• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 12
  • 7
  • 6
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 93
  • 47
  • 19
  • 17
  • 15
  • 13
  • 11
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Low power laser driver design in 28nm CMOS for on-chip and chip-to-chip optical interconnect

Belfiore, Guido, Szilagyi, Laszlo, Henker, Ronny, Ellinger, Frank 06 August 2019 (has links)
This paper discusses the challenges and the trade-offs in the design of laser drivers for very-short distance optical communications. A prototype integrated circuit is designed and fabricated in 28 nm super-low-power CMOS technology. The power consumption of the transmitter is 17.2 mW excluding the VCSEL that in our test has a DC power consumption of 10 mW. The active area of the driver is only 0.0045 mm². The driver can achieve an error-free (<BER < 10^12) electrical data-rate of 25 Gbit/s using a pseudo random bit sequence of 2^7-1. When the driver is connected to the VCSEL module an open optical eye is reported at 15 Gbit/s. In the tested bias point the VCSEL module has a measured bandwidth of 10.7 GHz.
32

Lithographic Vertical-cavity Surface-emitting Lasers

Zhao, Guowei 01 January 2012 (has links)
Remarkable improvements in vertical-cavity surface-emitting lasers (VCSELs) have been made by the introduction of mode- and current-confining oxide optical aperture now used commercially. However, the oxide aperture blocks heat flow inside the device, causing a larger thermal resistance, and the internal strain caused by the oxide can degrade device reliability, also the diffusion process used for the oxide formation can limit device uniformity and scalability. Oxide-free lithographic VCSELs are introduced to overcome these device limitations, with both the mode and current confined within the lithographically defined intracavity mesa, scaling and mass production of small size device could be possible. The 3 μm diameter lithographic VCSEL shows a threshold current of 260 μA, differential quantum efficiency of 60% and maximum output power density of 65 kW/cm2 , and shows single-mode singlepolarization operation with side-mode-suppression-ratio over 25 dB at output power up to 1 mW. The device also shows reliable operation during 1000 hours stress test with high injection current density of 142 kA/cm2 . The lithographic VCSELs have much lower thermal resistance than oxide-confined VCSELs due to elimination of the oxide aperture. The improved thermal property allows the device to have wide operating temperature range of up to 190 °C heat sink temperature, high output power density especially in small device, high rollover current density and high rollover cavity temperature. Research is still underway to reduce the operating voltage of lithographic VCSELs for high wall plug efficiency, and the voltage of 6 µm device at injection current density of 10 kA/cm2 is reduces to 1.83 V with optimized mesa and DBR mirror iv structure. The lithographic VCSELS are promising to become the next generation VCSEL technology.
33

Lasers à cavité vertical émettant par la surface dans l’ultraviolet profond à base des matériaux BAlGaN / BAlGaN-based vertical cavity surface-emitting lasers operating in deep UV region

