• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 39
  • 39
  • 31
  • 13
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Atomic and molecular clusters in intense laser pulses

Mikaberidze, Alexey 07 October 2011 (has links) (PDF)
We have investigated processes of ionization, energy absorption and subsequent explosion of atomic and molecular clusters under intense laser illumination using numerical as well as analytical methods. In particular, we focused on the response of composite clusters, those consisting of different atomic elements, to intense light pulses. Another major theme is the effect of the molecular structure of clusters on their Coulomb explosion. The action of intense laser pulses on clusters leads to fundamental, irreversible changes: they turn almost instantaneously into nanoplasmas and subsequently disintegrate into separate ions and electrons. Due to this radical transformation, remarkable new features arise. Transient cluster nanoplasmas are capable of absorbing enormous amounts of laser energy. In some cases more than 90 % of incident laser energy is absorbed by a gas of clusters with a density much smaller than that of a solid. After the efficient absorption, the energy is transformed into production of energetic ions, electrons, photons, and even neutrons. Composite clusters show especially interesting behavior when they interact with intense laser pulses. Nanoplasmas formed in composite clusters may absorb even more laser energy, than those formed in homogeneous clusters, as we demonstrate in this work. One of the most important results of this thesis is the identification of a novel type of plasma resonance. This resonance is enabled by an unusual ellipsoidal shape of the nanoplasma created during the ionization process in a helium droplet doped with just a few xenon atoms. In contrast to the conventional plasma resonance, which requires significant ion motion, here, the resonant energy absorption occurs at a remarkably fast rate, within a few laser cycles. Therefore, this resonance is not only the most efficient (like the conventional resonance), but also, perhaps, the fastest way to transfer laser energy to clusters. Recently, dedicated experimental studies of this effect were performed at the Max Planck Institute in Heidelberg. Their preliminary results confirm our prediction of a strong, avalanche-like ionization of the helium droplet with a small xenon cluster inside. A conventional plasma resonance, which relies on the cluster explosion, also exhibits interesting new properties when it occurs in a composite xenon-helium cluster with a core-shell geometry. We have revealed an intriguing double plasma resonance in this system. This was the first theoretical study of the influence of the helium embedding on the laser- driven nanoplasma dynamics. Our results demonstrate the important role of the interaction between xenon and helium parts of the cluster. Understanding this interaction is necessary in order to correctly interpret the experimental results. We have elucidated several important properties of Coulomb explosion in atomic and molecular clusters. Specifically, it was found that the kinetic energy distribution of ions after the Coulomb explosion of an atomic cluster is quite similar to the initial potential energy distribution of ions and is only weakly influenced by ion overtake effects, as was believed before. For the case of molecular hydrogen clusters, we have shown that the alignment of molecules inside the cluster affects its Coulomb explosion. Investigation of the dynamical processes in composite and molecular clusters induced by intense laser pulses is a step towards understanding them in more complex nano-objects, such as biomolecules or viruses. This is of great interest in the context of x-ray diffractive imaging of biomolecules with atomic resolution, which is one of the main goals of new x-ray free electron laser facilities.
32

Diode-Pumped High-Energy Laser Amplifiers for Ultrashort Laser Pulses / Diodengepumpte hochenergetische Laserverstärker für ultrakurze Laserpulse. Das PENELOPE Lasersystem

