• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 40
  • 40
  • 32
  • 13
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Study of ultrashort laser-pulse induced ripples formed at the interface of silicon-dioxide on silicon

Liu, Bing 04 1900 (has links)
<p>In this thesis, the ripple formation at the interface of SiO2 and Si were studied in a systematic fashion by irradiating the SiO2-Si samples with ultrashort laser pulses under a broad variety of experimental conditions. They consist of di↵erent irradiating laser wavelengths, incident laser energies, translation speeds, translation directions, spot sizes of the laser beam, as well as oxide thicknesses. The ripples produced by laser irradiation are examined using various microscopy techniques in order to characterize their surface morphology, detailed structures, crystalline properties, and so on. For the experiments carried out at ! = 800 nm, the ripples formed on the SiO2-Si sample with an oxide thickness of 216 nm were first observed under optical microscopy and SEM. After removing the oxide layer with HF solution, the surface features of the ripples on the Si substrate were investigated using SEM and AFM techniques. Subsequently, by means of TEM and EDX analysis, the material composition and crystallinity of the ripples were determined. It is concluded that the ripples are composed of nano-crystalline silicon. In addition to the 216 nm oxide thickness, other oxide samples with di↵erent oxide thicknesses, such as 24, 112, 117, 158 and 1013 nm, were also processed under laser irradiation. The ripple formation as a function of the laser energy, the translation direction and the spot size is discussed in detail. Furthermore, the ripples created at the SiO2-Si interface are compared with</p> <p>the LIPSS created on pure silicon samples that were processed under similar laser irradiation conditions. The spatial periodicities of the ripples were evaluated to be in the range of between 510 nm and 700 nm, which vary with the oxide thickness and other laser parameters. For the experiments using the ! = 400 nm laser pulses, it is found that ripples can also be formed at the SiO2-Si interface, which have spatial periodicities in the range of between 310 nm and 350 nm depending on the oxide thickness. The ripple formation at this 400 nm wavelength as a function of the laser energy, the translation speed, and translation direction is considered as well. For the case of ! = 400 nm irradiation, a comparison is also made between the interface ripples on the SiO2-Si samples and the LIPSS on a pure Si sample. Through FIB-TEM and EDX analysis, it confirmed that the ripples were produced in the substrate while the oxide layer maintained its structural integrity. In addition, the ripples are composed of nano-crystalline silicon whose crystallite sizes are on the order of a few nanometers. Apart from irradiating oxide samples with femtosecond laser pulses, which applies to the two cases of ! = 800 and 400 nm mentioned above, oxide samples with an oxide thickness of 112 nm were irradiated with picosecond laser pulses at ! = 800 nm whose pulse durations are 1 ps and 5 ps, respectively. However, no regular ripples can be produced at the SiO2-Si interface while maintaining the complete integrity of the oxide layer.</p> / Master of Applied Science (MASc)
22

Modelación físico-matemática y simulaciones computacionales para guiar el diseño y fabricación de nanoestructuras plasmónicas optimizadas para aplicaciones energéticas