Li, Xin 15 December 2015 (has links)
Le contexte de cette thèse se situe dans les nombreuses applications de sources UV tels que la stérilisation et la purification. Comparés aux sources conventionnelles, les dispositifs à base de semiconducteur présentent la fiabilité, l'efficacité élevée, et les effets minimaux sur l'environnement. Sur l'aspect des matériaux, III-Nitrures (BAlGaInN) sont les candidats prometteurs car ils sont stables chimiquement et physiquement, et ils présentent les bandes interdites couvrant le spectre visible à l'UV profond. Sur l'aspect des structures, le laser à cavité vertical émettant par la surface (VCSEL) est l'une des configurations les plus attrayantes, et il offre des avantages tels que le seuil bas, le haut rendement, la possibilité d'intégration des réseaux 2D et les tests au niveau de la plaquette. Néanmoins, il n'existe aucun VCSEL fonctionnant en dessous de 300 nm. Des défis importants concernent l'efficacité de MQWs et la réflectivité de réflecteur de Bragg distribué (DBR), qui sont limitées par la qualité des matériaux, les propriétés optiques des MQWs, le contraste faible d'indice de réfraction pour les couches dans les DBRs à des longueurs d'onde courtes, etc. L'objectif de cette thèse est de répondre aux défis relevés auparavant en étudiant la croissance de BAlGaN par épitaxie en phase vapeur aux organométalliques (MOVPE), en développant les MQWs d'AlGaN avec l'augmentation des émissions par la surface, et en explorant les DBRs en BAlN/AlGaN, en vue du développement de VCSEL à pompage optique fonctionnant dans DUV / The context of this thesis falls in the wide applications of UV light sources such as sterilization and purification. Compared to the conventional UV sources (excimer lasers, Nd: YAG lasers or mercury lamps), the semiconductor devices have advantages in reliability, compactness, high efficiency and minimum environmental effects. On the material aspect, III-nitrides (BAlGaInN) are promising candidates since they are chemically and physically stable with direct bandgaps covering from visible to DUV spectrum. On the structure aspect, vertical-cavity surface-emitting laser (VCSEL) is one of the most attractive configurations considering its low threshold, high efficiency, and the possibility for the integration of 2D arrays and the wafer-level tests. It constitutes a multiple-quantum-well (MQW) active region sandwiched by a top and a bottom distributed Bragg reflector (DBR). However, no VCSELs can operate below 300 nm until now. The major challenges lie in the two main blocks: the emission efficiency of MQWs and the reflectivity of DBRs, which are limited by the quality of the substrates and epitaxial layers, optical-polarization properties of the MQW emission, small refractive index contrast of the layers used for DBRs at short wavelengths, etc. The objective of this thesis is to address this need by studying metal-organic vapor-phase epitaxy (MOVPE) growth of BAlGaN materials, developing AlGaN MQWs with enhanced surface emission and exploring BAlN/AlGaN DBRs, for the future development of optically-pumped VCSELs operating below 300 nm
34

Optical characterization of InGaN heterostructures for blue light emitters and vertical cavity lasers: Efficiency and recombination dynamics