Loeser, Markus 22 January 2018 (has links) (PDF)
The ultrashort chirped pulse amplification (CPA) laser technology opens the path to high intensities of 10^21 W/cm² and above in the laser focus. Such intensities allow laser-matter interaction in the relativistic intensity regime. Direct diode-pumped ultrashort solid-state lasers combine high-energy, high-power and efficient amplification together, which are the main advantages compared to flashlamp-pumped high-energy laser systems based on titanium-doped sapphire. Development within recent years in the field of laser diodes makes them more and more attractive in terms of total costs, compactness and lifetime. This work is dedicated to the Petawatt, ENergy-Efficient Laser for Optical Plasma Experiments (PENELOPE) project, a fully and directly diode-pumped laser system under development at the Helmholtz–Zentrum Dresden – Rossendorf (HZDR), aiming at 150 fs long pulses with energies of up to 150 J at repetition rates of up to 1 Hz. The focus of this thesis lies on the spectral and width manipulation of the front-end amplifiers, trivalent ytterbium-doped calcium fluoride (Yb3+:CaF2) as gain material as well as the pump source for the final two main amplifiers of the PENELOPE laser system. Here, all crucial design parameters were investigated and a further successful scaling of the laser system to its target values was shown. Gain narrowing is the dominant process for spectral bandwidth reduction during the amplification at the high-gain front-end amplifiers. Active or passive spectral gain control filter can be used to counteract this effect. A pulse duration of 121 fs was achieved by using a passive spectral attenuation inside a regenerative amplifier, which corresponds to an improvement by a factor of almost 2 compared to the start of this work. A proof-of-concept experiment showed the capability of the pre-shaping approach. A spectral bandwidth of 20nm was transferred through the first multipass amplifier at a total gain of 300. Finally, the predicted output spectrum calculated by a numerical model of the final amplifier stages was in a good agreement with the experimental results. The spectroscopic properties of Yb3+:CaF2 matches the constraints for ultrashort laser pulse amplification and direct diode pumping. Pumping close to the zero phonon line at 976nm is preferable compared to 940nm as the pump intensity saturation is significantly lower. A broad gain cross section of up to 50nm is achievable for typical inversion levels. Furthermore, moderate cryogenic temperatures (above 200K) can be used to improve the amplification performance of Yb3+:CaF2. The optical quality of the doped crystals currently available on the market is sufficient to build amplifiers in the hundred joule range. The designed pump source for the last two amplifiers is based on two side pumping in a double pass configuration. However, this concept requires the necessity of brightness conservation for the installed laser diodes. Therefore, a fully relay imaging setup (4f optical system) along the optical path from the stacks to the gain material including the global beam homogenization was developed in a novel approach. Beside these major parts the amplifier architecture and relay imaging telescopes as well as temporal intensity contrast (TIC) was investigated. An all reflective concept for the relay imaging amplifiers and telescopes was selected, which results in several advantages especially an achromatic behavior and low B-Integral. The TIC of the front-end was improved, as the pre- and postpulses due to the plane-parallel active-mirror was eliminated by wedging the gain medium.
33

Diode-Pumped High-Energy Laser Amplifiers for Ultrashort Laser Pulses: The PENELOPE Laser System

