• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 111
  • 72
  • 12
  • 10
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 262
  • 262
  • 146
  • 75
  • 58
  • 58
  • 33
  • 32
  • 31
  • 31
  • 27
  • 27
  • 26
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Evaluating the impact of biostimulants at variable nitrogen rates in Mississippi corn production systems

Gajula, Praveen 10 May 2024 (has links) (PDF)
A field study was conducted in 2022 and 2023 at two different locations in Mississippi (MS) implementing a split-plot design. Nitrogen (N) rates as the main plot including 0 (control), 90, 180, 269 kg N ha-1 at Starkville and 224 kg N ha-1 at Stoneville. The subplot was seven treatments, including a no biostimulant (check) and six commercially available microbial biostimulants (Source Corn®, Envita®, iNvigorate®, Blue N®, Micro AZTM, and Bio level phosN®) applied either as foliar at V4-V5 growth stages or in-furrow at planting. Only N rates positively affected grain yield and nitrogen use efficiency at all site years. The agronomic optimum N rate (AONR) differed across all site years, ranging from 202, 128, and 166 kg N ha-1 at Starkville 2023 and Stoneville 2022 and 2023. In summary, microbial biostimulants within this study showed minimal to no effect on corn grain yield and all other tested parameters.
32

Canopy architecture and water productivity in sorghum

Narayanan, Sruthi January 1900 (has links)
Master of Science / Department of Agronomy / Robert M. Aiken / Increasing crop water use efficiency (WUE), the amount of biomass produced per unit water consumed, can enhance crop productivity and yield potential. The objective of the first study was to evaluate the factors affecting water productivity among eight sorghum (Sorghum bicolor (L.) Moench) genotypes, which differ in canopy architecture. Sorghum genotypes, grown under field conditions, showed significant differences in (a) biomass production, (b) water use, (c) intercepted radiation, (d) water productivity and (e) radiation use efficiency (RUE; the amount of biomass produced per unit of intercepted radiation which is suitable for photosynthesis). WUE and RUE were more strongly correlated to biomass production than to water use or intercepted radiation, respectively. RUE was positively correlated to WUE and tended to increase with internode length, the parameter used to characterize canopy architecture. These results demonstrate that increased utilization of radiation can increase water productivity in plants. Sorghum canopies that increase light transmission to mid−canopy leaves can increase RUE and also have the potential to increase crop productivity and WUE. The objective of the second study was to develop a quantitative model to predict leaf area index (LAI), a common quantification of canopy architecture, for sorghum from emergence to flag leaf stage. LAI was calculated from an algorithm developed to consider area of mature leaves (leaves with a ligule/collar), area of expanding leaves (leaves without a ligule/collar), total leaf area per plant and plant population. Slope of regression of modeled LAI on observed LAI varied for photoperiod sensitive (PPS) and insensitive (non−PPS) genotypes in 2010. A good correlation was found between the modeled and observed LAI with coefficient of determination (R[superscript]2) 0.96 in 2009 and 0.94 (non−PPS) and 0.88 (PPS) in 2010. These studies suggest that canopy architecture has prominent influence on water productivity of crops and quantification of canopy architecture through an LAI simulation model has potential in understanding RUE, WUE and crop productivity.
33

Irrigation with saline water using low-cost drip-irrigation systems in sub-Saharan Africa

Karlberg, Louise January 2005 (has links)
<p>In the scope of future population support, agricultural productivity, in particular in sub-Saharan Africa, has to increase drastically to meet the UN’s millennium development goals of eradicating extreme poverty and hunger by 2015. Water availability in the root-zone limits crop production in large parts of the developing world. As competition for fresh water increases, water of lower quality, for example saline or polluted water, is often used for irrigation. Low-cost drip systems are suitable for saline water irrigation because they effectuate a minimisation of salt accumulation, leaf burn and peaks in salt concentration. Nonetheless, all types of saline water irrigation contain the risk for causing soil salinisation. Thus, in order to achieve long-term sustainability of these systems, appropriate management strategies are needed. The choice of management practices may be influenced by local conditions such as climate, soil and irrigation water salinity. A litera-ture review showed that there is a potential for saline water irrigation in sub-Saharan Africa in water scarce areas. Low-cost drip irrigation with saline water (6 dS m-1) was successfully used to irrigate two consecutive crops of tomato in semi-arid South Africa. An integrated ecosystems model was developed to simulate long-term yield and salt accumulation in a drip-irrigated agricultural system for a range of salinities, climates and management techniques. Crop, salt and water balance data from two field experiments conducted in Israel and South Africa, respectively, were used to parameterise and test the model. Emphasis was placed on testing the usability of the model as a tool for evaluating the importance of certain plausible management options of low-cost, drip-irrigation systems. Therefore, particular focus was directed towards correctly describing soil salinity stress on plant growth and soil evaporation from a distributed (wetted and dry) surface. In addition, the model was developed to function for different climates without having to change any other parameters or variables except for the actual climatic data. Simulations were subsequently run over a 30-year period to study long-term yield and salt accumulation in the soil profile for two sites in South Africa, demonstrating the applicability of the model. Model simulations showed that high soil salinities reduced crop growth and thus increased both drainage and soil evaporation. Further, covering the soil with a plastic sheet led to a reduction of soil evaporation and a subsequent increase in both transpiration and drainage. Rainfall was crucial for the leaching of salts from the soil, and thus in regions with low levels of rainfall, a higher leaching fraction of supplied saline irrigation water has to compensate for the lack of rain. However, a high leaching fraction also causes large amounts of salt leaching, which could potentially pollute underlying groundwater and downstream ecosystems. This risk can be mitigated using mulching, which minimises non-productive water losses, thereby lowering irrigation water needs. The choice of irrigation water salinity, frequency of irrigation and soil coverage may differ between the farmer and the regional water manager due to different preferences. Furthermore, the study highlighted how environmental variables such as water use efficiency and radiation use efficiency can be used as indicators of system performance. Whereas the latter is first and foremost a general stress indicator, water use efficiency more precisely describes specific factors such as plant size, allocation patterns and evaporative demand, which will affect the exchange of carbon dioxide and water through the stomata.</p>
34