Okur, Serdal 01 January 2014 (has links)
OPTICAL CHARACTERIZATION OF INGAN HETEROSTRUCTURES FOR BLUE LIGHT EMITTERS AND VERTICAL CAVITY LASERS: EFFICIENCY AND RECOMBINATION DYNAMICS By Serdal Okur, Ph.D. A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University. Virginia Commonwealth University, 2014. Major Director: Ümit Özgür, Associate Professor, Electrical and Computer Engineering This thesis explores radiative efficiencies and recombination dynamics in InGaN-based heterostructures and their applications as active regions in blue light emitters and particularly vertical cavities. The investigations focus on understanding the mechanism of efficiency loss at high injection as well as developing designs to mitigate it, exploring nonpolar and semipolar crystal orientations to improve radiative efficiency, integration of optimized active regions with high reflectivity dielectric mirrors in vertical cavity structures, and achieving strong exciton-photon coupling regime in these microcavities for potential polariton lasing. In regard to active regions, multiple double heterostructure (DH) designs with sufficiently thick staircase electron injection (SEI) layers, which act as electron coolers to reduce the overflow of hot electrons injected into the active region, were found to be more viable to achieve high efficiencies and to mitigate the efficiency loss at high injection. Such active regions were embedded in novel vertical cavity structure designs with full dielectric distributed Bragg reflectors (DBRs) through epitaxial lateral overgrowth (ELO), eliminating the problems associated with semiconductor bottom DBRs having narrow stopbands and the cumbersome substrate removal process. Moreover, the ELO technique allowed the injection of carriers only through the high quality regions with substantially reduced threading dislocation densities compared to regular GaN templates grown on sapphire. Reduced electron-hole wavefunction overlap in polar heterostructures was shown to hamper the efficiency of particularly thick active regions (thicker than 3 nm) possessing three-dimensional density of states needed for higher optical output. In addition, excitation density-dependent photoluminescence (PL) measurements showed superior optical quality of double heterostructure (3 nm InGaN wells) active regions compared to quantum wells (2 nm InGaN wells) suggesting a minimum limit for the active region thickness. Therefore, multiple relatively thin but still three dimensional InGaN active regions separated by thin and low barriers were found to be more efficient for InGaN light emitters. Investigations of electroluminescence from light emitting diodes (LEDs) incorporating multi DH InGaN active regions (e.g. quad 3 nm DH) and thick SEIs (two 20 nm-thick InGaN layers with step increase in In content) revealed higher emission intensities compared to LEDs with thinner or no SEI. This indicated that injected electrons were cooled sufficiently with thicker SEI layers and their overflow was greatly reduced resulting in efficient recombination in the active region. Among the structures considered to enhance the quantum efficiency, the multi-DH design with a sufficiently thick SEI layer constitutes a viable approach to achieve high efficiency also in blue lasers. Owing to its high exciton binding energy, GaN is one of the ideal candidates for microcavities exploiting the strong exciton-photon coupling to realize the mixed quasiparticles called polaritons and achieve ideally thresholdless polariton lasing at room temperature. Angle-resolved PL and cathodoluminescence measurements revealed large Rabi splitting values up to 75 meV indicative of the strong exciton-photon coupling regime in InGaN-based microcavities with bottom semiconductor AlN/GaN and a top dielectric SiO2/SiNxDBRs, which exhibited quality factors as high as 1300. Vertical cavity structures with all dielectric DBRs were also achieved by employing a novel ELO method that allowed integration of a high quality InGaN cavity active region with a dielectric bottom DBR without removal of the substrate while forming a current aperture through the ideally defect-free active region. The full-cavity structures formed as such were shown to exhibit clear cavity modes near 400 and 412 nm in the reflectivity spectrum and quality factors of 500. Although the polar c-plane orientation has been the main platform for the development of nitride optoelectronics, significant improvement of the electron and hole wavefunction overlap in nonpolar and semipolar InGaN heterostructures makes them highly promising candidates for light emitting devices provided that they can be produced with good crystal quality. To evaluate their true potential and shed light on the limitations put forth by the structural defects, optical processes in several nonpolar and semipolar orientations of GaN and InGaN heterostructures were investigated. Particularly, stacking faults were found to affect significantly the optical properties, substantially influencing the carrier dynamics in nonpolar (1-100), and semipolar (1-101) and (11-22)GaN layers. Carrier trapping/detrapping by stacking faults and carrier transfer between stacking faults and donors were revealed by monitoring the carrier recombination dynamics at different temperatures, while nonradiative recombination was the dominant process at room temperature. Although it is evident that nonpolar (1-100)GaN and semipolar (11-22)GaN require further improvement of material quality, steady-state and time-resolved PL measurements support that (1-101)-oriented GaN templates and InGaN active regions exhibit optical performance comparable to their highly optimized polar c-plane counterparts, and therefore, are promising for vertical cavities and light emitting device applications.
35

QUANTUM EFFICIENCY ENHANCEMENT FOR GAN BASED LIGHT-EMITTING DIODES AND VERTICAL CAVITY SURFACE-EMITTING LASERS

Zhang, Fan 01 January 2014 (has links)
This thesis explores the improvement of quantum efficiencies for InGaN/GaN heterostructures and their applications in light-emitting diodes (LEDs) and vertical cavity surface-emitting lasers (VCSELs). Different growth approaches and structural designs were investigated to identify and address the major factors limiting the efficiency. (1) Hot electron overflow and asymmetrical electron/hole injection were found to be the dominant reasons for efficiency degradation in nitride LEDs at high injection; (2) delta p-doped InGaN quantum barriers were employed to improve hole concentration inside the active region and therefore improve hole injection without sacrificing the layer quality; (3) InGaN active regions based on InGaN multiple double-heterostructures (DHs) were developed to understand the electron and hole recombination mechanisms and achieve high quantum efficiency and minimal efficiency droop at high injection; (4) the effect of stair-case electron injectors (SEIs) has been investigated with different active region designs and SEIs with optimized thickness greatly mitigated electron overflow without sacrificing material quality of the active regions. The active regions showing promising performance in LEDs were incorporated into VCSEL designs. Hybrid VCSEL structures with bottom semiconductor AlN/GaN and a top dielectric SiO2/SiNx DBRs have been investigated, and quality factors as high as 1300 have been demonstrated. Finally, VCSEL structures with all dielectric DBRs have been realized by employing a novel ELO-GaN growth method that allowed integration of a high quality InGaN cavity active region with a dielectric bottom DBR without removal of the substrate while forming a current aperture through the ideally dislocation-free region. The full-cavity structures formed as such exhibited quality factors 500 across the wafer.
36

