• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultracold Atom-Ion Systems in Hybrid Traps

Okeyo, Onyango Stephen 21 November 2017 (has links)
Diese Arbeit beschäftigt sich mit der theoretischen Beschreibung eines Hybridsystems eines ultrakalten neutralen Atoms und eines einzelnen Ions. Diese Hybrid-Atom-Ion-Systeme verbinden die wichtigsten Vorteile von ultrakalten neutralen Atomen und Ionen. Neutrale Atome sind leicht skalierbar vor allem und können in großen Stückzahlen vorbereitet werden, wahrend gefangene Ionen über längere Zeiten gelagert werden können und leicht kontrollierbar sind. Einige der vorgeschlagenen Aussichten der hybriden Quantensysteme umfassen die sympathische Kühlung von eingefangenen Ionen, die ultrakalte Chemie, das Quantum Informationsverarbeitung, und Atom-Ionen-Quantensimulatoren. Diese Anwendungen erfordern eine äußerst präzise Steuerung und damit eine sehr genaue theoretische Modellierung. Eine neue Methode, die eine vollständige sechsdimensionale Behandlung von zwei Partikeln ermöglicht In räumlich getrennten dreidimensionalen Fangpotentialen wurde entwickelt. Indem man die raumliche Verschiebung zwischen den Einfangpotentialen erlaubt, ist es möglich, die gesteuerte Bewegung eines einzelnen Ions durch ein optisches Gitterpotential zu beschreiben, das mit neutralen Atomen gefüllt ist. Die Wechselwirkung zwischen dem neutralen Atom und dem geladenen Ion wird durch eine realistische Born-Oppenheimer Potentialkurve beschrieben. Eines der hier diskutierten Hybridsysteme ist 7Li2+ Isotop, das mit der neu entwickelten Methode untersucht wird, dabei wurden vermiedene Kreuzungen im Energiespektrum zwischen molekularen Zuständen und den Schwingungszuständen des Fallenpotentials als Funktion des Abstandes zwischen den beide Fallen beobachtet. Diese vermiedenen Kreuzungen bestatigen die bereits vorhergesagten falleninduzierten Resonanzen, die mithilfe der Quantendefekttheorie bestimmt wurden. Ebenfalls werden die erst kürzlich entdeckten inelastischen falleninduzierten Resonanzen in ultrakalten Atomen auch in den Atom-Ion Systemen beobachtet. / This thesis deals with the theoretical description of a hybrid system of an ultracold neutral atom and a single ion. These hybrid atom-ion systems combine the key advantages of ultracold neutral atoms and ions. In particular, neutral atoms are easily scalable and can be prepared in large numbers, while trapped ions can be stored for much longer times and are easy to control. Some of the proposed prospects of the hybrid quantum systems include sympathetic cooling of trapped ions, ultracold chemistry, quantum information processing, and atom-ion quantum simulators. These applications require extremely precise control and thus very accurate theoretical modeling. A new method that allows for a full 6-dimensional treatment of two particles in spatially separated 3-dimensional trapping potentials was developed. By allowing for the spatial displacement between the trapping potentials, it is possible to describe the controlled motion of a single ion through an optical-lattice potential filled with neutral atoms. The interaction between the neutral atom and the ion is modeled using realistic Born-Oppenheimer potential curves from ab initio quantum chemistry calculations. An application of the developed approach to the hybrid atom-ion system reveals avoided crossings between the molecular bound states and the unbound trap states as a function of the separation between the two traps. These avoided crossings correspond to trap-induced resonances. This finding confirms the trap-induced resonances predicted earlier based on quantum-defect-theory calculations. Also, the recently found inelastic confinement-induced resonances in ultracold neutral atoms are demonstrated to be present in atom-ion systems. These resonances arise due to the coupling between the center-of-mass and relative motions. The inelastic confinement-induced resonances could be used in coherent molecular ion formation and in the determination of atom-ion scattering properties like the scattering lengths.
2

Theoretical description of strongly correlated ultracold atoms in external confinement