Irrigation with saline water using low-cost drip-irrigation systems in sub-Saharan Africa

Karlberg, Louise January 2005 (has links)
In the scope of future population support, agricultural productivity, in particular in sub-Saharan Africa, has to increase drastically to meet the UN’s millennium development goals of eradicating extreme poverty and hunger by 2015. Water availability in the root-zone limits crop production in large parts of the developing world. As competition for fresh water increases, water of lower quality, for example saline or polluted water, is often used for irrigation. Low-cost drip systems are suitable for saline water irrigation because they effectuate a minimisation of salt accumulation, leaf burn and peaks in salt concentration. Nonetheless, all types of saline water irrigation contain the risk for causing soil salinisation. Thus, in order to achieve long-term sustainability of these systems, appropriate management strategies are needed. The choice of management practices may be influenced by local conditions such as climate, soil and irrigation water salinity. A litera-ture review showed that there is a potential for saline water irrigation in sub-Saharan Africa in water scarce areas. Low-cost drip irrigation with saline water (6 dS m-1) was successfully used to irrigate two consecutive crops of tomato in semi-arid South Africa. An integrated ecosystems model was developed to simulate long-term yield and salt accumulation in a drip-irrigated agricultural system for a range of salinities, climates and management techniques. Crop, salt and water balance data from two field experiments conducted in Israel and South Africa, respectively, were used to parameterise and test the model. Emphasis was placed on testing the usability of the model as a tool for evaluating the importance of certain plausible management options of low-cost, drip-irrigation systems. Therefore, particular focus was directed towards correctly describing soil salinity stress on plant growth and soil evaporation from a distributed (wetted and dry) surface. In addition, the model was developed to function for different climates without having to change any other parameters or variables except for the actual climatic data. Simulations were subsequently run over a 30-year period to study long-term yield and salt accumulation in the soil profile for two sites in South Africa, demonstrating the applicability of the model. Model simulations showed that high soil salinities reduced crop growth and thus increased both drainage and soil evaporation. Further, covering the soil with a plastic sheet led to a reduction of soil evaporation and a subsequent increase in both transpiration and drainage. Rainfall was crucial for the leaching of salts from the soil, and thus in regions with low levels of rainfall, a higher leaching fraction of supplied saline irrigation water has to compensate for the lack of rain. However, a high leaching fraction also causes large amounts of salt leaching, which could potentially pollute underlying groundwater and downstream ecosystems. This risk can be mitigated using mulching, which minimises non-productive water losses, thereby lowering irrigation water needs. The choice of irrigation water salinity, frequency of irrigation and soil coverage may differ between the farmer and the regional water manager due to different preferences. Furthermore, the study highlighted how environmental variables such as water use efficiency and radiation use efficiency can be used as indicators of system performance. Whereas the latter is first and foremost a general stress indicator, water use efficiency more precisely describes specific factors such as plant size, allocation patterns and evaporative demand, which will affect the exchange of carbon dioxide and water through the stomata. / QC 20101102
35

Advancing Water Security and Environmental Sustainability Through Evaluation of Water Use From the Field to State-Wide Scale

