• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 84
  • 21
  • 16
  • 8
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 198
  • 198
  • 198
  • 53
  • 53
  • 51
  • 39
  • 32
  • 31
  • 29
  • 29
  • 25
  • 21
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Tactical control of unmanned aerial vehicle swarms for military reconnaissance / Taktisk styrning av autonom och obemannad luftfarkostssvärm

Maxstad, Isak January 2021 (has links)
The use of unmanned aerial vehicles (UAVs) is well established in the military sector with great advantages in modern warfare. The concept of using UAV swarms has been discussed over two decades, but is now seeing its first real system used by the Israel defence forces. There is no exact definition what a swarm is, but it is proposed that it should satisfy the following three requirements. A swarm should have limited human control, the number of agents in a swarm should be at least three and the agents in the swarm should cooperate to perform common tasks. The complexity of controlling multiple autonomous UAVs gives way to the problem of how to take advantage of the operators cognitive and tactical abilities to control a swarm to effectively conduct military reconnaissance missions. The method of using behaviour trees as a control structure was derived from previous work in swarm systems. A behaviour tree is a structured way of organising and prioritising actions of autonomous systems. Behaviour trees are similar to finite state machines (FSMs) with the advantages of being modular, reactive, and with better readability. Three different behaviour trees with increasing complexity was created and simulated in the game engine Unity. A fourth more real life behaviour tree was created and used as a basis for discussing the strength and weaknesses of using behaviour trees against previous work. Using behaviour tree as a unifying structure for creating a swarm that integrates the tactical abilities of an operator with the strength of an autonomous swarm seems promising. The proposed method of using behaviour trees i suggested to be used as a platform for discussing the swarm desired functions and to create a common vision for both operators and engineers how a swarm should function. / Användning av drönare är väletablerad inom det militära och ger stora fördelar i dagens moderna krigsföring. Idén om att använda en svärm av drönare har diskuterats under de senaste två decennierna, men först nu sett sin första riktiga system som använts av Israels försvarsmakt. Det finns ingen exakt definition av vad en svärm är, men det har föreslagits att en svärm ska uppfylla de följande tre kraven. En svärm ska ha begränsad mänsklig interaktion, antalet agenter ska vara minst tre och svärmen ska samarbeta för att lösa gemensamma uppgifter. Svårigheterna med att styra en autonom svärm ger upphov till hur man ska utnyttja en operatörs kognitiva och taktiska förmåga för att styra en autonom drönarsvärm för att effektivt utföra militära spaningsuppdrag. Utifrån tidigare arbete inom styrning av svärmar verkade beteende träd som en lovande metod. Beteendeträd är ett strukturerat sätt att organisera och prioritera beteenden för ett autonomt system. Beteendeträd har många likheter med ändliga tillståndsmaskiner, men fördelarna att vara modulära, responsiva och mer lättläsliga. Tre olika beteendeträd med ökande komplexitet skapades och deras funktionalitet simulerades i Unity. Ett fjärde mer verklighetstroget beteendeträd skapades och användes som underlag för att diskutera beteendeträds styrkor och svagheter i jämförelse med tidigare arbeten. Användningen av beteendeträd för att förena den mänskliga operatören med det autonoma systemet verkar lovande. Den föreslagna metoden att använda beteendeträd för att styra en svärm är tänkt att användas som ett gemensamt underlag för att möjliggöra att operatörer och ingenjörer kan ha en gemensam bild hur en svärm ska fungera.
162