Löser, Markus 22 January 2018 (has links)
The ultrashort chirped pulse amplification (CPA) laser technology opens the path to high intensities of 10^21 W/cm² and above in the laser focus. Such intensities allow laser-matter interaction in the relativistic intensity regime. Direct diode-pumped ultrashort solid-state lasers combine high-energy, high-power and efficient amplification together, which are the main advantages compared to flashlamp-pumped high-energy laser systems based on titanium-doped sapphire. Development within recent years in the field of laser diodes makes them more and more attractive in terms of total costs, compactness and lifetime. This work is dedicated to the Petawatt, ENergy-Efficient Laser for Optical Plasma Experiments (PENELOPE) project, a fully and directly diode-pumped laser system under development at the Helmholtz–Zentrum Dresden – Rossendorf (HZDR), aiming at 150 fs long pulses with energies of up to 150 J at repetition rates of up to 1 Hz. The focus of this thesis lies on the spectral and width manipulation of the front-end amplifiers, trivalent ytterbium-doped calcium fluoride (Yb3+:CaF2) as gain material as well as the pump source for the final two main amplifiers of the PENELOPE laser system. Here, all crucial design parameters were investigated and a further successful scaling of the laser system to its target values was shown. Gain narrowing is the dominant process for spectral bandwidth reduction during the amplification at the high-gain front-end amplifiers. Active or passive spectral gain control filter can be used to counteract this effect. A pulse duration of 121 fs was achieved by using a passive spectral attenuation inside a regenerative amplifier, which corresponds to an improvement by a factor of almost 2 compared to the start of this work. A proof-of-concept experiment showed the capability of the pre-shaping approach. A spectral bandwidth of 20nm was transferred through the first multipass amplifier at a total gain of 300. Finally, the predicted output spectrum calculated by a numerical model of the final amplifier stages was in a good agreement with the experimental results. The spectroscopic properties of Yb3+:CaF2 matches the constraints for ultrashort laser pulse amplification and direct diode pumping. Pumping close to the zero phonon line at 976nm is preferable compared to 940nm as the pump intensity saturation is significantly lower. A broad gain cross section of up to 50nm is achievable for typical inversion levels. Furthermore, moderate cryogenic temperatures (above 200K) can be used to improve the amplification performance of Yb3+:CaF2. The optical quality of the doped crystals currently available on the market is sufficient to build amplifiers in the hundred joule range. The designed pump source for the last two amplifiers is based on two side pumping in a double pass configuration. However, this concept requires the necessity of brightness conservation for the installed laser diodes. Therefore, a fully relay imaging setup (4f optical system) along the optical path from the stacks to the gain material including the global beam homogenization was developed in a novel approach. Beside these major parts the amplifier architecture and relay imaging telescopes as well as temporal intensity contrast (TIC) was investigated. An all reflective concept for the relay imaging amplifiers and telescopes was selected, which results in several advantages especially an achromatic behavior and low B-Integral. The TIC of the front-end was improved, as the pre- and postpulses due to the plane-parallel active-mirror was eliminated by wedging the gain medium.
34