Sangha, Laljeet Singh 17 January 2023 (has links)
The United States (US) has experienced a surge in water shortages and droughts in recent times. Water shortages can result from population growth, climate change, inadequate water management policies, and the improper use of available technologies. The existing data and research on water use associated with water management policy structures are limited. Many states in the US follow strict regulations on water discharge into streams to enforce water quality standards; however, water withdrawal restrictions from streams are limited and inadequate in terms of water management at times of low flow. In states such as Virginia (VA), the Virginia Department of Environmental Quality (VDEQ) requires a Virginia Water Protection (VWP) permit for all water withdrawals from VA's surface waters. However, under certain provisions of VWP regulations, users are exempted from having a permit. Such permit exemptions exist in many states and present a severe challenge to water supply management. Chapter 2 compares the impact of permit exemptions on surface water availability and drought flows and compares these impacts to the relatively well-studied risks presented by dry climate change and demand growth in Virginia (VA). It was observed that in some regions, the impacts under the exempt user scenario were higher than those under the dry climate change scenario. In addition, water supply managers and government agencies use user-reported water withdrawal data to develop water management programs. Irrigated agriculture is the largest source of water consumption in the US. However, water-reporting regulations exempt users from withdrawing water for irrigation under a certain threshold. Moreover, as water is not metered, users often do not report their irrigation water use, resulting in considerable uncertainty about the impacts of irrigation withdrawals, which could potentially impact other water users, lead to water shortages or conflicts, and negatively impact stream ecology. Chapter 3 focuses on developing a novel methodology for quantifying unreported irrigation water withdrawals using publicly available USDA-Census and USDA-IWMS datasets. This method was used to evaluate the unreported water withdrawals in the VA. Finally, water use practices at the field level intersect with other environmental issues at a larger scale. For example, irrigation practices can influence nutrient uptake and transport at the field level. Insufficient water for irrigation, especially during critical growth stages, results in yield and economic losses and reduces agricultural productivity. However, excessive irrigation can lead to wasted water and energy as well as runoff and leaching of nutrients and agricultural chemicals. Therefore, the adoption of technological advancements at the field scale can reduce the amount of water needed to fulfill the needs while mitigating any nutrient impacts on the soil due to the excessive use of water. This is highly important when fertilizer prices are always high. Chapter 4 focuses on quantifying the impact of the use of short-term weather forecast data in irrigation scheduling on nutrient and water use efficiency in humid climates: experimental results for corn and cotton. It was found that irrigation scheduling using short-term weather forecast data is helpful for improving the nutrient and water use efficiency of corn. For cotton, nutrient and water use efficiency are highly influenced by irrigation and precipitation with respect to the growth stage. / Doctor of Philosophy / Water shortages in the US have increased in recent times owing to climate change. Water demand is expected to increase in the future due to population growth and economic development in certain regions. Water supply planning is significantly influenced by water policy regulations. Water withdrawal regulations mandate a water withdrawal permit for making withdrawals in many states across the US. However, due to provisions in the same water regulations, certain users are exempt from taking a water withdrawal permit. One example of such users is grandfathered users who had a water withdrawal permit before July 1, 1989, in Virginia. Such exemptions are a severe challenge to the management of water supply, as exempt withdrawal amounts are generally high. We studied the impacts of these exempt users on VA's water resources of VA and compared them with the impacts of dry climate change and 2040 demand growth in Chapter 2. The results indicate that the impact of exempt users is higher than that of climate change in some regions across VA. Additionally, water-reporting regulations require users to report irrigation water withdrawals. However, users below the reporting threshold were excluded from reporting. Some users might underreport or do not comply with the water withdrawal regulations. These user-reported data are often used in developing water management plans, which may become ineffective owing to incomplete water use data. Chapter 3 focuses on the development of a data-based approach for quantifying unreported irrigation water withdrawals. This method would be transferable to any other state across the US. We compared the estimated irrigation withdrawals with reported irrigation withdrawals across the VA and generated unreported withdrawals at the county level in the VA. Finally, at the field level, irrigation can highly influence the nutrient uptake of plants. Excess irrigation may result in the removal of nutrients below the roots of the plant or may be removed by surface runoff, making it unavailable for plant uptake. Along with the economic impacts of unused fertilizer and loss in yield, unused nutrients may impact the environment and water bodies. Chapter 4 focuses on the impact of short-term weather forecast data on the irrigation scheduling of corn and cotton in humid climates. We found that weather-informed irrigation is helpful in increasing the nutrient and water use efficiency of corn. For cotton, the results were highly affected by precipitation and irrigation with respect to the growth stage of cotton.
36

Influência dos fatores edafoclimáticos na produtividade e na eficiência do uso dos recursos naturais do Pinus taeda L. sob distintos manejos no Sul do Brasil / Edaphoclimatic factors influence on productivity and efficiency use of natural resources of loblolly pine under different managements in southern Brazil