Age of Information: Fundamentals, Distributions, and Applications

Abd-Elmagid, Mohamed Abd-Elaziz 11 July 2023 (has links)
A typical model for real-time status update systems consists of a transmitter node that generates real-time status updates about some physical process(es) of interest and sends them through a communication network to a destination node. Such a model can be used to analyze the performance of a plethora of emerging Internet of Things (IoT)-enabled real-time applications including healthcare, factory automation, autonomous vehicles, and smart homes, to name a few. The performance of these applications highly depends upon the freshness of the information status at the destination node about its monitored physical process(es). Because of that, the main design objective of such real-time status update systems is to ensure timely delivery of status updates from the transmitter node to the destination node. To measure the freshness of information at the destination node, the Age of Information (AoI) has been introduced as a performance metric that accounts for the generation time of each status update (which was ignored by conventional performance metrics, specifically throughput and delay). Since then, there have been two main research directions in the AoI research area. The first direction aimed to analyze/characterize AoI in different queueing-theoretic models/disciplines, and the second direction was focused on the optimization of AoI in different communication systems that deal with time-sensitive information. However, the prior queueing-theoretic analyses of AoI have mostly been limited to the characterization of the average AoI and the prior studies developing AoI/age-aware scheduling/transmission policies have mostly ignored the energy constraints at the transmitter node(s). Motivated by these limitations, this dissertation develops new queueing-theoretic methods that allow the characterization of the distribution of AoI in several classes of status updating systems as well as novel AoI-aware scheduling policies accounting for the energy constraints at the transmitter nodes (for several settings of communication networks) in the process of decision-making using tools from optimization theory and reinforcement learning. The first part of this dissertation develops a stochastic hybrid system (SHS)-based general framework to facilitate the analysis of characterizing the distribution of AoI in several classes of real-time status updating systems. First, we study a general setting of status updating systems, where a set of source nodes provide status updates about some physical process(es) to a set of monitors. For this setting, the continuous state of the system is formed by the AoI/age processes at different monitors, the discrete state of the system is modeled using a finite-state continuous-time Markov chain, and the coupled evolution of the continuous and discrete states of the system is described by a piecewise linear SHS with linear reset maps. Using the notion of tensors, we derive a system of linear equations for the characterization of the joint moment generating function (MGF) of an arbitrary set of age processes in the network. Afterwards, we study a general setting of gossip networks in which a source node forwards its measurements (in the form of status updates) about some observed physical process to a set of monitoring nodes according to independent Poisson processes. Furthermore, each monitoring node sends status updates about its information status (about the process observed by the source) to the other monitoring nodes according to independent Poisson processes. For this setup, we develop SHS-based methods that allow the characterization of higher-order marginal/joint moments of the age processes in the network. Finally, our SHS-based framework is applied to derive the stationary marginal and joint MGFs for several queueing disciplines and gossip network topologies, using which we derive closed-form expressions for marginal/joint high-order statistics of age processes, such as the variance of each age process and the correlation coefficients between all possible pairwise combinations of age processes. In the second part of this dissertation, our analysis is focused on understanding the distributional properties of AoI in status updating systems powered by energy harvesting (EH). In particular, we consider a multi-source status updating system in which an EH-powered transmitter node has multiple sources generating status updates about several physical processes. The status updates are then sent to a destination node where the freshness of each status update is measured in terms of AoI. The status updates of each source and harvested energy packets are assumed to arrive at the transmitter according to independent Poisson processes, and the service time of each status update is assumed to be exponentially distributed. For this setup, we derive closed-form expressions of MGF of AoI under several queueing disciplines at the transmitter, including non-preemptive and source-agnostic/source-aware preemptive in service strategies. The generality of our analysis is demonstrated by recovering several existing results as special cases. A key insight from our characterization of the distributional properties of AoI is that it is crucial to incorporate the higher moments of AoI in the implementation/optimization of status updating systems rather than just relying on its average (as has been mostly done in the existing literature on AoI). In the third and final part of this dissertation, we employ AoI as a performance metric for several settings of communication networks, and develop novel AoI-aware scheduling policies using tools from optimization theory and reinforcement learning. First, we investigate the role of an unmanned aerial vehicle (UAV) as a mobile relay to minimize the average peak AoI for a source-destination pair. For this setup, we formulate an optimization problem to jointly optimize the UAV's flight trajectory as well as energy and service time allocations for packet transmissions. This optimization problem is subject to the UAV's mobility constraints and the total available energy constraints at the source node and UAV. In order to solve this non-convex problem, we propose an efficient iterative algorithm and establish its convergence analytically. A key insight obtained from our results is that the optimal design of the UAV's flight trajectory achieves significant performance gains especially when the available energy at the source node and UAV is limited and/or when the size of the update packet is large. Afterwards, we study a generic system setup for an IoT network in which radio frequency (RF)-powered IoT devices are sensing different physical processes and need to transmit their sensed data to a destination node. For this generic system setup, we develop a novel reinforcement learning-based framework that characterizes the