Castro Palacio, Juan Carlos 25 October 2021 (has links)
[ES] La irradiación de nanopartículas de oro (AuNPs) esféricas en una suspensión coloidal con pulsos láser de nanosegundos puede inducir su metamorfosis, dando lugar a la aparición de esferas con cavidades internas. La concentración del surfactante estabilizador de las partículas, el uso de fluencias de láser moderadas y el tamaño de las partículas, determinan la eficiencia y características del proceso. Las partículas huecas resultantes se obtienen cuando las moléculas del medio circundante (ej., agua, materia orgánica del surfactante) quedan atrapadas durante la irradiación láser. Estas observaciones experimentales sugieren la existencia de un balance sutil entre los procesos de calentamiento y enfriamiento. El primero induce la expansión y paso a un estado amorfo y, el segundo, la subsecuente recristalización manteniendo en su interior el material atrapado. Estas observaciones experimentales han sido explicadas satisfactoriamente con las simulaciones de dinámica molecular clásica desarrolladas en el marco de esta tesis. Específicamente, la dinámica molecular confirma que es necesaria la existencia de moléculas en el interior de las cavidades que se forman dentro de las AuNPs para que se produzca su estabilización. En la segunda parte de esta tesis, se detallan las simulaciones de dinámica molecular clásica y los cálculos de propiedades ópticas de la irradiación de nanopartículas esféricas de oro con pulsos láser de femtosegundos, para predecir los cambios de forma que se producen en las mismas, bajo una exploración de los diferentes parámetros involucrados, es decir, la fluencia y duración del láser, el tamaño de las nanopartículas cristalinas esféricas y la capacidad de enfriamiento del medio circundante. El objetivo fundamental de las simulaciones es brindar una guía para la síntesis de nanopartículas con morfologías determinadas. Los resultados de las simulaciones indican que, para la formación de nanopartículas huecas, las mismas deben ser calentadas hasta una temperatura entre 2500 y 3500 K, seguido por un enfriamiento exponencial rápido, con una constante de tiempo menor de 120 ps. Por lo tanto, se describen las condiciones experimentales para la producción eficiente de nanopartículas huecas, lo que abre un amplio rango de posibilidades de aplicación en áreas fundamentales, tales como el almacenamiento de energía y la catálisis. En la última parte de esta memoria se exponen las simulaciones de dinámica molecular clásica implementadas para profundizar en los experimentos pumpprobe con nanoesferas plasmónicas de oro, desarrollados en la referencia [R.Fuentes-Domínguez et al. Appl. Sci. 2017, 7(8), 819.]. Tras la irradiación láser y consecuente deposición de energía, las partículas vibran, lo que se puede medir mediante la fuerte modulación producida en la sección eficaz de dispersión. La vibración mecánica de las AuNPs esféricas, tras ser irradiadas con láseres ultracortos, las convierte en generadores termoelásticos eficientes de ultrasonido y, por tanto, en excelentes candidatos para transductores luz-sonido en diversas aplicaciones. / [CA] La irradiació de nanopartícules d'or (AuNPs) esfèriques en una suspensiócolloidal amb polsos làser de nanosegons pot induir la seua metamorfosi, donant lloc a l'aparició d'esferes amb cavitats internes. La concentració del surfactante estabilitzador de les partícules, l'ús de fluencias de làser moderades i la grandària de les partícules, determinen l'eficiència i característiques del procés. Les partícules buides resultants s'obtenen quan les molècules del mitjà circumdant (ex., aigua, matèria orgànica del surfactante) queden atrapades durant la irradiació làser. Aquestes observacions experimentals suggereixen l'existència d'un balanç subtil entre els processos de calfament i refredament. El primer indueix l'expansió i passe a un estat amorf i, el segon, la subseqüent recristalización mantenint en el seu interior el material atrapat. Aquestes observacions experimentals han sigut explicades satisfactòriament amb les simulacions de dinàmica molecular clàssica desenvolupades en el marc d'aquesta tesi. Específicament, la dinàmica molecular confirma que és necessària l'existència de molècules a l'interior de les cavitats que es formen dins de les AuNPs perquè es produïsca la seua estabilització. En la segona