Munhoz, Juliana Soares Biruel 16 October 2015 (has links)
Devido ao aprimoramento das práticas silviculturais e do melhoramento genético para seleção de genótipos mais produtivos, a produtividade do Pinus taeda no Brasil é reconhecida entre as maiores do mundo. Mesmo com alta produtividade em determinados sítios, sua variação é consideravelmente grande. Sabe-se que a disponibilidade de água, luz e nutrientes são fatores essenciais para a produção de madeira, onde a eficiência de uso desses recursos influenciam nesta variação do produtividade. Contudo, a ausência de fertilização em plantios de Pinus é majoritária nas áreas comerciais no Brasil, devido ao bom crescimento em solos de baixa fertilidade e por dificilmente apresentarem deficiência visual de nutrientes. Para compreender quais fatores influenciam na produção e partição de biomassa, se faz necessário o estudo da ecologia da produção. Diante disso, o presente trabalho tem como principais objetivos: i) estudar a influência de diferentes classes de solo no crescimento do Pinus taeda; ii) estudar a resposta da produtividade da espécie submetida à fertilização e ao desbaste; iii) avaliar a interceptação de luz; e iv) estimar a eficiência do crescimento (EC), uso da luz (EUL) e do nitrogênio (EUN) em povoamentos de Pinus taeda no sul do Brasil. Utilizou-se para este estudo parcelas quadrigêmeas da rede experimental do programa de Produtividade Potencial do Pinus no Brasil, as quais compõem um gradiente edafoclimático nos estados do Paraná e de Santa Catarina. As parcelas foram submetidas aos seguintes tratamentos: controle (C), fertilizado (F), desbastado (D), desbastado e fertilizado (DF). Foi calculado o índice de sítio, o incremento corrente anual, o incremento médio anual, índice de uniformidade do povoamento, a produtividade primária líquida de madeira e o índice de área foliar (IAF). Realizou-se análises de solo (0-20 cm) e foliar. Os dados das variáveis climáticas calculadas foram obtidos das estações meteorológicas mais próximas aos sítios avaliados. A produtividade mínima e máxima das parcelas controle foi de, respectivamente, 20,3 e 56,9 m³ ha-1 ano-1 com idade média de 13 anos. Houve efeito significativo dos tratamentos F e DF, com ganho máximo no estoque de volume por parcela de 33 e 63%, respectivamente. A resposta da fertilização e da fertilização com desbaste ocorreram em áreas menos férteis e com menor teor de matéria orgânica do solo. A uniformidade dos povoamentos correlacionou-se positivamente com as parcelas de maior área basal em 2014 e com a EC, EUL e EUN calculadas em 2013. Os valores médios da EC, EUL e EUN aos 12,4 anos de idade foram de 2,1 Mg ha-1 IAF-1, 0,55 g MJ-1 e 93 kg lenho kg-1 N ano-1, respectivamente. Houve relação linear positiva da EC, EUL e EUN com a produção de biomassa total acima do solo. Ocorreu maior influência das variáveis edáficas na eficiência do uso dos recursos naturais comparado com as variáveis climáticas. / Due to the improvement of silviculture practices and breeding for the selection of more productive genotypes, the loblolly pine productivity in Brazil is recognized as one of the biggest in the world. Even with the high productivity at certain sites, its variation is large. It is known that the availability of water, light and nutrients are essential for the wood production, and that the use efficiency of these resources influences the productivity variation. However, the absence of fertilization in pine plantations is majority in the commercial areas in Brazil due to good growth in low fertility soils and it hardly presents visual nutrient deficiency. To understand which factors influence the production and biomass partitioning, it is necessary to study the production ecology. Thus, the present work has as main objectives: i) to study the influence of different soil classes in loblolly pine growth; ii) to study the productivity response submitted to fertilization and thinning; iii) to evaluate the light interception; and iv) to estimate the growth efficiency (GE), use of light (LUE) and nitrogen (NUE) in loblolly pine stands in southern Brazil. For this study, it was used quadriplots from the experimental network of Pinus Potential Productivity in Brazil program, which composes an edaphoclimatic gradient in Parana and Santa Catarina states. The plots were submitted to the following treatments: control (C), fertilized (F), thinning (T), thinning and fertilized (TF). It was calculated the site index, the annual increment, the mean annual increment, the stand uniformity index, wood net primary productivity and the leaf area index (LAI). The soil (0-20 cm) and foliar analyzes were held. Data from the calculated climate variables was obtained from the closest weather stations to the evaluated sites. The minimum and maximum productivity of control plots were, respectively, 20.3 and 56.9 m³ ha-1 yr-1 with an average age of 13 years. There was a significant effect of F and TF treatments, with maximum gain in volume stock of 33 and 63%, respectively. The response of fertilization and fertilization with thinning occurred in less fertile areas and with lower soil organic matter content. The stands uniformity correlated positively with the basal area in 2014 and the GE, LUE and NUE calculated in 2013. The mean values of GE, LUE and NUE at the average age of 12,4 years were 2.1 Mg ha-1 LAI-1, 0.55 g MJ-1 and 93 kg wood kg-1 N year-1, respectively. There was a positive linear relationship of GE, LUE and NUE with the production of total biomass above ground. The soil variables influenced more on the use efficiency of natural resources than climatic variables.
37