optimal sampling policy for IoT devices with the objective of minimizing the long-term weighted sum of average AoI values in the network. Our analytical results characterize the structural properties of the age-optimal policy, and demonstrate that it has a threshold-based structure with respect to the AoI values for different processes. They further demonstrate that the structures of the age-optimal and throughput-optimal policies are different. Finally, we analytically characterize the structural properties of the AoI-optimal joint sampling and updating policy for wireless powered communication networks while accounting for the costs of generating status updates in the process of decision-making. Our results demonstrate that the AoI-optimal joint sampling and updating policy has a threshold-based structure with respect to different system state variables. / Doctor of Philosophy / A typical model for real-time status update systems consists of a transmitter node that generates real-time status updates about some physical process(es) of interest and sends them through a communication network to a destination node. Such a model can be used to analyze the performance of a plethora of emerging Internet of Things (IoT)-enabled real-time applications including healthcare, factory automation, autonomous vehicles, and smart homes, to name a few. The performance of these applications highly depends upon the freshness of the information status at the destination node about its monitored physical process(es). Because of that, the main design objective of such real-time status update systems is to ensure timely delivery of status updates from the transmitter node to the destination node. To measure the freshness of information at the destination node, the Age of Information (AoI) has been introduced as a performance metric that accounts for the generation time of each status update (which was ignored by conventional performance metrics, specifically throughput and delay). Since then, there have been two main research directions in the AoI research area. The first direction aimed to analyze/characterize AoI in different queueing-theoretic models/disciplines, and the second direction was focused on the optimization of AoI in different communication systems that deal with time-sensitive information. However, the prior queueing-theoretic analyses of AoI have mostly been limited to the characterization of the average AoI and the prior studies developing AoI/age-aware scheduling/transmission policies have mostly ignored the energy constraints at the transmitter node(s). Motivated by these limitations, this dissertation first develops new queueing-theoretic methods that allow the characterization of the distribution of AoI in several classes of status updating systems. Afterwards, using tools from optimization theory and reinforcement learning, novel AoI-aware scheduling policies are developed while accounting for the energy constraints at the transmitter nodes for several settings of communication networks, including unmanned aerial vehicles (UAVs)-assisted and radio frequency (RF)-powered communication networks, in the process of decision-making. In the first part of this dissertation, a stochastic hybrid system (SHS)-based general framework is first developed to facilitate the analysis of characterizing the distribution of AoI in several classes of real-time status updating systems. Afterwards, this framework is applied to derive the stationary marginal and joint moment generating functions (MGFs) for several queueing disciplines and gossip network topologies, using which we derive closed-form expressions for marginal/joint high-order statistics of age processes, such as the variance of each age process and the correlation coefficients between all possible pairwise combinations of age processes. In the second part of this dissertation, our analysis is focused on understanding the distributional properties of AoI in status updating systems powered by energy harvesting (EH). In particular, we consider a multi-source status updating system in which an EH-powered transmitter node has multiple sources generating status updates about several physical processes. The status updates are then sent to a destination node where the freshness of each status update is measured in terms of AoI. For this setup, we derive closed-form expressions of MGF of AoI under several queueing disciplines at the transmitter. The generality of our analysis is demonstrated by recovering several existing results as special cases. A key insight from our characterization of the distributional properties of AoI is that it is crucial to incorporate the higher moments of AoI in the implementation/optimization of status updating systems rather than just relying on its average (as has been mostly done in the existing literature on AoI). In the third and final part of this dissertation, we employ AoI as a performance metric for several settings of communication networks, and develop novel AoI-aware scheduling policies using tools from optimization theory and reinforcement learning. First, we investigate the role of a UAV as a mobile relay to minimize the average peak AoI for a source-destination pair. For this setup, we formulate an optimization problem to jointly optimize the UAV's flight trajectory as well as energy and service time allocations for packet transmissions. This optimization problem is subject to the UAV's mobility constraints and the total available energy constraints at the source node and UAV. A key insight obtained from our results is that the optimal design of the UAV's flight trajectory achieves significant performance gains especially when the available energy at the source node and UAV is limited and/or when the size of the update packet is large. Afterwards, we study a generic system setup for an IoT network in which RF-powered IoT devices are sensing different physical processes and need to transmit their sensed data to a destination node. For this generic system setup, we develop a novel reinforcement learning-based framework that characterizes the optimal sampling policy for IoT devices with the objective of minimizing the long-term weighted sum of average AoI values in the network. Our analytical results characterize the structural properties of the age-optimal policy, and demonstrate that it has a threshold-based structure with respect to the AoI values for different processes. They further demonstrate that the structures of the age-optimal and throughput-optimal policies are different. Finally, we analytically characterize the structural properties of the AoI-optimal joint sampling and updating policy for wireless powered communication networks while accounting for the costs of generating status updates in the process of decision-making. Our results demonstrate that the AoI-optimal joint sampling and updating policy has a threshold-based structure with respect to different system state variables.
163