Design and fabrication of long wavelength vertical cavity lasers on GaAs substrates

Marcks von Würtemberg, Rickard January 2008 (has links)
Vertical cavity surface emitting lasers (VCSELs) are today a commodity on the short wavelength laser market due to the ease with which they are manufactured. Much effort has in the last decade been directed towards making long wavelength VCSELs as successful in the marketplace. This has not been achieved due to the much more difficult fabrication technologies needed for realising high performance long wavelength VCSELs. At one point, GaInNAs quantum wells gain regions grown on GaAs substrates seemed to be the solution as it enabled all-epitaxial VCSELs that could make use of high contrast AlGaAs-based distributed Bragg reflectors (DBRs) as mirrors and lateral selective oxidation for optical and electrical confinement, thereby mimicking the successful design of short wavelength VCSELs. Although very good device results were achieved, reproducible and reliable epitaxial growth of GaInNAs quantum wells proved difficult and the technology has not made its way into high-volume production. Other approaches to the manufacturing and material problems have been to combine mature InP-based gain regions with high contrast AlGaAs-based DBRs by wafer fusion or with high contrast dielectric DBRs. Commonly, a patterned tunnel junction provides the electrical confinement in these VCSELs. Excellent performance has been achieved in this way but the fabrication process is difficult. In this work, we have employed high strain InGaAs quantum wells along with large detuning between the gain peak and the emission wavelength to realize GaAs-based long wavelength VCSELs. All-epitaxial VCSELs with AlGaAs-based DBRs and lateral oxidation confinement were fabricated and evaluated. The efficiency of these VCSELs was limited due to the optical absorption in the doped DBRs. To improve the efficiency and manufacturability, two novel optical and electrical confinement schemes based on epitaxial regrowth of current blocking layers were developed. The first scheme is based on a single regrowth step and requires very precise processing. This scheme was therefore not developed beyond the first generation but single mode power of 0.3 mW at low temperature, -10ºC, was achieved. The second scheme is based on two epitaxial regrowth steps and does not require as precise processing. Several generations of this design were manufactured and resulted in record high power of 8 mW at low temperature, 5ºC, and more than 3 mW at high temperature, 85ºC. Single mode power was more modest with 1.5 mW at low temperature and 0.8 mW at high temperature, comparable to the performance of the single mode lateral oxidation confined VCSELs. The reason for the modest single mode power was found to be a non-optimal cavity shape after the second regrowth that leads to poor lateral overlap between the gain in the quantum wells and the intensity of the optical field. / QC 20100825
37

Thermal Effects of Polarization Switching in Vertical-Cavity Surface-Emitting Lasers

Wu, Yu-Heng 29 June 2011 (has links)
This research investigated the thermal properties of the polarization switching (PS) in vertical-cavity surface-emitting lasers (VCSELs). The investigations were performed by experiments and numerical simulations. In the experiments, the current modulation frequency and ambient temperature of VCSELs were varied to study their thermal effects on PS, resulting in rich dynamics. The current-heating effect on PS was also investigated by a step function current experiment. Based on an assumption that PS is activated as the temperature in the active region reaches a certain temperature, we model a simplified temperature rate equation to simulate the experiment of the step function. The consistency of the experiments and simulations concludes that the thermal effect plays a major role in PS and PS¡¦s hysteresis. These results contribute to the understanding of the mechanism of VCSEL¡¦s polarization switching.
38

Fatigue Lifes of Sn/Pb and Sn/Ag/Cu Solder Balls

Wu, Cheng-Hua 24 July 2004 (has links)
The Coffin-Manson equations of Sn/Ag/Cu and Sn/Pb solder joints are presented in this thesis. The experimental results of CSP thermal cycle fatigue test and ball shear test are used to formulate Coffin-Manson equations. The maximum amplitude of equivalent plastic shear strain corresponding to these two experiments are employed. The MARC finite element package is used to calculate the plastic shear strain. Different published fatigue experiment results have been used to show the accuracy and the feasibility of these proposed equations. The 3-D finite element models of the BGA type¡¦s CSP and VCSEL assembly are employed to simulate the thermal cycling fatigue. Results indicate that the fatigue lifes of solder predicted by using the proposed equations have good agreement with those measured from experimental tests.
39