Atomic and molecular clusters in intense laser pulses

Mikaberidze, Alexey 19 July 2011 (has links)
We have investigated processes of ionization, energy absorption and subsequent explosion of atomic and molecular clusters under intense laser illumination using numerical as well as analytical methods. In particular, we focused on the response of composite clusters, those consisting of different atomic elements, to intense light pulses. Another major theme is the effect of the molecular structure of clusters on their Coulomb explosion. The action of intense laser pulses on clusters leads to fundamental, irreversible changes: they turn almost instantaneously into nanoplasmas and subsequently disintegrate into separate ions and electrons. Due to this radical transformation, remarkable new features arise. Transient cluster nanoplasmas are capable of absorbing enormous amounts of laser energy. In some cases more than 90 % of incident laser energy is absorbed by a gas of clusters with a density much smaller than that of a solid. After the efficient absorption, the energy is transformed into production of energetic ions, electrons, photons, and even neutrons. Composite clusters show especially interesting behavior when they interact with intense laser pulses. Nanoplasmas formed in composite clusters may absorb even more laser energy, than those formed in homogeneous clusters, as we demonstrate in this work. One of the most important results of this thesis is the identification of a novel type of plasma resonance. This resonance is enabled by an unusual ellipsoidal shape of the nanoplasma created during the ionization process in a helium droplet doped with just a few xenon atoms. In contrast to the conventional plasma resonance, which requires significant ion motion, here, the resonant energy absorption occurs at a remarkably fast rate, within a few laser cycles. Therefore, this resonance is not only the most efficient (like the conventional resonance), but also, perhaps, the fastest way to transfer laser energy to clusters. Recently, dedicated experimental studies of this effect were performed at the Max Planck Institute in Heidelberg. Their preliminary results confirm our prediction of a strong, avalanche-like ionization of the helium droplet with a small xenon cluster inside. A conventional plasma resonance, which relies on the cluster explosion, also exhibits interesting new properties when it occurs in a composite xenon-helium cluster with a core-shell geometry. We have revealed an intriguing double plasma resonance in this system. This was the first theoretical study of the influence of the helium embedding on the laser- driven nanoplasma dynamics. Our results demonstrate the important role of the interaction between xenon and helium parts of the cluster. Understanding this interaction is necessary in order to correctly interpret the experimental results. We have elucidated several important properties of Coulomb explosion in atomic and molecular clusters. Specifically, it was found that the kinetic energy distribution of ions after the Coulomb explosion of an atomic cluster is quite similar to the initial potential energy distribution of ions and is only weakly influenced by ion overtake effects, as was believed before. For the case of molecular hydrogen clusters, we have shown that the alignment of molecules inside the cluster affects its Coulomb explosion. Investigation of the dynamical processes in composite and molecular clusters induced by intense laser pulses is a step towards understanding them in more complex nano-objects, such as biomolecules or viruses. This is of great interest in the context of x-ray diffractive imaging of biomolecules with atomic resolution, which is one of the main goals of new x-ray free electron laser facilities.:1. Introduction 1 2. Interaction of clusters with intense laser pulses 5 2.1. Cluster formation and structure . . . . . . . . . . . . . . . . . . 5 2.1.1. Cluster formation . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2. Cluster structure . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3. Composite clusters . . . . . . . . . . . . . . . . . . . . . 7 2.2. Matter in intense light fields . . . . . . . . . . . . . . . . . . . . 9 2.2.1. Laser sources . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2. Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3. Clusters under intense laser pulses . . . . . . . . . . . . . . . . . 11 2.3.1. Three stages of intense laser-cluster interaction . . . . . 12 2.3.2. Pathways of cluster ionization and energy absorption . . 13 2.3.3. Composite clusters in intense laser fields . . . . . . . . . 14 2.4. Scenarios of cluster explosion . . . . . . . . . . . . . . . . . . . 15 2.4.1. Coulomb explosion vs. quasi-neutral expansion . . . . . 15 2.4.2. Anisotropic explosion . . . . . . . . . . . . . . . . . . . . 17 2.5. Comparison between experiment and theory . . . . . . . . . . . 18 3. Theoretical methods for intense laser-cluster interaction 21 3.1. The Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2. Survey of simulation methods . . . . . . . . . . . . . . . . . . . 22 3.2.1. Quantum methods . . . . . . . . . . . . . . . . . . . . . 22 3.2.2. Classical methods . . . . . . . . . . . . . . . . . . . . . . 23 3.3. Our method: classical microscopic molecular dynamics . . . . . 24 3.3.1. Initial configuration . . . . . . . . . . . . . . . . . . . . . 24 3.3.2. Integrating the equations of motion . . . . . . . . . . . . 26 3.3.3. Observables . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4. The role of quantum effects . . . . . . . . . . . . . . . . . . . . 31 4. Cluster nanoplasma: a statistical approach 33 4.1. Vlasov-Poisson formalism . . . . . . . . . . . . . . . . . . . . . . 33 4.2. Nanoplasma electrons at quasi-equilibrium . . . . . . . . . . . . 34 4.2.1. Self-consistent potential and electron density . . . . . . . 34 4.2.2. Energy distribution of nanoplasma electrons . . . . . . . 36 4.3. Harmonic oscillator model . . . . . . . . . . . . . . . . . . . . . 41 4.3.1. Derivation from kinetic equations . . . . . . . . . . . . . 42 4.3.2. Comparison with the molecular dynamics results . . . . 44 4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5. Ionization and energy absorption in helium droplets doped with xenon clusters 47 5.1. Local ignition and anisotropic nanoplasma growth . . . . . . . . 48 5.1.1. Cluster size dependence . . . . . . . . . . . . . . . . . . 50 5.1.2. Nanoplasma resonance during its anisotropic growth . . 51 5.1.3. Range of laser frequencies and intensities . . . . . . . . . 55 5.1.4. Plasma resonance for circular polarization . . . . . . . . 56 5.1.5. Summary and future work . . . . . . . . . . . . . . . . . 57 5.2. Electron migration and its influence on the cluster expansion . . 59 5.2.1. Charging dynamics . . . . . . . . . . . . . . . . . . . . . 59 5.2.2. Explosion dynamics . . . . . . . . . . . . . . . . . . . . . 61 5.3. Interplay between nanoplasma expansion and its electronic response 63 5.3.1. Single pulse: time-dependence . . . . . . . . . . . . . . . 64 5.3.2. Two pulses: a pump-probe study . . . . . . . . . . . . . 67 5.4. Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . 71 6. Coulomb explosions of atomic and molecular clusters 75 6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.2. Analytical treatment of the Coulomb explosion . . . . . . . . . . 76 6.2.1. Steplike density profile . . . . . . . . . . . . . . . . . . . 76 6.2.2. Kinetic approach . . . . . . . . . . . . . . . . . . . . . . 79 6.2.3. Gradually decreasing initial density . . . . . . . . . . . . 83 6.3. Coulomb explosions of atomic and molecular hydrogen clusters: a molecular dynamics study . . . . . . . . . . . . . . . . . . . . 84 6.3.1. Kinetic energy distributions of ions (KEDI) . . . . . . . 85 6.3.2. Information loss during the explosion . . . . . . . . . . . 87 6.3.3. Ion overtake processes . . . . . . . . . . . . . . . . . . . 90 6.3.4. Non-radial motion of ions . . . . . . . . . . . . . . . . . 91 6.3.5. Three-body effects in Coulomb explosion . . . . . . . . . 93 6.4. Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . 96 7. Conclusions and outlook 97 7.1. Physical conclusions . . . . . . . . . . . . . . . . . . . . . . . . 97 7.2. Methodological conclusions . . . . . . . . . . . . . . . . . . . . . 99 7.3. Research perspectives . . . . . . . . . . . . . . . . . . . . . . . . 100 A. Suppression of the cluster barrier 101 B. Structure determination for Xen@Hem clusters 103 C. Calculation of the time-dependent phase shift 107 D. Potential of a uniformly charged spheroid 109 E. On the possibility of molecular alignment inside hydrogen clusters 111 Bibliography
35