part d'aquesta tesi, es detallen les simulacions de dinàmica molecular clàssica i els càlculs de propietats òptiques de la irradiació de nanopartícules esfèriques d'or amb polsos làser de femtosegundos, per a predir els canvis de manera que es produeixen en aquestes, sota una exploració dels diferents paràmetres involucrats, és a dir, la fluencia i duració del làser, la grandària de les nanopartícules cristal·lines esfèriques i la capacitat de refredament del mitjà circumdant. L'objectiu fonamental de les simulacions és brindar una guia per a la síntesi de nanopartícules amb morfologies determinades. Els resultats de les simulacions indiquen que, per a la formació de nanopartícules buides, les mateixes han de ser calfades fins a una temperatura entre 2500 i 3500 K, seguit per un refredament exponencial ràpid, amb una constant de temps menor de 120 pg. Per tant, es descriuen les condicions experimentals per a la producció eficient de nanopartícules buides, la qual cosa obri un ampli rang de possibilitats d'aplicació en àrees fonamentals, tals com l'emmagatzematge d'energia i la catàlisi. En l'última part d'aquesta memòria s'exposen les simulacions de dinàmica molecular clàssica implementades per a aprofundir en els experiments pumpprobe amb nanoesferas plasmónicas d'or, desenvolupats en la referència [R. Fuentes-Domínguez et al. Appl. Sci. 2017, 7(8), 819.]. Després de la irradiació làser i conseqüent deposició d'energia, les partícules vibren, la qual cosa es pot mesurar mitjançant la forta modulació produïda en la secció eficaç de dispersió. La vibració mecànica de les AuNPs esfèriques, després de ser irradiades amb làsers ultracortos, les converteix en generadors termoelásticos eficients d'ultrasò i, per tant, en excel·lents candidats per a transductors llum-so en diverses aplicacions. / [EN] The irradiation of gold nanoparticles (AuNPs) in a colloid with nanosecond laser pulses can give rise to the formation of cavities. The concentration of the surfactant used to stabilize the particles, the laser fluency, and the size of the nanoparticles, determine the efficiency and features of the process. The resulting hollow particles are obtained when the right balance between the heating and cooling processes is given. The first process induces an expansion and the melting of the particle, while the second, leads to the recrystallization, keeping the extraneous matter trapped in the inside. These experimental observations have been satisfactorily explained by the molecular dynamics simulations carried out in this thesis. Specifically, the simulations have confirmed that it is necessary the existence of trapped molecules in the inside of the cavities to stabilize the cavities. In the second part of this thesis, the molecular dynamics simulations and calculation of optical properties when gold nanoparticles (in a colloid) are irradiated with femtosecond laser pulses. The simulations allowed to predict the the shape changes under different conditions for the laser fluency and duration, the size of the nanoparticles and the cooling rate, which is driven by the properties of the solvent and the surfactant. These simulations provide a guidance for the synthesis of nanoparticles with specific morphological features. The results show that the nanospheres should be heated up to 2500 y 3500 K, followed by a fast cooling (time constant of 120 ps). Therefore, the experimental conditions for the efficient production of hollow nanoparticles are described what opens a broad range of possibilities for applications in areas such as energy storage and catalysis. MD simulations are carried out in the last part of this thesis to gain insights into the pump-probe experiments using AuNPs in reference [R. Fuentes-Domínguez et al. Appl. Sci. 2017, 7(8), 819.]. Upon femtosecond laser irradiation and deposition of energy, the nanospheres vibrate which can be measured by means of the scattering cross section. This fact becomes the AuNPs in ideal thermoelastic ultrasound generators and therefore in excellent candidates for light-sound transducers in different applications. / Castro Palacio, JC. (2021). Modelación físico-matemática y simulaciones computacionales para guiar el diseño y fabricación de nanoestructuras plasmónicas optimizadas para aplicaciones energéticas [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/175557
23