Schneider, Philipp-Immanuel 21 October 2013 (has links)
Heutzutage können ultrakalte Atome in unterschiedlichsten optischen Fallenpotenzialen eingefangen werden, während sich ihre Wechselwirkung durch die Ausnutzung von magnetischen Feshbachresonanzen kontrollieren lässt. Der Einschluss und die resonante Wechselwirkung können zu einer starken Korrelation der Atome führen, welche es erlaubt, mit ihnen physikalische Phänomene zu simulieren, deren Simulation mit heutigen Computern nicht durchführbar wäre. Eine maßgeschneiderte Kontrolle der Korrelationen könnte es schließlich ermöglichen, mit ultrakalten Atomen einen Quantencomputer zu implementieren. Um die Flexibilität und gute Kontrollierbarkeit ultrakalter Atome voll ausnutzen zu können, ist das Ziel dieser Dissertation die präzise theoretische Beschreibung stark korrelierter, eingeschlossener Atome an einer Feshbachresonanz. Das Wechselspiel zwischen dem Einschluss der Atome und einer Feshbachresonanz wird in dieser Arbeit zunächst anhand eines von Grund auf hergeleiteten analytischen Modells einer Feshbachresonanz zwischen Atomen in einer harmonischen Falle untersucht. Basierend auf diesem Modell wird ein Ansatz entwickelt, wechselwirkende Atome an einer Feshbachresonanz in einem optischen Gitter über ein Bose-Hubbard-Modell zu beschreiben. Im Gegensatz zu aufwendigeren numerischen Methoden erlaubt das Bose-Hubbard-Modell mit der Einbeziehung nur weniger Blochbänder die präzise Vorhersage der Eigenenergien und des dynamischen Verhaltens der Atome im optischen Gitter. Weiterhin wird eine Methode zur Lösung der zeitabhängingen Schrödingergleiung für zwei wechselwirkende Atome in einem dynamischen optischen Gitter entwickelt. Schließlich wird ein Ansatz vorgestellt, wie sich mit ultrakalten Atomen in einem dynamischen optischen Gitter ein Quantencomputer implementieren ließe. Als Quantenregister dient der korrelierte Mott-Zustand von repulsiv wechselwirkenden Atomen. Quantenoperationen werden durch periodisches Wackeln des optischen Gitters getrieben. / Today, ultracold atoms can be confined in various optical trapping potentials, while their mutual interaction can be controlled by magnetic Feshbach resonances. The confinement and resonant interaction can lead to a strong correlation of the atoms, which allows for the quantum simulation of physical phenomena whose classical simulation is computationally intractable. A tailored control of these correlations might eventually enable the implementation of a quantum computer with ultracold atoms. In order to take advantage of the flexibility and precise control of ultracold atoms, this thesis aims to provide a precise theoretical description of strongly correlated, confined atoms at a magnetic Feshbach resonance. The interplay between the confinement of the atoms and the Feshbach resonance is investigated by deriving from first principles a model that enables the complete analytic description of harmonically trapped ultracold atoms at a Feshbach resonance. This model is subsequently used to develop a Bose-Hubbard model of atoms in an optical lattice at a Feshbach resonance. In contrast to more elaborate numerical calculations, the model can predict the eigenenergies and the dynamical behavior of atoms in an optical lattice with high accuracy including only a small number of Bloch bands. Furthermore, a method id developed that solves the time-dependent Schrödinger equation for two interacting atoms in a dynamic optical lattice. Finally, a proposal for the implementation of a quantum computer with ultracold atoms in a dynamic optical lattice is presented. It utilizes the correlated Mott-insulator state of repulsively interacting atoms as a quantum register. Quantum operations are driven by a periodic shaking of the optical lattice.
3

Ultracold Rydberg Atoms in Structured and Disordered Environments

Liu, Ivan Chen-Hsiu 14 January 2009 (has links) (PDF)
The properties of a Rydberg atom immersed in an ultracold environment were investigated. Two scenarios were considered, one of which involves the neighbouring ground-state atoms arranged in a spatially structured configuration, while the other involves them distributed randomly in space. To calculate the influence of the multiple ground-state atoms on the Rydberg atom, Fermi-pseudopotential was used, which simplified greatly the numerical effort. In many cases, the few-body interaction can be written down analytically which reveals the symmetry properties of the system. In the structured case, we report the first prediction of the formation of ``Rydberg Borromean trimers''. The few-body interactions and the dynamics of the linear A-B-A trimer, where A is the ground-state atom and B is the Rydberg atom, were investigated in the framework of normal mode analysis. This exotic ultralong-range triatomic bound state exists despite that the Rydberg-ground-state interaction is repulsive. Their lifetimes were estimated using both quantum scattering calculations and semi-classical approximations which are found to be typically sub-microseconds. In the disordered case, the Rydberg-excitation spectra of a frozen-gas were simulated, where the nuclear degrees of freedom can be ignored. The systematic change of the spectral shape with respect to the density of the gas and the excitation of the Rydberg atom were found and studied. Some parts of the spectral shape can be described by simple scaling laws with exponents given by the basic properties of the atomic species such as the polarizability and the zero-energy electron-atom scattering length.
4

Ultracold Rydberg Atoms in Structured and Disordered Environments

Liu, Ivan Chen-Hsiu 03 November 2008 (has links)
The properties of a Rydberg atom immersed in an ultracold environment were investigated. Two scenarios were considered, one of which involves the neighbouring ground-state atoms arranged in a spatially structured configuration, while the other involves them distributed randomly in space. To calculate the influence of the multiple ground-state atoms on the Rydberg atom, Fermi-pseudopotential was used, which simplified greatly the numerical effort. In many cases, the few-body interaction can be written down analytically which reveals the symmetry properties of the system. In the structured case, we report the first prediction of the formation of ``Rydberg Borromean trimers''. The few-body interactions and the dynamics of the linear A-B-A trimer, where A is the ground-state atom and B is the Rydberg atom, were investigated in the framework of normal mode analysis. This exotic ultralong-range triatomic bound state exists despite that the Rydberg-ground-state interaction is repulsive. Their lifetimes were estimated using both quantum scattering calculations and semi-classical approximations which are found to be typically sub-microseconds. In the disordered case, the Rydberg-excitation spectra of a frozen-gas were simulated, where the nuclear degrees of freedom can be ignored. The systematic change of the spectral shape with respect to the density of the gas and the excitation of the Rydberg atom were found and studied. Some parts of the spectral shape can be described by simple scaling laws with exponents given by the basic properties of the atomic species such as the polarizability and the zero-energy electron-atom scattering length.

Page generated in 0.0302 seconds