Konzeption und Umsetzung neuer Technologien zur biaxialen Winkelmessung und elektrooptischen Pseudostreckenmessung

Fuhrland, Matthias 31 January 2008 (has links) (PDF)
Ein Ziel der Arbeit war die Entwicklung eines Verfahrens zur 3D-Positionierung auf Basis elektrooptischer Pseudostreckenmessung. Ein zweites Ziel war die Entwicklung eines Reflexgoniometers zur zweiachsigen Winkelmessung. Im Rahmen der Arbeit wurden die Grundlagen zur instrumentellen Umsetzung beider Verfahren erarbeitet, die Genauigkeitspotentiale ermittelt und mögliche Anwendungen für die einzelnen Schlüsseltechnologien und deren Kombination abgeleitet. In einer Prototyp-Entwicklung wurden Vorschläge für die wesentlichen Funktionselemente des räumlichen Weg- bzw. Winkelmesssystems gemacht. Hierzu gehören das kardanisch aufgehängte Etalon, die temperaturstabilisierte Laseroptik und die temperaturkalibrierte CCD der Winkelmesseinheit (Reflexgoniometer), die Systeme zur Erzeugung und Detektion ultrakurzer Laserpulse, eine elastische Optik, Möglichkeiten zur Formung des transversalen Strahlprofils, das TCSPC-System und die zur Auswertung und Kalibrierung notwendigen Algorithmen, wie z.B. die Autokollimation eines Lasers. ("Veröffentlicht von der Deutschen Geodätischen Kommission Reihe C (Dissertationen) unter der Nummer C 614 (München 2008; ISBN 3 7696 5053 0; 2; 144 S.") / One goal of the thesis was the development of a method for three-dimensional positioning based on electro-optical measurement of pseudo ranges. Another goal was the development of a reflex goniometer for biaxial angle measurement. Within the scope of this thesis the basics for the instrumental realisation of both methods were developed, the accuracy potentials were determined and possible applications for the separate key technologies and their combination were deduced. In a prototype development proposals were made for the main functional elements of the spatial distance and angle measurement systems. These include the gimbal mounted etalon, the temperature stabilised laser optics and the temperature calibrated CCD of the angle measurement device (reflex goniometer), the systems for creation and detection of ultrashort laser pulses, an elastic optical device, possibilities of transversal beam shaping, the TCSPC system and the algorithms which are necessary for analysis and calibration, e.g. the autocollimation of a laser.
36