Pushing frontiers in Carrier-Envelope Phase stabilization of ultrashort laser pulses

Borchers, Bastian 16 February 2015 (has links)
Die vorliegende Arbeit ist der Verbesserung der Carrier-Envelope Phasenstabilisierung von ultrakurzen Laserimpulsen gewidmet. Zur Realisierung von Fortschritten auf diesem Gebiet werden die grundlegenden Rauschquellen identifiziert, die das erzielbare Restphasenrauschen limitieren, und geeignete Maßnahmen zu deren Verringerung vorgeschlagen. Es wird gezeigt, dass sowohl die Messung der Carrier-Envelope Phase (CEP) als auch deren Kontrolle durch verschiedene Rauschbeiträge beeinträchtigt wird. Der Detektionsprozess ist dabei einerseits durch technische Rauschquellen beeinflusst, die vor allem in den verwendeten nichtlinearen Interferometern auftreten. Andererseits repräsentiert das Detektionsrauschen während der elektro-optischen Wandlung eine fundamentale Limitierung, da das optische Schrotrauschen sowie das Rauschen des Lichtdetektors die Messung der CEP unausweichlich beeinträchtigen. Es wird demonstriert, wie solche Beschränkungen durch geeignete Wahl der Interferometertopologie, bzw. durch Optimierung des spektralen Verbreiterungsmechanismus verringert werden können. Experimentell gelingt es dadurch den Signal-Rauschabstand der Phasenmessung um 20 Dezibel zu steigern. Hinsichtlich der CEP Kontrolle von Oszillatoren wird in dieser Arbeit ein neuartiges Doppelstabilisierungskonzept vorgestellt, welches eine feed-forward Stabilisierung, die auf einem akustooptischen Frequenzschieber beruht, mit einer klassischen Feedback Regelung kombinert. Mit diesem Konzept gelingt eine Reduzierung des Phasenrestrauschen auf beispiellose 20 Milliradian. Darüber hinaus werden weitere neue Stabilisierungskonzepte vorgestellt, die ohne Feedback zu dem Laseroszillator auskommen. Bei einem dieser Konzepte, handelt es sich um eine gepulste feed-forward Stabilisierung, die speziell für das Zusammenwirken mit einer Verstärkerstufe konzipiert ist. Erste experimentelle Ergebnisse zeigen, dass Phasenrestrauschen von weniger als 100 Milliradian auch für Verstärkersysteme erreichbar sind. / The present thesis is dedicated to improvements of the carrier-envelope phase stabilization of ultrashort laser pulses. In order to realize such improvements, the fundamental noise sources are identified, and suitable measures for their reduction are proposed. It is shown that both, the measurement of the carrier-envelope phase (CEP) as well as its control are corrupted by different noise contributions. On the one hand, the detection process is influenced by technical noise sources, which arise especially in the used nonlinear interferometers. On the other hand, the detection noise in the electro-optic conversion represents a fundamental limitation, since the optical shot noise as well as the noise induced by the light detector inevitably influence the measurement of the CEP. It is demonstrated how such limitations can be minimized by a suitable choice of the interferometer topology and by an optimization of the spectral broadening process in a micro-structured fiber. This way an enormous improvement of the signal-to-noise ratio by 20 dB is obtained experimentally, which significantly reduces the limitation of detection noise. For controlling the CEP of mode-locked oscillators, a novel double stabilization scheme is introduced in this thesis, which combines a feed-forward stabilization based on an acousto-optic frequency shifter, with a classical feedback loop. This method enables a reduction of the residual phase jitter to an unprecedented value of 20 milliradian. Beyond that, several further concepts are introduced that are capable of stabilizing the CEP without any feedback to the laser oscillator. One of these concepts, represents a pulsed feed-forward stabilization, which is specifically designed for the use in combination with a subsequent amplification stage. First experimental results indicate that residual phase jitters of less than 100 milliradian are within reach also for amplified laser systems.
24

Measurement of Pulse Train Instability in Ultrashort Pulse Characterization

Escoto, Esmerando 10 March 2020 (has links)
Die Messung ultrakurzer Laserpulse ist ein Eckpfeiler der ultraschnellen Laserphysik, da die Gültigkeit eines Experiments von der Glaubwürdigkeit seiner Messtechnik abhängt. Etablierte Puls-Charakterisierungstechniken beruhen jedoch häufig auf einer Mittelung über viele Pulse. Daher können sie falsche Informationen liefern, wenn die zeitliche Form von Puls zu Puls variiert. Diese Dissertation bietet Strategien zum sicheren Erfassen und Messen einer Degradierung der Puls-Kohärenz mit Hilfe von frequenzaufgelöstem optischem Gating (FROG), spektraler Phaseninterferometrie für die direkte Rekonstruktion elektrischer Felder (SPIDER) und Dispersionsscan (D-scan). Zu diesem Zweck werden Verbesserungen der Charakterisierungstechniken entwickelt. Die in dieser Arbeit entwickelten neuen Werkzeuge eröffnen nun einen Weg zur Untersuchung der Degradierung der Inter-Puls-Kohärenz, was eine zuverlässige Ultrakurzpulsmetrologie ermöglicht und das zuvor nicht nachweisbare Problem der Pulsfolgeninstabilität löst. / The measurement of ultrashort laser pulses is a cornerstone of ultrafast laser physics, as the validity of any experiment depends on the credibility of its measurement technique. However, established pulse characterization techniques often rely on averaging over many pulses. Therefore, they can return incorrect information if the temporal shape varies from pulse to pulse. This thesis provides strategies to safely detect and measure interpulse coherence degradation, using frequency-resolved optical gating (FROG), spectral phase interferometry for direct electric-field reconstruction (SPIDER), and dispersion scan (d-scan). To this end, improvements of the characterization techniques themselves are devised. The set of new tools developed in this thesis now opens up an avenue for the investigation of interpulse coherence degradation, leading to a more reliable ultrashort pulse metrology and solving the previously undetectable problem of pulse train instability.
25