Características agronômicas e tecnológicas de variedades de sorgo sacarino e propriedades do solo em função de lâminas de irrigação por gotejamento / Agronomic and technological characteristics of varieties of sacred sorrow and soil properties in the function of drip irrigation blades

Silva, Patrícia Costa da 14 May 2018 (has links)
Submitted by Patrícia Costa Silva (patypcs@yahoo.com.br) on 2018-07-30T19:35:52Z No. of bitstreams: 1 Tese_Patricia_Costa_Silva_2018_final.pdf: 1846241 bytes, checksum: b3112d63566f4acc8bf90ba51cfb28d2 (MD5) / Approved for entry into archive by Ana Lucia de Grava Kempinas (algkempinas@fca.unesp.br) on 2018-07-30T20:54:23Z (GMT) No. of bitstreams: 1 silva_pc_dr_botfca.pdf: 1846241 bytes, checksum: b3112d63566f4acc8bf90ba51cfb28d2 (MD5) / Made available in DSpace on 2018-07-30T20:54:23Z (GMT). No. of bitstreams: 1 silva_pc_dr_botfca.pdf: 1846241 bytes, checksum: b3112d63566f4acc8bf90ba51cfb28d2 (MD5) Previous issue date: 2018-05-14 / O cultivo de sorgo sacarino surgiu como alternativa para produção de massa destinada à fabricação de etanol, na entressafra, e em áreas de reforma do canavial e em áreas de rotação à outras culturas. Ainda são escassos estudos sobre a irrigação em sorgo sacarino, bem como os estudos que correlacionam lâminas de irrigação e a dinâmica dos nutrientes no solo e propriedades físicas. Este estudo teve como objetivos analisar o efeito da aplicação de lâminas de irrigação sob características tecnológicas e agronômicas de variedades de sorgo sacarino e nas propriedades do solo, e avaliar a eficiência do uso da água. O experimento foi conduzido em campo na área experimental da Universidade Estadual de Goiás, Câmpus de Santa Helena de Goiás. O delineamento adotado foi o de blocos casualizados com esquema fatorial 5x3, com 5 tratamentos, 3 cultivares de sorgo sacarino e 4 repetições. Os tratamentos foram constituídos por 5 lâminas de irrigação: 25, 50, 75, 100 e 125 % da evapotranspiração de cultura (ETc) e as variedades avaliadas foram BRS 511, CVSW 80007 e Silotec 20. O sistema de irrigação empregado foi o localizado por gotejamento. Os dados foram submetidos à análise de variância pelo teste F a 5% de significância. As médias para o fator variedades e propriedades do solo foram comparadas pelo teste de Tukey e para o fator lâminas de irrigação empregou-se a análise de regressão. Verificou-se que as lâminas de irrigação exerceram influência significativa nas características agronômicas e tecnológicas. A variedade BRS 511 adaptou-se melhor às condições edafoclimáticas locais com reflexo em maior altura de plantas, diâmetro de colmo, número de folhas e internódios, porcentagem de folhas, produtividade de colmos, massa verde da parte aérea, rendimento de caldo, produtividade de etanol e sólidos solúveis totais; e menor peso do bagaço úmido e teor de fibra industrial. Comparando-se as variedades em cada lâmina verificou-se variação a partir da lâmina 75% de reposição da evapotranspiração de cultura com ajustes linear e quadrático. A eficiência do uso da água (EUA) em todas as variedades e lâminas estudadas apresentou resposta linear decrescente, com maior EUA na lâmina de 25% da ETc. A variedade BRS 511 foi a mais recomendada para as condições edafoclimáticas da região avaliada e a lâmina mais indicada foi a equivalente a 100% da ETc. As lâminas de irrigação exerceram influência sobre a dinâmica das propriedades químicas no solo. Os maiores teores dos nutrientes foram encontrados na camada de 0-0,10 m, à medida que aumentou a disponibilidade hídrica; para as lâminas de 100 e 125 % da ETc houve aumento dos teores de nutrientes e de matéria orgânica do solo; entre as variedades e as camadas de solo houve variação somente para o potássio e o alumínio. As propriedades físicas não foram afetadas pelo cultivo das variedades e lâminas de irrigação, apenas pelas camadas amostradas. / Cultivation of sorghum emerged as an alternative for the production of mass destined to the manufacture of ethanol, in the off season, and in areas of reforestation of cane fields and in areas of rotation to other crops. There are still few studies on irrigation in sorghum, as well as studies that correlate irrigation slides and the dynamics of soil nutrients and physical properties. The objective of this study was to analyze the effect of the application of irrigation slides under the technological and agronomic characteristics of sorghum varieties and soil properties, and to evaluate the efficiency of water use. The experiment was conducted in the experimental area of the State University of Goiás, Campus of Santa Helena de Goiás. The experiment was a randomized complete block design with 5x3 factorial, with 5 treatments, 3 sorghum cultivars and 4 replicates. The treatments consisted of 5 irrigation slides: 25, 50, 75, 100 and 125% of crop evapotranspiration (ETc) and the varieties evaluated were BRS 511, CVSW 80007 and Silotec 20. The irrigation system was located by drip. The data were submitted to analysis of variance by the F test at 5% of significance. The averages for the factor varieties and soil properties were compared by the Tukey test and for the irrigation lamina factor the regression analysis was used. It was verified that the irrigation slides exerted significant influence on the agronomic and technological characteristics. The BRS 511 variety was better adapted to local edaphoclimatic conditions with higher plant height, stem diameter, number of leaves and internodes, leaf percentage, shoot yield, shoot shoot mass, broth yield, seed yield ethanol and total soluble solids; and lower weight of the wet cake and industrial fiber content. Comparing the varieties on each slide, a variation was observed from the 75% replacement blade of the crop evapotranspiration with linear and quadratic adjustments. Efficiency of water use in all varieties and slides studied presented a linear decreasing response, with a higher USA in the 25% ETc blade. The BRS 511 was the most recommended for the soil and climatic conditions of the evaluated region and the most indicated blade was the equivalent to 100% of the ETc. Irrigation slides influenced the dynamics of soil chemical properties. The highest levels of nutrients were found in the 0-0.10 m layer, as water availability increased; for the slides of 100 and 125% of the ETc there was an increase in nutrient and soil organic matter contents; between varieties and soil layers there was variation only for potassium and aluminum. The physical properties were not affected by cultivation of the irrigation varieties and slides, only by the sampled layers.
38