Etude de l'interaction laser-matière en régime d'impulsions ultra-courtes : application au micro-usinage de matériaux à destination de senseurs / Laser matter interaction study with ultrashort laser pulses : application to the cutting of materials used in sensors

Di Maio, Yoan 31 May 2013 (has links)
Le laser à impulsions ultra-courtes constitue un procédé innovant et très avantageux pour la découpe de céramiques piézoélectriques PZT. Grâce à un fort confinement spatiotemporel de l’énergie au cours de l’interaction, ce système minimise les dégâts collatéraux et préserve l’intégrité physique du matériau sur des échelles micrométriques. Néanmoins, une propagation de faisceau mal maîtrisée, associée à des mécanismes d’interaction complexes fonction de la cible irradiée, peuvent impliquer de fortes disparités sur la qualité d’usinage. Dans le cadre d’une application industrielle donnée, ces travaux nous ont donc permis d’approfondir les principales étapes d’optimisation d’un tel procédé selon des critères de reproductibilité, de qualité et de rapidité. Pour cela, nous avons tout d’abord souligné l’influence des propriétés gaussiennes des faisceaux et de leur perturbation afin de définir la distribution énergétique au niveau des plans de focalisation. Aussi, la quantification de l’interaction via les critères de seuil et de taux d’ablation, d’incubation et de saturation a contribué à comprendre la réaction du matériau de manière macroscopique. Les problèmes méthodologiques inhérents à leurs calculs ont été mis en évidence et ont permis par la suite d’anticiper les formes d’usinage ainsi que les temps de procédé. Dans un second temps, l’optimisation des paramètres laser s’est appuyée sur des caractérisations aussi bien qualitatives pour l’aspect visuel que quantitatives avec l’estimation de la stoechiométrie et des contraintes résiduelles au niveau des flancs d’usinage. Nous avons en outre tiré profit de la piézoélectricité afin de développer une méthode d’observation in situ de la réponse à l’onde de choc laser contribuant à la compréhension des fissurations apparentes. Nous proposons au terme de ce travail un jeu de paramètres optimal pour la découpe de PZT assurant une bonne répétabilité du procédé tout en minimisant les défauts d’usinage comme la fissuration, les dépôts de surface et les irrégularités de bords. Des essais sur la mise en forme spatio-temporelle de faisceau sont enfin abordés principalement en tant que perspective d’accélération du procédé et encouragent son utilisation pour une future industrialisation / Lasers delivering ultrashort pulses are innovative and very attractive tools for cutting piezoelectric PZT ceramics. Thanks to an efficient spatiotemporal confinement of the energy during the interaction, these systems reduce collateral damage and preserve the physical integrity of the material on a micrometric scale. Nevertheless, uncontrolled beam propagation associated with complex interaction mechanisms depending on the irradiated target can involve large disparities on machining quality. In the context of an industrial application, this study describes the main steps of optimization of such a process according to criteria of reproducibility, quality and speed. To this purpose, we first pointed out the influence of Gaussian beam properties and their disturbance to define the energy distribution at focal planes. Thus, the quantification of the interaction with the ablation threshold, the ablation rate, incubation and saturation helped to understand the reaction of the material macroscopically. Methodological issues coming from their calculations have been highlighted while machining shapes and processing times were anticipated. Secondly, the optimization of laser parameters was based on both qualitative and quantitative characterizations. Electronic microscopy was rather used for visual appreciations whereas stoichiometry and residual stress estimations were employed to quantify the quality of side walls. We also took benefit from piezoelectricity to develop an in situ observation method which succeeded in detecting the electrical response to the laser shock wave and mainly contributed to the understanding of visible cracks. We finally propose an optimum set of parameters for cutting PZT ensuring good repeatability of the process while minimizing machining defects such as cracking, surface recast and jagged sides. Tests with spatiotemporal beam shaping were finally presented primarily as perspectives of processing time decrease so as to promote its use for future industrialization
37