Role of nuclear rotation in H[subscript]2[superscript]+ dissociation by ultra short laser pulses

Anis, Fatima January 1900 (has links)
Doctor of Philosophy / Department of Physics / Brett D. Esry / The nuclear rotational period of the simplest molecule H[subscript]2[superscript]+ is about 550 fs, which is more than 35 times longer than its vibrational period of 15 fs. The rotational time scale is also much longer than widely available ultra short laser pulses which have 10 fs or less duration. The large difference in rotational period and ultra short laser pulse duration raises questions about the importance of nuclear rotation in theoretical studies of H[subscript]2[superscript]+ dissociation by these pulses. In most studies, reduced-dimensionality calculations are performed by freezing the molecular axis in one direction, referred to as the aligned model. We have systematically compared the aligned model with our full-dimensionality results for total dissociation probability and field-free dynamics of the dissociating fragments. The agreement between the two is only qualitative even for ultra short 10 fs pulses. Post-pulse dynamics of the bound wave function show rotational revivals. Significant alignment of H[subscript]2[superscript]+ occurs at these revivals. Our theoretical formulation to solve the time-dependent Schrodinger equation is an important step forward to make quantitative comparison between theory and experiment. We accurately calculate observables such as kinetic energy, angular, and momentum distributions. Reduced-dimensionality calculations cannot predict momentum distributions. Our theoretical approach presents the first momentum distribution of H[subscript]2[superscript]+ dissociation by few cycle laser pulses. These observables can be directly compared to the experiment. After taking into account averaging steps over the experimental conditions, we find remarkable agreement between the theory and experiment. Thus, our theoretical formulation can make predictions. In H[subscript]2[superscript]+ dissociation by pulses less than 10 fs, an asymmetry in the momentum distribution occurs by the interference of different pathways contributing to the same energy. The asymmetry, however, becomes negligible after averaging over experimental conditions. In a proposed pump-probe scheme, we predict an order of magnitude enhancement in the asymmetry and are optimistic that it can be observed.
26

Combinaison cohérente d'amplificateurs à fibre en régime femtoseconde / Coherent combining of femtosecond fiber amplifiers