Model Predictive Control for Cooperative Multi-UAV Systems / Modellprediktiv reglering för samarbetande flerdrönarsystem

Castro Sundin, Roberto January 2021 (has links)
The maneuverability and freedom provided by unmanned aerial vehicles (UAVs) make these an interesting choice for transporting objects in settings such as search and rescue operations, construction, and smart factories. A commonly proposed method of transport is by using cables attached between each UAV and the payload. However, the geometrical constraints posed by these attachments typically result in a system with highly complex dynamics. Although not an issue for conventional PID control schemes, these complex dynamics make the direct application of model predictive controllers (MPCs) infeasible for real-time usage. For this reason, much of the previous work has focused on treating the payload as a disturbance, thereby losing the ability to predict its effect on the UAVs. Contrary to this, this thesis presents an MPC that both captures the dynamics of the payload, and is capable of real-time usage. This is made possible by a parametrized linearization of the original system, and results in greatly improved performance compared to the disturbance model approach. The controller is derived for a system with two UAVs that transport a bar-like payload and verified both in simulations and physical experiments. The resulting control system is able track a multitude of setpoints, including rotations of both payload and UAVs, as well as lateral translations. Furthermore, it is able to attenuate external disturbances well, and dampens and prevents oscillations more efficiently when compared to the disturbance based approach. The resulting MPC solving time is on the order of milliseconds. Additionally, an initial attempt to decentralize the system is made, and the resulting controller experimentally tested on the UAV–bar system, resulting in a lower MPC solving time (2:5 times faster on average), but worsened performance in terms of position tracking of the bar. / Den manövrerbarhet och frihet som möjliggörs av användandet utav obemannade luftfarkoster (drönare) gör dessa till tämligen intressanta kandidater för lasttransport inom områden såsom sök- och räddningsuppdrag, byggnadskonstruktion och s.k. smarta fabriker. En vanligen förespråkad transportmetod består utav att förse systemet med kablar som fästs mellan last och drönare. De geometriska restriktioner som denna lastkoppling innebär resulterar emellertid ofta i system med väldigt komplicerad dynamik och interaktionskrafter. Även om detta inte innebär något problem för konventionella PID reglersystem så omöjliggör detta det direkta applicerandet utav modellprediktiv reglering (MPC) för realtidsbruk. Av denna anledning har tidigare verk fokuserat på att behandla lasten och dess inverkan på drönarna som en störning, men med detta därmed förlorat möjligheten att förutspå dess effekt på drönarna. I kontrast till detta, kommer det i detta verk att presenteras en MPC som både fångar lastens dynamik och är snabb nog för realtidsanvändning. Detta görs möjligt utav en parametriserad linjärisering utav originalsystemet och ger märkbart bättre resultat än den störningbaserade modellen. Reglersystemet appliceras på ett system bestående utav två drönare och en stång-liknande last och resultatet verifieras både i form av numeriska simuleringar och fysiska experiment. Det resulterande systemet klarar av både rotationer utav last och drönare samt translationer i alla riktningar. Dessutom är systemet kapabelt att hantera externa störningar och både dämpar och förhindrar oscillationer bättre i jämförelse med reglersystem baserat på störningsmodeller. Lösningstiden för MPC-regulatorn är i storleksordningen millisekunder. Utöver detta görs ett initialt försök i att decentralisera tidigare nämnda MPC och det resulterande reglersystemet utvärderas experimentellt på samma drönarsystem som tidigare. Detta resulterar i en lägre lösningstid (2.5 ggr snabbare i genomsnitt), men även i försämrad prestanda med avseende på reglering av stångens position.
164

Unmanned Aerial Vehicles Modelling and Control Design. A Multi-Objective Optimization Approach

Velasco Carrau, Jesús 27 November 2020 (has links)
[ES] Aquesta tesi presenta els resultats de la feina de recerca dut a terme sobre el modelatge i el disseny de controladors per a micro-aeronaus no tripulades mitjançant tècniques d'optimització multi-objectiu. Dos principals camps d'estudi estan presents al llarg d'ella. D'una banda, l'estudi de com modelar i controlar plataformes aèries de petita envergadura. I, de l'altra, l'estudi sobre l'ús de tècniques heurístiques d'optimització multi-objectiu per aplicar en el procés de parametrització de models i controladors en micro-aeronaus no tripulades. S'obtenen com a resultat principal una sèrie d'eines que permeten prescindir d'experiments en túnels de vent o de sensòrica d'alt cost, passant directament a la utilització de dades de vol experimental a la identificació paramètrica de models dinàmics. A més, es demostra com la utilització d'eines d'optimització multi-objectiu en diferents fases de desenvolupament de controladors ajuda a augmentar el coneixement sobre la plataforma a controlar i augmenta la fiabilitat i robustesa dels controladors desenvolupats, disminuint el risc de passar de les fases prèvies de el disseny a la validació en vol real. / [CA] Esta tesis presenta los resultados del trabajo de investigación llevado a cabo sobre el modelado y el diseño de controladores para micro-aeronaves no tripuladas mediante técnicas de optimización multi-objetivo. Dos principales campos de estudio están presentes a lo largo de ella. Por un lado, el estudio de cómo modelar y controlar plataformas aéreas de pequeña envergadura. Y, por otro, el estudio sobre el empleo de técnicas heurísticas de optimización multi-objetivo para aplicar en el proceso de parametrización de modelos y controladores en micro-aeronaves no tripuladas. Se obtienen como resultado principal una serie de herramientas que permiten prescindir de experimentos en túneles de viento o de sensórica de alto coste, pasando directamente a la utilización de datos de vuelo experimental en la identificación paramétrica de modelos dinámicos. Además, se demuestra como la utilización de herramientas de optimización multi-objetivo en diferentes fases del desarrollo de controladores ayuda a aumentar el conocimiento sobre la plataforma a controlar y aumenta la fiabilidad y robustez de los controladores desarrollados, disminuyendo el riesgo de pasar de las fases previas del diseño a la validación en vuelo real. / [EN] This thesis presents the results of the research work carried out on the modelling and design of controllers for micro-unmanned aerial vehicles by means of multi-objective optimization techniques. Two main fields of study are present throughout it. On one hand, the study of how to model and control small aerial platforms. And, on the other, the study on the use of heuristic multi-objective optimization techniques to apply in the process of models and controllers parameterization in micro-unmanned aerial vehicles. The main result is a series of tools that make it possible manage without wind tunnel experiments or high-cost air-data sensors, going directly to the use of experimental flight data in the parametric identification of dynamic models. In addition, a demonstration is given on how the use of multi-objective optimization tools in different phases of controller development helps to increase knowledge about the platform to be controlled and increases the reliability and robustness of the controllers developed, reducing the risk of hoping from the initial design phases to validation in real flight. / Velasco Carrau, J. (2020). Unmanned Aerial Vehicles Modelling and Control Design. A Multi-Objective Optimization Approach [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/156034
165