Cultivo do girassol irrigado sob diferentes lâminas de água e doses de nitrogênio / Sunflower cultivation irrigated under different water blades and nitrogen doses

Freire, Jonas de Oliveira 29 August 2016 (has links)
Submitted by Lara Oliveira (lara@ufersa.edu.br) on 2017-02-14T19:11:01Z No. of bitstreams: 1 JonasOF_TESE.pdf: 3319263 bytes, checksum: 51b79bea8bd5a5a042d4db215bfe1a86 (MD5) / Approved for entry into archive by Socorro Pontes (socorrop@ufersa.edu.br) on 2017-02-15T14:50:14Z (GMT) No. of bitstreams: 1 JonasOF_TESE.pdf: 3319263 bytes, checksum: 51b79bea8bd5a5a042d4db215bfe1a86 (MD5) / Approved for entry into archive by Vanessa Christiane (referencia@ufersa.edu.br) on 2017-02-15T14:52:02Z (GMT) No. of bitstreams: 1 JonasOF_TESE.pdf: 3319263 bytes, checksum: 51b79bea8bd5a5a042d4db215bfe1a86 (MD5) / Made available in DSpace on 2017-03-21T14:53:47Z (GMT). No. of bitstreams: 1 JonasOF_TESE.pdf: 3319263 bytes, checksum: 51b79bea8bd5a5a042d4db215bfe1a86 (MD5) Previous issue date: 2016-08-29 / Sunflower adapts to different conditions of climate and soil, including the prevailing climate in the Northeast, but the water needs, as well as nitrogen fertilizer recommendations are not yet fully defined. The objective of this study was to evaluate sunflower productivity and efficiency of water and nitrogen use. The experiment was conducted between October 2013 to January 2014 in Unidade Agrícola Industrial Escola do Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN/Campus Apodi), Apodi, in the state of Rio Grande do Norte, Brazil. Statistical design used was in blocks in the 4 x 4 factorial scheme with four replications. The treatments consisted of four water slides 58, 80, 100 and 120% of crop evapotranspiration (ETc) associated with four doses of nitrogen 40, 100, 200 and 370% of the dose recommended for the cultivation of 70 kg ha-1. The depth water of 517 mm (108% ETc) associated with nitrogen dose of 77 kg ha-1 provided 91.3% of the maximum productivity, these being the doses recommended in the studied conditions. The oil productivity depending on depths water and nitrogen levels followed the trend surface function in oil yield of water depths and doses of nitrogen. The water factor was most limiting characteristics evaluated the nitrogen fertilization / O girassol se adapta a diferentes condições de clima e solo, inclusive ao clima predominante na Região Nordeste, porém, as necessidades hídricas, assim como as recomendações de adubação nitrogenada, ainda não estão perfeitamente definidas. Objetivouse com o presente estudo, avaliar a produtividade do girassol e a eficiência do uso da água e nitrogênio. O experimento foi conduzido no período de 29 outubro de 2013 a janeiro de 2014 na Unidade Agrícola Industrial Escola do Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN/Campus Apodi), Apodi, RN. O delineamento estatístico adotado foi em blocos no esquema fatorial 4 x 4 com quatro repetições. Os tratamentos consistiram em quatro lâminas de irrigação 58, 80, 100 e 120% da evapotranspiração da cultura (ETc) associadas a quatro doses de nitrogênio 40, 100, 200 e 370% da dose padrão de 70 kg ha- 1. A lâmina de água de 517 mm (108% da ETc) associada a dose nitrogenada de 77 kg ha-1 proporcionou 91,3% da produtividade máxima de grãos, sendo estas as doses recomendadas nas condições estudadas. A produtividade de óleo em função das doses de água e nitrogênio acompanhou a tendência da superfície do rendimento de óleo em função das lâminas de água e doses de nitrogênio. As lâminas de água foram mais limitantes às características avaliadas que a adubação nitrogenada / 2017-02-14
39