Daniault, Louis 05 December 2012 (has links)
Pour un grand nombre d'applications, les sources laser impulsionnelles femtoseconde (fs) doivent fournir des puissances toujours plus importantes. En régime impulsionnel, on recherche d'une part une forte puissance crête par impulsion, et d'autre part une forte puissance moyenne, c'est à dire un taux de répétition élevé. Parmi les technologies existantes, les amplificateurs à fibre optique dopée ytterbium présentent de nombreux avantages pour l'obtention de fortes puissances moyennes, cependant le fort confinement des faisceaux dans la fibre sur de grandes longueurs d'interaction induit inévitablement des effets non-linéaires, et limite ainsi la puissance crête accessible. Nous avons étudié lors de cette thèse la combinaison cohérente d'impulsions fs appliquée aux systèmes fibrés.Ayant déjà fait ses preuves dans les régimes d'amplification continu et nanoseconde, la combinaison cohérente de faisceaux (dite combinaison spatiale) permet de diviser une seule et unique source en N voies indépendantes, disposées en parallèle et incluant chacune un amplificateur. Les faisceaux amplifiés sont ensuite recombinés en espace libre en un seul et unique faisceau, qui contient toute la puissance des N amplificateurs sans accumuler les effets non-linéaires. Cette architecture permet théoriquement de monter d'un facteur N le niveau de puissance crête issu des systèmes d'amplification fibrés. Au cours de cette thèse, nous avons démontré la compatibilité et l'efficacité de cette méthode en régime d'amplification fs avec deux amplificateurs, selon différents procédés. Les expériences démontrent d'excellentes efficacités de combinaison ainsi qu'une très bonne préservation des caractéristiques temporelles et spatiales initiales de la source. Les procédés de combinaison cohérente nécessitent cependant un accord de phase entre différents amplificateurs stable dans le temps, assuré en premier lieu par une boucle de rétroaction. Nous avons poursuivi notre étude en concevant une architecture totalement passive, permettant une implémentation plus simple d'un système de combinaison à deux faisceaux sans asservissement électronique. Enfin, une méthode passive de combinaison cohérente dans le domaine temporel est étudiée et caractérisée dans le domaine fs, et implémentée simultanément avec la méthode passive de combinaison spatiale proposée précédemment. Ces expériences démontrent la validité et la variété des concepts proposés, ainsi que leurs nombreuses perspectives pour les systèmes d'amplification fs fibrés. / Applications addressed by femtosecond (fs) laser sources are requiring increasing pulse energies and increasing average powers. Ytterbium-doped fiber amplifiers are excellent candidates to generate high average powers at high repetition rates, but present strong disadvantages in terms of peak power. Indeed, the tight confinement of the beam over long interaction length induces nonlinear effects at high peak-powers that affect the overall performances of fiber systems. This work describes coherent combining methods that can be used to scale the performances of femtosecond laser sources.Coherent beam combining has been widely used in CW regime and more recently in the nanosecond range. It consists in splitting a single seed into N beam replicas, amplified each by independent amplifiers in parallel. Their respective outputs are combined in free space into one single beam that carries the power of the N amplifiers without cumulating nonlinearities. This architecture allows scaling both peak and average powers of the amplification systems. We have studied and demonstrated the efficiency of active coherent beam combining in the fs regime with two fiber amplifiers, which are peak-power limited. The experiments show the preservation of the temporal/spectral/spatial properties of the combined pulses, with high combination efficiencies.Coherent beam combining methods require phase-matching between all the beams to combine. This is usually achieved by an active feedback loop on each amplifier along with a phase detection scheme. We demonstrate that a Sagnac interferometer can be used to ensure perfect and stable phase-matching over time, which considerably simplifies the setup. Finally, another passive combining method known as divided-pulse amplification, acting in the temporal domain, is studied and demonstrated in the fs regime. It is coupled with the passive spatial combining method described above to scale the number of pulse divisions. All these experiments show the compatibility of coherent combining concepts in the fs regime and provide new opportunities for fiber amplifier systems.
27

Numerical study of ultrashort laser-induced periodic nanostructure formation in dielectric materials / Étude numérique de la formation des nanostructures périodiques induites par laser ultrabref dans les matériaux diélectriques