Modelling and Real Deployment of C-ITS by Integrating Ground Vehicles and Unmanned Aerial Vehicles

Hadiwardoyo, Seilendria Ardityarama 27 March 2019 (has links)
[ES] Para proporcionar un entorno de tráfico vial más seguro y eficiente, los sistemas ITS o Sistemas Inteligentes de Transporte representan como una solución dotada de avances tecnológicos de vanguardia. La integración de elementos de transporte como automóviles junto con elementos de infraestructura como RoadSide Units (RSUs) ubicados a lo largo de la vía de comunicación permiten ofrecer un entorno de red conectado con múltiples servicios, incluida conectividad a Internet. Esta integración se conoce con el término C-ITS o Sistemas Inteligentes de Transporte Cooperativos. La conexión de automóviles con dispositivos de infraestructura permite crear redes vehiculares conectadas (V2X) vehículo a dispositivos, que ofrecen la posibilidad de nuevos despliegues en aplicaciones C-ITS como las relacionadas con la seguridad. Hoy en día, con el uso masivo de teléfonos inteligentes y debido a su flexibilidad y movilidad, existen varios esfuerzos para integrarlos con los automóviles. De hecho, con el soporte adecuado de unidad a bordo (OBU), los teléfonos inteligentes se pueden integrar perfectamente con las redes vehiculares, permitiendo a los conductores usar sus teléfonos inteligentes como dispositivos de bordo a que participan en los servicios C-ITS, con el objeto de mejorar la seguridad al volante entre otros. Tópico este, que hoy día representa un tema relevante de investigación. Un problema a solucionar surge cuando las comunicaciones vehiculares sufren inferencias y bloqueos de la señal debidos al escenario. De hecho, el impacto de la vegetación y los edificios, ya sea en áreas urbanas y rurales, puede afectar a la calidad de la señal. Algunas estrategias para mejorar la comunicación vehicular en este tipo de entorno consiste en desplegar UAVs o vehículo aéreo no tripulado (drones), los cuales actúan como enlaces de comunicación entre vehículos. De hecho, UAV ofrece importantes ventajas de implementación, ya que tienen una gran flexibilidad en términos de movilidad, además de un rango de comunicaciones mejorado. Para evaluar la calidad de las comunicaciones, debe realizarse un conjunto de mediciones. Sin embargo, debido al costo de las implementaciones reales de UAV y automóviles, los experimentos reales podrían no ser factibles para actividades de investigación con recursos limitados. Por lo tanto, los experimentos de simulación se convierten en la opción preferida para evaluar las comunicaciones entre UAV y vehículos terrestres. Lograr modelos de propagación de señal correctos y representativos que puedan importarse a los entornos de simulación se vuelve crucial para obtener un mayor grado de realismo, especialmente para simulaciones que involucran el movimiento de UAVs en cualquier lugar del espacio 3D. En particular, la información de elevación del terreno debe tenerse en cuenta al intentar caracterizar los efectos de propagación de la señal. En esta tesis doctoral, proponemos nuevos enfoques tanto teóricos como empíricos para estudiar la integración de redes vehiculares que combinan automóviles y UAVs, así mismo el impacto del entorno en la calidad de las comunicaciones. Esta tesis presenta una aplicación, una metodología de medición en escenarios reales y un nuevo modelo de simulación, los cuales contribuyen a modelar, desarrollar e implementar servicios C-ITS. Más específicamente, proponemos un modelo de simulación que tiene en cuenta las características del terreno en 3D, para lograr resultados confiables de comunicación entre UAV y vehículos terrestres. / [CA] Per a proporcionar un entorn de trànsit viari més segur i eficient, els sistemes ITS o Sistemes Intel·ligents de Transport representen una solució dotada d'avanços tecnològics d'avantguarda. La integració d'elements de transport com auto móvils juntament amb elements d'infraestructura com Road Side Units (RSUs) situats al llarg de lav via de comunicació permeten oferir un entorn de xarxa connectat amb multiples serveis, inclusa connectivitat a Internet. Aquesta integració es connex amb el terme C-ITS o Sistemes Intel·ligents de Transport Cooperatius , com ara els automòbils, amb elements d'infraestructura, com ara les road side units (RSU) o pals situats al llarg de la carretera, per a aconseguir un entorn de xarxa que oferisca nous serveis a més de connectivitat a Internet. Aquesta integració s'expressa amb el terme C-ITS, o sistemes intel·ligents de transport cooperatius. La connexió d'automòbils amb dispositius d'infraestructura permet crear xarxes vehiculars connectades (V2X) vehicle a dispositiu, que ofreixen la possibilitat de nous desplegaments en aplicacions C-ITS, com ara les relacionades amb la seguretat. Avui dia, amb l'ús massiu dels telèfons intel·ligents, i a causa de la flexibilitat i mobilitat que presenten, es fan esforços per integrar-los amb els automòbils. De fet, amb el suport adequat d'unitat a bord (OBU), els telèfons intel·ligents es poden integrar perfectament amb les xarxes vehiculars, permetent als conductors usar els seus telèfons intel·ligents com a dispositius per a participar en els serveis de C-ITS, a fi de millorar la seguretat al volant entre altres. Tòpic est, que hui dia representa un tema rellevant d'investigació. Un problema a solucionar sorgeix quan les comunicacions vehiculars ateixen inferències i bloquejos del senyal deguts a l'escenari. De fet, l'impacte de la vegetació i els edificis, tant en