Polarization Switching of the Vertical-Cavity Surface- Emitting Laser with Optical Feedback

Tsai, Jin-ing 24 June 2009 (has links)
This research accomplished a series of investigations on the polarization switching of Vertical-Cavity Surface-Emitting Lasers (VCSEL). The research was preceded experimentally and theoretically to observe the variation of the VCSEL¡¦s polarization switching under various polarization optical feedback and various feedback ratios. A VCSEL with significant polarization-switching hysteresis loop was employed in the experiments to study the interaction between the optical feedback and polarization switching. The experimental results matched the theoretical simulations very well. These results could be interpreted with the graphic analysis of the linear gain model of the VCSEL. In the investigation of the polarization-switching hysteresis loop, experiments found that, inside the loop and at some constant current, the polarization switching would be conducted with a switching delay time. The switching delay time was shortened under stronger optical feedback, revealing an exponential dependence between the switching delay time and optical feedback ratio. In the experiments of small current modulation to continuously switch the laser¡¦s polarization, optical feedback could improve the success of the current-driven polarization switching, significantly enhancing its bandwidth. For a large-range tuning of the laser¡¦s current, as the current modulation frequency increased, the polarization-switching current in the increasing-current process would significantly shift toward the high current end, while the polarization-switching current in the decreasing-current process was affected less. These results greatly contribute to the understanding of the VCSEL¡¦s polarization switching.
40

Epitaxial growth optimization for 1.3-um InGaAs/GaAs Vertical-Cavity Surface-Emitting lasers

Zhang, Zhenzhong January 2008 (has links)
<p>Long-wavelength (1.3-μm) vertical-cavity surface-emitting lasers (VCSELs) are of great interest as low-cost, high performance light sources for fiber-optic metro and access networks. During recent years the main development effort in this field has been directed towards all epitaxial GaAs-based structures by employing novel active materials. Different active region candidates for GaAs-based 1.3-μm VCSELs such as GaInNAs/GaAs QWs, GaAsSb QWs or InAs/InGaAs QDs have been investigated. However, the difficult growth and materials properties of these systems have so far hampered any real deployment of the technology. More recently, a new variety of VCSELs have been developed at KTH as based on highly strained InGaAs QWs and negative gain cavity detuning to reach the 1.3-μm wavelength window. The great benefit of this approach is that it is fully compatible with standard materials and processing methods.</p><p>The aim of this thesis is to investigate long-wavelength (1.3-μm) VCSELs using ~1.2-μm In0.4GaAs/GaAs Multiple Quantum Wells (MQWs). A series of QW structures, DBR structures and laser structures, including VCSELs and Broad Area lasers (BALs) were grown by metal-organic vapor phase epitaxy (MOVPE) and characterized by various techniques: Photoluminescence (PL), high-resolution x-ray diffraction (XRD), atomic force microscopy (AFM), high accuracy reflectance measurements as well as static and dynamic device characterization. The work can be divided into three parts. The first part is dedicated to the optimization and characterization of InGaAs/GaAs QWs growth for long wavelength and strong luminescence. A strong sensitivity to the detailed growth conditions, such as V/III ratio and substrate misorientation is noted. Dislocations in highly strained InGaAs QW structure and Sb as surfactant assisted in InGaAs QW growth are also discussed here. The second part is related to the AlGaAs/GaAs DBR structures. It is shown that the InGaAs VCSELs with doped bottom DBRs have significantly lower slope efficiency, output power and higher threshold current. By a direct study of buried AlGaAs/GaAs interfaces, this is suggested to be due to doping-enhanced Al-Ga hetero-interdiffusion. In the third part, singlemode, high-performance 1.3-μm VCSELs based on highly strained InGaAs QWs are demonstrated. Temperature stable singlemode performance, including mW-range output power and 10 Gbps data transmission, is obtained by an inverted surface relief technique.</p>

Page generated in 0.0173 seconds