Konzeption und Umsetzung neuer Technologien zur biaxialen Winkelmessung und elektrooptischen Pseudostreckenmessung

Fuhrland, Matthias 30 November 2007 (has links)
Ein Ziel der Arbeit war die Entwicklung eines Verfahrens zur 3D-Positionierung auf Basis elektrooptischer Pseudostreckenmessung. Ein zweites Ziel war die Entwicklung eines Reflexgoniometers zur zweiachsigen Winkelmessung. Im Rahmen der Arbeit wurden die Grundlagen zur instrumentellen Umsetzung beider Verfahren erarbeitet, die Genauigkeitspotentiale ermittelt und mögliche Anwendungen für die einzelnen Schlüsseltechnologien und deren Kombination abgeleitet. In einer Prototyp-Entwicklung wurden Vorschläge für die wesentlichen Funktionselemente des räumlichen Weg- bzw. Winkelmesssystems gemacht. Hierzu gehören das kardanisch aufgehängte Etalon, die temperaturstabilisierte Laseroptik und die temperaturkalibrierte CCD der Winkelmesseinheit (Reflexgoniometer), die Systeme zur Erzeugung und Detektion ultrakurzer Laserpulse, eine elastische Optik, Möglichkeiten zur Formung des transversalen Strahlprofils, das TCSPC-System und die zur Auswertung und Kalibrierung notwendigen Algorithmen, wie z.B. die Autokollimation eines Lasers. ("Veröffentlicht von der Deutschen Geodätischen Kommission Reihe C (Dissertationen) unter der Nummer C 614 (München 2008; ISBN 3 7696 5053 0; 2; 144 S.") / One goal of the thesis was the development of a method for three-dimensional positioning based on electro-optical measurement of pseudo ranges. Another goal was the development of a reflex goniometer for biaxial angle measurement. Within the scope of this thesis the basics for the instrumental realisation of both methods were developed, the accuracy potentials were determined and possible applications for the separate key technologies and their combination were deduced. In a prototype development proposals were made for the main functional elements of the spatial distance and angle measurement systems. These include the gimbal mounted etalon, the temperature stabilised laser optics and the temperature calibrated CCD of the angle measurement device (reflex goniometer), the systems for creation and detection of ultrashort laser pulses, an elastic optical device, possibilities of transversal beam shaping, the TCSPC system and the algorithms which are necessary for analysis and calibration, e.g. the autocollimation of a laser.
38

Understanding the Relation between Pulse Duration and Topography Evolution of Polyether Ether Ketones Textures by Ultrashort Infrared Laser Interference Patterning

Mulko, Lucinda, Wang, Wei, Baumann, Robert, Kress, Joshua, Voisiat, Bogdan, Jaeger, Erwin, Leupolt, Beate, Vaynzof, Yana, Soldera, Marcos, Lasagni, Andrés Fabián 04 June 2024 (has links)
Advanced polymeric materials, such as polyether ether ketones (PEEK), have been placed as direct substitutes for metals and ceramics in diverse applications, such as the machinery industry and biomedical engineering. Moreover, surface treatments allow the emergence of brand-new properties or the improvement of preexisting ones, such as friction, lubrication, wettability, cellular infiltration, or osseointegration. A paramount approach to achieving topographical modifications is by using laser micro/nanoprocessing techniques such as direct laser interference patterning (DLIP). Herein, PEEK foils are structured with DLIP method using ultrashort pulses. The influence of the pulse duration between 266 fs and 15 ps and the pulse-to-pulse overlap on the resulting surface topography and chemistry is assessed. As a result, well-defined line-like textures with a period of 5.8 μm and aspect ratios up to 0.88 are achieved. Furthermore, it is possible to explore and understand the behavior of surface phenomena such as swelling, increase/decrease of laser–material interaction onset, and laser-induced periodic surface structures formation. A comprehensive topographical and chemical characterization study demonstrates that these distinctive topographical features occur because of multiphoton absorption, incubation effects, and heat accumulation. These phenomena allow structuring polymeric substrates that are low-absorbing and challenging to pattern with conventional nanosecond infrared (IR) laser sources.
39