Componentes do balanço de água e de radiação solar no desenvolvimento do milho em quatro épocas de semeadura no agreste de Alagoas / Components of water balance and solar radiation related to development of corn in four planting dates in the agreste region of Alagoas

Medeiros, Rui Palmeira 26 June 2009 (has links)
Fatores ambientais são determinantes nos processos fisiológicos das plantas de milho, no acúmulo de matéria seca e no rendimento da cultura. O objetivo desse trabalho foi avaliar as interações entre as variáveis ambientais com o crescimento, desenvolvimento e produtividade do milho (Zea mays L.) em quatro épocas de semeaduras, com destaque para a eficiência no uso da radiação e da água. Para tanto, um experimento de campo foi conduzido na região de Arapiraca, (09º48 55,1 S, 36º36 22,8 W e altitude de 236 m), Alagoas Brasil. O experimento foi conduzido, durante a estação chuvosa, de maio a outubro de 2008 com quatro épocas de semeadura. A primeira época de semeadura (T1) ocoreu no dia 06 de maio, a segunda (T2) no dia 19 de maio, a terceira no dia 10 de junho e a quarta no dia 30 de junho de 2008, utilizando a variedade Al Bandeirante. Os elementos meteorológicos foram medidos através de sensores, instalados na estação meteorológica localizada na área contígua ao experimento e os dados de umidade do solo foram capturados através de sensores, utilizando a reflectometria no domínio do tempo (TDR), coletadas durante a estação de crescimento da cultura. A evapotranspiração de referência (ETo), a evapotranspiração da cultura (ETc) e a evapotranspiração real (ETr) foram estimadas pela metodologia definida no Boletim FAO-56. A análise das interações agrometeorológicas do milho mostraram que a taxa de crescimento da cultura (TCC) em g m-2 dia-1, o índice de área foliar (IAF) no estádio fenológico de grãos farináceos (R4) e a produtividade de grãos foram menores na última época de semeadura (T4), quando comparadas às demais épocas (T1, T2 e T3). Já os valores da área foliar específica (AFE) não apresentaram diferenças entre si, para as quatro épocas de semeadura. A evapotranspiração real (ETr) variou de 356 mm, na primeira época de semeadura (T1) a 229,6 mm na última época (T4), enquanto a eficiência no uso da água (EUA) esteve no intervalo de 4,28 kg m-3 na terceira época (T3) a 3,76 kg m-3 de matéria seca, na quarta época de semeadura (T4). Na primeira época de semeadura (T1), verificou-se uma eficiência no uso da radiação (EUR) de 4,61 g de massa seca por MJ m-2 de radiação fotossinteticamente ativa absorvida (RFAabs), enquanto a quarta época (T4), contabilizou 2,98 g de massa seca por MJ m-2 de RFAabs, sendo 35,4% menor que T1. Diante das observações conclui-se que a menor produtividade foi verificada no tratamento T4, decorrente das modificações morfofisiológicas, ocorridas nas plantas de milho, causadas pelas alterações ambientais.
40

Influência dos fatores edafoclimáticos na produtividade e na eficiência do uso dos recursos naturais do Pinus taeda L. sob distintos manejos no Sul do Brasil / Edaphoclimatic factors influence on productivity and efficiency use of natural resources of loblolly pine under different managements in southern Brazil