Rudenko, Anton 11 July 2017 (has links)
Cette thèse se concentre sur l'étude numérique de l'interaction laser ultrabref avec les diélectriques transparents. En particulier, le phénomène d'auto-organisation des nanoréseaux dans la silice est discuté et un modèle multiphysique est proposé pour expliquer le mécanisme de leur formation. Les nanoréseaux en volume sont des nanostructures périodiques de périodicité sub-longueur d'onde, qui consistent en un matériau moins dense et sont générés par une irradiation laser multi-impulsionnelle femtoseconde dans certains verres, cristaux et semiconducteurs. Leur origine physique ainsi que les conditions d'irradiation laser pour leur formation et leur effacement sont investiguées dans ce travail théorique. Pour simuler la propagation nonlinéaire dans les verres, les équations de Maxwell sont couplées avec l'équation d'évolution de la densité électronique. Il est démontré que les nanoplasmas périodiques 3D sont formés pendant l'interaction laser ultrabref avec les inhomogénéités de la silice fondue. Les nanopores induits par laser sont supposés jouer le rôle de centres inhomogènes de diffusion. La périodicité sub-longueur d'onde et l'orientation des nanoplasmas dépendante de la polarisation, révélées dans cette thèse, font d'eux un excellent candidat pour expliquer la formation des nanoréseaux en volume. En plus, il est demontré que les nano-ripples sur la surface de silice fondue et les nanoréseaux en volume ont des mécanismes de formation similaires. Pour justifier la présence de nanopores dans la silice fondue irradiée par laser, les processus de décomposition du verre sont étudiés. Premièrement, les profils de température sont calculés sur la base d'un modèle électron-ion. Ensuite, à partir des températures calculées, des critères de cavitation et de nucléation dans le verre ainsi que des équations hydrodynamiques de Rayleigh-Plesset, les conditions pour la formation des nanopores et la survie des nanoréseaux en volume sont élucidées. Pour établir les dépendances des paramètres du laser de formation et d'effacement des nanoréseaux en volume, l'approche multiphysique est développée comprenant la propagation du laser ultrabref dans le verre, les processus d'excitation/relaxation électroniques et le modèle à deux températures. Les résultats numériques fournissent les paramètres du laser en fonction de l'énergie de l'impulsion, sa durée et le taux de répétition pour induire des nanoréseaux en volume, en bon accord avec les expériences nombreuses et indépendantes de la littérature. Le travail réalisé a non seulement permis de déterminer les mécanismes de formation des nanostructures périodiques mais améliore également notre connaissance du contrôle optimal des paramètres du laser sur la réponse ultrarapide d matériau, en ouvrant des nouvelles opportunités de traitement des diélectriques par laser ultrabref / This thesis is focused on the numerical modeling of ultrashort laser interaction with transparent dielectrics. More particularly, the phenomenon of self-organized volume nanogratings in fused silica bulk is discussed and a multiphysical model is proposed to explain the mechanism of their formation. Volume nanogratings are sub-wavelength periodic nanostructures, consisting of less dense material, which are commonly induced by multipulse femtosecond laser irradiation in some glasses, crystals and indirect semiconductors. Their physical origin as well as the laser irradiation conditions for theirformation and erasure are investigated in this theoretical work. To model the nonlinear propagation inside glass, Maxwell's equations are coupled with rate equation. It is shown that three-dimensional periodic nanoplasmas are formed during ultrashort laser interaction with fused silica inhomogeneities. Laser-induced nanopores are proposed to play the role of inhomogeneous scattering centers. Subwavelength periodicity and polarization dependent orientation of the nanoplasmas, revealed in this thesis, make them a strong candidate for explaining volume nanogratings formation. Additionally, it is demonstrated that the nanoripples on fused silica surface and volume nanogratings have similar formation mechanisms. To justify the presence of nanopores in laser-irradiated fused silica bulk, glass decomposition processes are investigated. Firstly, the temperature profiles are found by incorporating the electron-ion temperature model. Then, based on the calculated temperatures, criteria for cavitation and nucleation in glass and also hydrodynamic Rayleigh-Plesset equation, the conditions for nanopores formation and for volume nanogratings survival are elucidated. To define the laser parameter dependencies on the volume nanogratings formation/erasure, a selfconsistent multiphysical approach is developed including ultrafast laser propagation in glass, multiple rate equation to take into account excitation/relaxation processes and two-temperature model. The numerical results provide a laser parameter window as a function of laser pulse energy, laser pulse duration and repetition rate for volume nanogratings consistent with numerous independent experiments. The performed work not only provides new insights into the formation mechanisms of periodic nanostructures but also improves our knowledge of the optimal laser parameter control over ultrafast material response, opening new opportunities in ultrashort laser processing of dielectrics
28

Photoacoustic drug delivery using carbon nanoparticles activated by femtosecond and nanosecond laser pulses