Nichtlineare Optik mit ultrakurzen Laserpulsen: Suszeptibilität dritter Ordnung und kleine Polaronen sowie Interferenz und Holographie verschiedenfarbiger Laserpulse

Badorreck, Holger 13 June 2016 (has links)
In der vorliegenden Arbeit werden die nichtlinearen optischen Eigenschaften der Materialien Lithiumniobat und Di-Zinn-Hexathiohypodiphosphat aufgrund der Suszeptibilität 3. Ordnung und kleiner Polaronen untersucht. Zudem wird gezeigt, dass die Interferenz verschiedenfarbiger Laserpulse die Aufzeichnung von statischen und dynamischen holographischen Gittern ermöglicht. Ein Teil dieser Arbeit ist in den im Anhang angegebenen 6 Publikationen bereits veröffentlicht. Lithiumniobat wird mit einer Erweiterung des Z-Scan Experiments untersucht, welches die Pulslängenabhängige Messung der nichtlinearen Absorption und der nichtlinearen Brechungsindexänderung ermöglicht. Dabei konnte festgestellt werden, dass bei sehr kurzen Pulslängen von 70 fs ein Effekt der Polaronen auf die nichtlineare Absorption vernachlässigbar ist und die Zwei-Photonen-Absorption die nichtlineare Absorption dominiert. Mit größerer Pulslänge gibt es allerdings Abweichungen zwischen der Theorie der Zwei-Photonen-Absorption und den Messergebnissen. Mit der Entwicklung eines Polaronen-Anregungs-Modells, welches eine polaronische Absorption aufgrund wiederholtem optisch induziertem Hopping annimmt, konnte dieser Effekt konsistent erklärt werden. Die Messungen der nichtlinearen Brechungsindexänderung lassen darauf schließen, dass sowohl freie Ladungsträger als auch kleine Polaronen neben der Suszeptibilität 3. Ordnung einen Einfluss auf die Brechungsindexänderung haben, da eine nichtlineare Abhängigkeit von der Intensität auch bei Pulslängen von 70 fs festgestellt werden konnte. Analog dazu konnte in Di-Zinn-Hexathiohypodiphosphat ein großer Zwei-Photonen-Absorptionskoeffizient festgestellt werden, welcher für Photonenenergien nahe der Bandkante Werte zeigt, die größer sind als theoretischen Überlegungen zeigen. Eine transiente Absorption nach optischer Anregung, gemessen durch ein Anreg-Abtast-Experiment, sowie Literatur legen nahe, dass in Di-Zinn-Hexathiohypodiphosphat gebundene Lochpolaronen durch optische Anregung entstehen können. Durch den hohen Zwei-Photonen-Absorptionskoeffizienten konnte das Aufzeichnen eines kontrastreichen, dynamischen Amplitudengitters mittels Femtosekundenpulsen gezeigt und nachgewiesen werden. Die Kürze der Femtosekundenpulse ermöglicht aber nicht nur das Aufzeichnen eines Zwei-Photonen-Absorptionsgitters aufgrund der hohen Intensitäten, sondern erlaubt zudem die Beobachtung von Interferenz zwischen verschiedenfarbigen Pulsen. In der Zeitspanne der Pulslänge beträgt die Bewegung der Interferenzstreifen, welche in der Größenordnung der Lichtgeschwindigkeit liegt, nur ein Bruchteil der Streifendistanz, sodass das Interferenzmuster eingefroren und beobachtbar erscheint. Somit lassen sich statische Hologramme in holographischen Filmen, wie auch dynamische Hologramme aufzeichnen. Über ein dynamisches holographisches Gitter mittels Zwei-Photonen-Absorption konnte so eine Frequenzkonversion durch Dopplerverschiebung in Lithiumniobat gezeigt werden.

Page generated in 0.0559 seconds