àrees urbanes com rurals, pot afectar la qualitat del senyal. Algunes estratègies de millorar la comunicació vehicular en aquest tipus d'entorn consisteix a desplegar UAVs o vehicles aeris no tripulats (drones), els quals actuen com a enllaços de comunicació entre vehicles. De fet, l'ús d'UAVs ofereix importants avantatges d'implementació, ja que tenen una gran flexibilitat en termes de mobilitat, a més d'un rang de comunicacions millorat. Per a avaluar la qualitat de les comunicacions, s'han de realitzar mesures en escenaris reals. No obstant això, a causa del cost de les implementacions i desplegaments reals d'UAV i el seu ús combinat amb vehicles, aquests experiments reals podrien no ser factibles per a activitats d'investigació amb recursos limitats. Per tant, la metodologia basada en simulació es converteixen en l'opció preferida entre els investigadors per a avaluar les comunicacions entre UAV i vehicles terrestres. Aconseguir models de propagació de senyal correctes i representatius que puguen importar-se als entorns de simulació resulta crucial per a obtenir un major grau de realisme, especialment per a simulacions que involucren el moviment d'UAV en qualsevol lloc de l'espai 3D. En particular, cal tenir en compte la informació d'elevació del terreny per a intentar caracteritzar els efectes de propagació del senyal. En aquesta tesi doctoral proposem enfocaments tant teòrics com empírics per a estudiar la integració de xarxes vehiculars que combinen automòbils i UAV, així com l'impacte de l'entorn en la qualitat de les comunicacions. Aquesta tesi presenta una aplicació, una metodología de mesurament en escenaris reals i un nou model de simulació, els quals contribueixen a modelar, desenvolupar i implementar serveis C-ITS. Més específicament, proposem un model de simulació que té en compte les característiques del terreny en 3D, per a aconseguir resultats fiables de comunicació entre UAV i vehicles terrestres. / [EN] To provide a safer road traffic environment and make it more convenient, Intelligent Transport Systems (ITSs) are proposed as a solution endowed with cutting-edge technological advances. The integration of transportation elements like cars together with infrastructure elements like Road Side Units to achieve a networking environment offers new services in addition to Internet connectivity. This integration comes under the term Cooperative Intelligent Transport System (C-ITS). Connecting cars with surrounding devices forming vehicular networks in Vehicle-to-Everything (V2X) open new deployments in C-ITS applications like safety-related ones. With the massive use of smartphones nowadays, and due to their flexibility and mobility, several efforts exist to integrate them with cars. In fact, with the right support from the vehicle's On-Board Unit (OBU), smartphones can be seamlessly integrated with vehicular networks. Hence, drivers can use their smartphones as a device to participate in C-ITS services for safety purposes, among others, which is a quite interesting research topic. A significant problem arises when vehicular communications face signal obstructions caused by the environment. In fact, the impact of vegetation and buildings, whether in urban and rural areas, can result in a lower signal quality. One way to enhance vehicular communication networks is to deploy Unmanned Aerial Vehicles (UAVs) to act as relays for communication between cars, or ground vehicles. In fact, UAVs offer important deployment advantages, as they offer great flexibility in terms of mobility, in addition to an enhanced communications range. To assess the quality of the communications, a set of measurements must take place. However, due to the cost of real deployments of UAVs and cars, real experiments might not be feasible for research activities with limited resources. Hence, simulation experiments become the preferred option to assess UAV-to- car communications. Achieving correct and representative signal propagation models that can be imported to the simulation environments becomes crucial to obtain a higher degree of realism, especially for simulations involving UAVs moving anywhere throughout the 3D space. In particular, terrain elevation information must be taken into account when attempting to characterize signal propagation effects. In this research work, we propose both theoretical and empirical approaches to study the integration of vehicular networks combining cars and UAVs, and we study the impact of the surrounding environment on the communications quality. An application, a measurement framework, and a simulation model are presented in this thesis in an effort to model, develop, and deploy C-ITS services. More specifically, we propose a simulation model that takes into account 3D terrain features to achieve reliable UAV-to-car communication results. / I want to thank the Spanish government through the Ministry of Economy and Competitiveness (MINECO) and the European Union Commission through the European Social Fund (ESF) for co-financing and granting me the fellowship to fund my studies in Spain and my research stay in Russia. In addition, I would to thank the National Institute of Informatics for granting me the internship fund and the Japanese government through the Japan Society for the Promotion of Science (JSPS) for supporting my research work in Japan. / Hadiwardoyo, SA. (2019). Modelling and Real Deployment of C-ITS by Integrating Ground Vehicles and Unmanned Aerial Vehicles [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/118796
166