Juliana Soares Biruel Munhoz 16 October 2015 (has links)
Devido ao aprimoramento das práticas silviculturais e do melhoramento genético para seleção de genótipos mais produtivos, a produtividade do Pinus taeda no Brasil é reconhecida entre as maiores do mundo. Mesmo com alta produtividade em determinados sítios, sua variação é consideravelmente grande. Sabe-se que a disponibilidade de água, luz e nutrientes são fatores essenciais para a produção de madeira, onde a eficiência de uso desses recursos influenciam nesta variação do produtividade. Contudo, a ausência de fertilização em plantios de Pinus é majoritária nas áreas comerciais no Brasil, devido ao bom crescimento em solos de baixa fertilidade e por dificilmente apresentarem deficiência visual de nutrientes. Para compreender quais fatores influenciam na produção e partição de biomassa, se faz necessário o estudo da ecologia da produção. Diante disso, o presente trabalho tem como principais objetivos: i) estudar a influência de diferentes classes de solo no crescimento do Pinus taeda; ii) estudar a resposta da produtividade da espécie submetida à fertilização e ao desbaste; iii) avaliar a interceptação de luz; e iv) estimar a eficiência do crescimento (EC), uso da luz (EUL) e do nitrogênio (EUN) em povoamentos de Pinus taeda no sul do Brasil. Utilizou-se para este estudo parcelas quadrigêmeas da rede experimental do programa de Produtividade Potencial do Pinus no Brasil, as quais compõem um gradiente edafoclimático nos estados do Paraná e de Santa Catarina. As parcelas foram submetidas aos seguintes tratamentos: controle (C), fertilizado (F), desbastado (D), desbastado e fertilizado (DF). Foi calculado o índice de sítio, o incremento corrente anual, o incremento médio anual, índice de uniformidade do povoamento, a produtividade primária líquida de madeira e o índice de área foliar (IAF). Realizou-se análises de solo (0-20 cm) e foliar. Os dados das variáveis climáticas calculadas foram obtidos das estações meteorológicas mais próximas aos sítios avaliados. A produtividade mínima e máxima das parcelas controle foi de, respectivamente, 20,3 e 56,9 m³ ha-1 ano-1 com idade média de 13 anos. Houve efeito significativo dos tratamentos F e DF, com ganho máximo no estoque de volume por parcela de 33 e 63%, respectivamente. A resposta da fertilização e da fertilização com desbaste ocorreram em áreas menos férteis e com menor teor de matéria orgânica do solo. A uniformidade dos povoamentos correlacionou-se positivamente com as parcelas de maior área basal em 2014 e com a EC, EUL e EUN calculadas em 2013. Os valores médios da EC, EUL e EUN aos 12,4 anos de idade foram de 2,1 Mg ha-1 IAF-1, 0,55 g MJ-1 e 93 kg lenho kg-1 N ano-1, respectivamente. Houve relação linear positiva da EC, EUL e EUN com a produção de biomassa total acima do solo. Ocorreu maior influência das variáveis edáficas na eficiência do uso dos recursos naturais comparado com as variáveis climáticas. / Due to the improvement of silviculture practices and breeding for the selection of more productive genotypes, the loblolly pine productivity in Brazil is recognized as one of the biggest in the world. Even with the high productivity at certain sites, its variation is large. It is known that the availability of water, light and nutrients are essential for the wood production, and that the use efficiency of these resources influences the productivity variation. However, the absence of fertilization in pine plantations is majority in the commercial areas in Brazil due to good growth in low fertility soils and it hardly presents visual nutrient deficiency. To understand which factors influence the production and biomass partitioning, it is necessary to study the production ecology. Thus, the present work has as main objectives: i) to study the influence of different soil classes in loblolly pine growth; ii) to study the productivity response submitted to fertilization and thinning; iii) to evaluate the light interception; and iv) to estimate the growth efficiency (GE), use of light (LUE) and nitrogen (NUE) in loblolly pine stands in southern Brazil. For this study, it was used quadriplots from the experimental network of Pinus Potential Productivity in Brazil program, which composes an edaphoclimatic gradient in Parana and Santa Catarina states. The plots were submitted to the following treatments: control (C), fertilized (F), thinning (T), thinning and fertilized (TF). It was calculated the site index, the annual increment, the mean annual increment, the stand uniformity index, wood net primary productivity and the leaf area index (LAI). The soil (0-20 cm) and foliar analyzes were held. Data from the calculated climate variables was obtained from the closest weather stations to the evaluated sites. The minimum and maximum productivity of control plots were, respectively, 20.3 and 56.9 m³ ha-1 yr-1 with an average age of 13 years. There was a significant effect of F and TF treatments, with maximum gain in volume stock of 33 and 63%, respectively. The response of fertilization and fertilization with thinning occurred in less fertile areas and with lower soil organic matter content. The stands uniformity correlated positively with the basal area in 2014 and the GE, LUE and NUE calculated in 2013. The mean values of GE, LUE and NUE at the average age of 12,4 years were 2.1 Mg ha-1 LAI-1, 0.55 g MJ-1 and 93 kg wood kg-1 N year-1, respectively. There was a positive linear relationship of GE, LUE and NUE with the production of total biomass above ground. The soil variables influenced more on the use efficiency of natural resources than climatic variables.

Page generated in 0.0578 seconds