especially in a methyl rich atmosphere.
The effectivity of the obtained repair fragments to cure an OH- and H-damage are investigated with two model systems. The first system consists of an assortment of small ULK-fragments, which is used to scan through the wide array of possible repair reactions. The second system is a silicon oxide cluster that investigates whether the presence of a cluster influences the reaction energies.
In both model systems, repair fragments that contain three methyl groups or two oxygen atoms are found to be most effective. Finally, the quantum chemical results are compared to experimental findings to get deeper insight into the repair process.
|
4 |
Requirements and challenges on an alternative indirect integration regime of low-k materialsHaase, Micha, Ecke, Ramona, Schulz, Stefan E. 22 July 2016 (has links)
An alternative indirect integration regime of porous low-k materials was investigated. Based on a single Damascene structure the intra level dielectric SiO2 or damaged ULK was removed by using HF:H2O solutions to create free standing metal lines. The free spaces between the metal lines were refilled with a spin-on process of a low-k material. The persistence of barrier materials and copper against HF solutions, the gap fill behavior of the used spin on glass on different structure sizes and the main challenges which have to solve in the future are shown in this study.
|
5 |
Experimental and theoretical study of on-chip back-end-of-line (BEOL) stack fracture during flip-chip reflow assemblyRaghavan, Sathyanarayanan 07 January 2016 (has links)
With continued feature size reduction in microelectronics and with more than a billion transistors on a single integrated circuit (IC), on-chip interconnection has become a challenge in terms of processing-, electrical-, thermal-, and mechanical perspective. Today’s high-performance ICs have on-chip back-end-of-line (BEOL) layers that consist of copper traces and vias interspersed with low-k dielectric materials. These layers have thicknesses in the range of 100 nm near the transistors and 1000 nm away from the transistors close to the solder bumps. In such BEOL layered stacks, cracking and/or delamination is a common failure mode due to the low mechanical and adhesive strength of the dielectric materials as well as due to high thermally-induced stresses. However, there are no available cohesive zone models and parameters to study such interfacial cracks in sub-micron thick microelectronic layers.
This work focuses on developing framework based on cohesive zone modeling approach to study interfacial delamination in sub-micron thick layers. Such a framework is then successfully applied to predict microelectronic device reliability. As intentionally creating pre-fabricated cracks in such interfaces is difficult, this work examines a combination of four-point bend and double-cantilever beam tests to create initial cracks and to develop cohesive zone parameters over a range of mode-mixity. Similarly, a combination of four-point bend and end-notch flexure tests is used to cover additional range of mode-mixity. In these tests, silicon wafers obtained from wafer foundry are used for experimental characterization. The developed parameters are then used in actual microelectronic device to predict the onset and propagation of crack, and the results from such predictions are successfully validated with experimental data. In addition, nanoindenter-based shear test technique designed specifically for this study is demonstrated. The new test technique can address different mode mixities compared to the other interfacial fracture characterization tests, is sensitive to capture the change in fracture parameter due to changes in local trace pattern variations around the vicinity of bump and the test mimics the forces experienced by the bump during flip-chip assembly reflow process. Through this experimental and theoretical modeling research, guidelines are also developed for the reliable design of BEOL stacks for current and next-generation microelectronic devices.
|
6 |
Reaction Paths of Repair Fragments on Damaged Ultra-low-k SurfacesFörster, Anja 25 September 2014 (has links)
In the present work, the plasma repair for damaged ultra-low-k (ULK) materials, newly developed at the Fraunhofer ENAS, is studied with density functional theory (DFT) and molecular dynamic (MD) methods to obtain new insights into this repair mechanism. The ULK materials owe their low dielectric constant (k-value) to the insertion of k-value lowering methyl groups. During the manufacturing process, the ULK materials are damaged and their k-values increase due to the adsorbtion of hydroxyl groups (OH-damage) and hydrogen atoms (H-damage) that replaced themethyl groups.
The first investigation point is the creation of repair fragments. For this purpose the silylation molecules bis(dimethylamino)-dimethylsilane (DMADMS) and octamethylcyclotetrasiloxane (OMCTS) are fragmented. Here, only fragmentation reactions that lead to repair fragments that contain one silicon atom and at least one methyl group were considered. It is shown that the repair fragments that contain three methyl groups are preferred, especially in a methyl rich atmosphere.
The effectivity of the obtained repair fragments to cure an OH- and H-damage are investigated with two model systems. The first system consists of an assortment of small ULK-fragments, which is used to scan through the wide array of possible repair reactions. The second system is a silicon oxide cluster that investigates whether the presence of a cluster influences the reaction energies.
In both model systems, repair fragments that contain three methyl groups or two oxygen atoms are found to be most effective. Finally, the quantum chemical results are compared to experimental findings to get deeper insight into the repair process.:1. Introduction
2. Theoretical Background
2.1. Ultra-low-k Materials
2.1.1. Definition, Usage and Challenges
2.1.2. k-Restore
2.2. Reaction Theory
2.2.1. Reaction Process
2.2.2. Thermal Influence
3. Computational Methods
3.1. Overview
3.2. Density Functional Theory
3.2.1. Theoretical Background
3.2.1.1. The Schrödinger Equation and the Variational Principle
3.2.1.2. From the Electron Density to the Kohn-Sham Approach
3.2.1.3. Exchange-Correlation Functionals and Basis Sets
3.2.2. Used Program Packages
3.3. ReaxFF
3.3.1. Theoretical Background
3.3.2. Used Program Packages
4. Model System
4.1. Damaged ULK Materials
4.1.1. ULK-Fragments
4.1.2. Silicon Oxide Cluster
4.2. Repair Fragments
4.2.1. Overview
4.2.2. Fragmentation of DMADMS
4.2.3. Fragmentation of OMCTS
4.2.4. Continuing Reactions
5. Results and Discussion
5.1. Reactions between Repair Fragments and ULK-Fragments
5.1.1. Repair of OH-damages
5.1.2. Repair of H-damages
5.1.3. Selected Repair Reactions with Gaussian
5.2. Reactions Between Repair Fragments and Silicon Oxide Cluster
5.2.1. Comparison Between ULK-Fragments and Silicon Oxide Cluster
5.2.2. Comparability of DFT and MD Results
5.3. Comparison with Experimental Results
6. Summary and Outlook
A. Appendix
A.1. Temperature Influence .
A.1.1. Temperature Influence on the DMADMS Fragmentation in Dmol3
A.1.2. Temperature Influence on the OMCTS Fragmentation in Dmol3 .
A.2. Tests
A.2.1. DMADMS Fragmentation with Gaussian
A.2.2. G2 Test Set
A.2.3. Calculation Time of the Silicon Oxide Cluster in Dmol3
A.3. Error Analysis
A.3.1. Basis Set Superposition Error in Dmol3
A.3.2. Dispersion Correction
A.4. Illustration of Defects
A.5. Bookmark
|
Page generated in 0.0422 seconds