UAV Group Autonomy In Network Centric Environment

Suresh, M 07 1900 (has links) (PDF)
It is a well-recognized fact that unmanned aerial vehicles are an essential element in today’s network-centric integrated battlefield environment. Compared to solo UAV missions, multiple unmanned aerial vehicles deployed in co-operative mode, offer many advantages that has motivated UAV researchers all over the world to evolve concept of operations that aims in achieving a paradigm shift from traditional ”dull” missions to perform ”dirty” and ”dangerous” missions. In future success of a mission will depend on interaction among UAV groups with no interaction with any ground entity. To reach this capability level, it is necessary for researchers, to first understand the various levels of autonomy and the crucial role that information and communication plays in making these autonomy levels possible. The thesis is in four parts: (i) Development of an organized framework to realize the goal of achieving fully autonomous systems. (ii) Design of UAV grouping algorithm and coordination tactics for ground attack missions. (iii) Cooperative network management in GPS denied environments. (iv) UAV group tactical path and goal re-plan in GPS denied wide area urban environments. This research thesis represents many first steps taken in the study of autonomous UAV systems and in particular group autonomy. An organized framework for autonomous mission control level by defining various sublevels, classifying the existing solutions and highlighting the various research opportunities available at each level is discussed. Significant contribution to group autonomy research, by providing first of its kind solution for UAV grouping based on Dubins’ path, establishing GPS protected wireless network capable of operating in GPS denied environment and demonstration of group tactical path and goal re-plan in a layered persistent ISR mission is presented. Algorithms discussed in this thesis are generic in nature and can be applied to higher autonomous mission control levels, involving strategic decisions among UAVs, satellites and ground forces in a network centric environment.
167

A novel approach to the control of quad-rotor helicopters using fuzzy-neural networks