Chakravarty, Prerona 09 January 2009 (has links)
Cellular internalization of large therapeutic agents such as proteins or nucleic acids is a challenging task because of the presence of the plasma membrane. One strategy to facilitate intracellular drug uptake is to induce transient pores in the cell membrane through physical delivery strategies. Physical approaches are attractive as they offer more generic applicability compared with viral or biochemical counterparts. Pulsed laser light can induce the endothermic carbon-steam reaction in carbon-nanoparticle suspensions to produce explosive photoacoustic effects in the surrounding medium. In this study, for the first time, these photoacoustic forces were used to transiently permeabilize the cell membrane to deliver macromolecules into cells. Intracellular delivery using this method was demonstrated in multiple cell types for uptake of small molecules, proteins and DNA. At optimized conditions, uptake was seen in up to 50% of cells with nearly 100% viability and in 90% of cells with ≥90% viability, which compared favorably with other physical methods of drug delivery. Cellular bioeffects were shown to be a consequence of laser-carbon interaction and correlated with properties of the carbon and laser, such as carbon concentration and size, laser pulse duration, wavelength, intensity and exposure time. Similar results were observed using two different lasers, a femtosecond Ti: Sapphire laser and a nanosecond Nd: YAG laser. Uptake was also shown in murine skeletal muscles in vivo with up to 40% efficiency compared to non-irradiated controls. This synergistic use of nanotechnology with advanced laser technology could provide an alternative to viral and chemical-based drug and gene delivery.
29

Numerische Untersuchungen zum optischen Durchbruch von Femtosekunden-Laserpulsen in Wasser / Numerical investigations of the optical breakdown of femtosecond laser pulses in water

Köhler, Karsten 13 October 2010 (has links)
No description available.
30

Atomic and molecular clusters in intense laser pulses

Mikaberidze, Alexey 07 October 2011 (has links) (PDF)
We have investigated processes of ionization, energy absorption and subsequent explosion of atomic and molecular clusters under intense laser illumination using numerical as well as analytical methods. In particular, we focused on the response of composite clusters, those consisting of different atomic elements, to intense light pulses. Another major theme is the effect of the molecular structure of clusters on their Coulomb explosion. The action of intense laser pulses on clusters leads to fundamental, irreversible changes: they turn almost instantaneously into nanoplasmas and subsequently disintegrate into separate ions and electrons. Due to this radical transformation, remarkable new features arise. Transient cluster nanoplasmas are capable of absorbing enormous amounts of laser energy. In some cases more than 90 % of incident laser energy is absorbed by a gas of clusters with a density much smaller than that of a solid. After the efficient absorption, the energy is transformed into production of energetic ions, electrons, photons, and even neutrons. Composite clusters show especially interesting behavior when they interact with intense laser pulses. Nanoplasmas formed in composite clusters may absorb even more laser energy, than those formed in homogeneous clusters, as we demonstrate in this work. One of the most important results of this thesis is the identification of a novel type of plasma resonance. This resonance is enabled by an unusual ellipsoidal shape of the nanoplasma created during the ionization process in a helium droplet doped with just a few xenon atoms. In contrast to the conventional plasma resonance, which requires significant ion motion, here, the resonant energy absorption occurs at a remarkably fast rate, within a few laser cycles. Therefore, this resonance is not only the most efficient (like the conventional resonance), but also, perhaps, the fastest way to transfer laser energy to clusters. Recently, dedicated experimental studies of this effect were performed at the Max Planck Institute in Heidelberg. Their preliminary results confirm our prediction of a strong, avalanche-like ionization of the helium droplet with a small xenon cluster inside. A conventional plasma resonance, which relies on the cluster explosion, also exhibits interesting new properties when it occurs in a composite xenon-helium cluster with a core-shell geometry. We have revealed an intriguing double plasma resonance in this system. This was the first theoretical study of the influence of the helium embedding on the laser- driven nanoplasma dynamics. Our results demonstrate the important role of the interaction between xenon and helium parts of the cluster. Understanding this interaction is necessary in order to correctly interpret the experimental results. We have elucidated several important properties of Coulomb explosion in atomic and molecular clusters. Specifically, it was found that the kinetic energy distribution of ions after the Coulomb explosion of an atomic cluster is quite similar to the initial potential energy distribution of ions and is only weakly influenced by ion overtake effects, as was believed before. For the case of molecular hydrogen clusters, we have shown that the alignment of molecules inside the cluster affects its Coulomb explosion. Investigation of the dynamical processes in composite and molecular clusters induced by intense laser pulses is a step towards understanding them in more complex nano-objects, such as biomolecules or viruses. This is of great interest in the context of x-ray diffractive imaging of biomolecules with atomic resolution, which is one of the main goals of new x-ray free electron laser facilities.

Page generated in 0.0708 seconds