Poyi, Gwangtim Timothy January 2014 (has links)
Quad-rotor helicopters are agile aircraft which are lifted and propelled by four rotors. Unlike traditional helicopters, they do not require a tail-rotor to control yaw, but can use four smaller fixed-pitch rotors. However, without an intelligent control system it is very difficult for a human to successfully fly and manoeuvre such a vehicle. Thus, most of recent research has focused on small unmanned aerial vehicles, such that advanced embedded control systems could be developed to control these aircrafts. Vehicles of this nature are very useful when it comes to situations that require unmanned operations, for instance performing tasks in dangerous and/or inaccessible environments that could put human lives at risk. This research demonstrates a consistent way of developing a robust adaptive controller for quad-rotor helicopters, using fuzzy-neural networks; creating an intelligent system that is able to monitor and control the non-linear multi-variable flying states of the quad-rotor, enabling it to adapt to the changing environmental situations and learn from past missions. Firstly, an analytical dynamic model of the quad-rotor helicopter was developed and simulated using Matlab/Simulink software, where the behaviour of the quad-rotor helicopter was assessed due to voltage excitation. Secondly, a 3-D model with the same parameter values as that of the analytical dynamic model was developed using Solidworks software. Computational Fluid Dynamics (CFD) was then used to simulate and analyse the effects of the external disturbance on the control and performance of the quad-rotor helicopter. Verification and validation of the two models were carried out by comparing the simulation results with real flight experiment results. The need for more reliable and accurate simulation data led to the development of a neural network error compensation system, which was embedded in the simulation system to correct the minor discrepancies found between the simulation and experiment results. Data obtained from the simulations were then used to train a fuzzy-neural system, made up of a hierarchy of controllers to control the attitude and position of the quad-rotor helicopter. The success of the project was measured against the quad-rotor’s ability to adapt to wind speeds of different magnitudes and directions by re-arranging the speeds of the rotors to compensate for any disturbance. From the simulation results, the fuzzy-neural controller is sufficient to achieve attitude and position control of the quad-rotor helicopter in different weather conditions, paving way for future real time applications.
168

The effective use of multiple unmanned aerial vehicles in surface search and control

Berner, Robert Andrew 12 1900 (has links)
Approved for public release; distribution in unlimited. / This study analyzes the effective use of multiple unmanned aerial vehicles (UAVs) for the Navy's Surface Search and Control mission. In the future, the Navy hopes to leverage the capabilities of a family of UAVs to provide increased situational awareness in the maritime environment. This family of UAVs includes a Broad Area Maritime Surveillance (BAMS) UAV and Vertical Take-Off UAVs (VTUAVs). The concepts of operations for how these UAVs work together have yet to be determined. Questions exist about the best number of UAVs, types of UAVs, and tactics that will provide increased capabilities. Through modeling and agent-based simulation, this study explores the validity of future UAV requirements and provides insights into the effectiveness of different UAV combinations. For the scenarios modeled, the best UAV combination is BAMS plus two or three VTUAVs. However, analysis shows that small numbers of VTUAVs can perform as well without BAMS as they do with BAMS. For combinations with multiple UAVs, BAMS proves to be a valuable asset that not only reduces the number of missed classifications, but greatly improves the amount of coverage on all contacts in the maritime environment. BAMS tactics have less effect than the mere presence of BAMS itself. / Lieutenant, United States Navy
169

Autonomous landing system for a UAV / Autonomous landing system for a Unmanned Aerial Vehicle

Lizarraga, Mariano I. 03 1900 (has links)
Approved for public release, distribution is unlimited / This thesis is part of an ongoing research conducted at the Naval Postgraduate School to achieve the autonomous shipboard landing of Unmanned Aerial Vehicles (UAV). Two main problems are addressed in this thesis. The first is to establish communication between the UAV's ground station and the Autonomous Landing Flight Control Computer effectively. The second addresses the design and implementation of an autonomous landing controller using classical control techniques. Device drivers for the sensors and the communications protocol were developed in ANSI C. The overall system was implemented in a PC104 computer running a real-time operating system developed by The Mathworks, Inc. Computer and hardware in the loop (HIL) simulation, as well as ground test results show the feasibility of the algorithm proposed here. Flight tests are scheduled to be performed in the near future. / Lieutenant Junior Grade, Mexican Navy
170

Tactical decision aid for unmanned vehicles in maritime missions

Duhan, Daniel P. 03 1900 (has links)
Approved for public release; distribution is unlimited / An increasing number of unmanned vehicles (UV) are being incorporated into maritime operations as organic elements of Expeditionary and Carrier Strike Groups for development of the recognized maritime picture. This thesis develops an analytically-based planning aid for allocating UVs to missions. Inputs include the inventory of UVs, sensors, their performance parameters, and operational scenarios. Operations are broken into mission critical functions: detection, identification, and collection. The model output assigns aggregated packages of UVs and sensors to one of the three functions within named areas of interest. A spreadsheet model uses conservative time-speed-distance calculations, and simplified mathematical models from search theory and queuing theory, to calculate measures of performance for possible assignments of UVs to missions. The spreadsheet model generates a matrix as input to a linear integer program assignment model which finds the best assignment of UVs to missions based on the user inputs and simplified models. The results provide the mission planner with quantitatively-based recommendations for unmanned vehicle mission tasking in challenging scenarios. / Lieutenant, United States Navy

Page generated in 0.0645 seconds