• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 12
  • 7
  • 6
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 93
  • 47
  • 19
  • 17
  • 15
  • 13
  • 11
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Long-Wavelength Vertical-Cavity Lasers : Materials and Device Analysis

Mogg, Sebastian January 2003 (has links)
Vertical-cavity lasers (VCLs) are of great interest as lightsources for fiber-optic communication systems. Such deviceshave a number of advantages over traditional in-plane laserdiodes, including low power consumption, efficient fibercoupling, on-chip testability, as well as potential low-costfabrication and packaging. To date, GaAs-based VCLs operatingat 850 nm are the technology of choice for short-distance,high-speed data transmission over multimode fiber. Forlong-distance communication networks, long-wavelength (LW) VCLsoperating in the 1.3 and 1.55-&#956m transmission windowsof standard singlemode fibers are desired. However, despiteconsiderable worldwide development efforts, the commercialbreakthrough of such devices has still to be achieved. This ismainly due to shortcomings of the intrinsic material propertiesof InP-based material systems, traditionally employed in LWlaser diodes. While LW quantum well (QW) active regions basedon InP are well established, efficient distributed Braggreflectors (DBRs) are better built up in the AlGaAs/GaAsmaterial system. Therefore, earlier work on LW VCLs has focusedon hybrid techniques such as bonding between InP-based QWs andAlGaAs/GaAs DBRs using waferfusion. More recently, however, themain interest in this field has shifted towards all-epitaxialGaAs-based devices employing novel 1.3-&#956m activematerials with strained GaInNAs QWs as one of the mostpromising candidates. The main focus of this thesis is on the characterization andanalysis of LW VCLs and building blocks thereof, based on bothInP and GaAs substrates. This includes a theoretical study on1.3-&#956m InGaAsP/InP multiple QW active regions, as wellas an experimental investigation of novel, highly strained1.2-&#956m InGaAs/GaAs single QWs. Two high-accuracyabsolute reflectance measurement setups were built for thecharacterization of various DBRs. Reflectance measurementsrevealed that n-type doping is much more detrimental to theperformance of AlGaAs/GaAs DBRs than previously anticipated.Near-room temperature operation of a single-fused1.55-&#956m VCL with an InP/InGaAsP bottom DBR wasobtained. A thermal analysis of this device structure clearlyindicated its limited capabilities in terms of high-temperatureoperation. As a result, further efforts were directed towardsall-epitaxial GaAs-based VCLs. Record-long emission wavelengthsto above 1260 nm were obtained from InGaAs VCLs based on anextensive gain–cavity detuning. These devices showed verypromising performance characteristics in terms of thresholdcurrent and light output power, indicating good potential forbeing a viable alternative to GaInNAs-based VCLs.
72

Coherence and Coupling of Cavity Photons and Tamm Plasmons in Metal-Organic Microcavities / Kohärenz und Kopplung von Resonatorphotonen und Tamm Plasmonen in Metall-Organik Mikroresonatoren

Brückner, Robert 04 July 2013 (has links) (PDF)
The subject of this thesis is the investigation of organic microcavities with implemented unstructured and laterally structured metal layers. The optical properties are studied by means of various spectroscopic techniques and are compared to conventional metal-free devices. It is shown that the large expected absorption caused by the embedded metal is reduced compared to the case of a free-standing metal layer of the same thickness. As a consequence of the interaction of the photonic cavity mode with the metallic structures, two new coupled modes emerge which are called Tamm plasmons. The strength of this coupling and the resulting spectral difference of these modes are defined by the thickness of both the metal layer and the adjacent dielectric layers. These control parameters enable the optimization of the structural design. Accordingly, coherent emission from Tamm plasmons is realized at room temperature. An analytical approach is developed accounting for the experimentally observed polarization splitting of detuned resonances. Next, laterally structured metal layers embedded into organic microcavities are considered. The structuring leads to a confinement of the photonic density of states evident from a clear discretization in energy of the corresponding modes. Applying a photolithographic technique to structure the metal layer into a pattern of regularly placed stripes leads to additional effects due to the resulting periodicity. By exciting this hybrid structure above a certain threshold, periodic arrays of localized cavity modes and metal-based Tamm plasmons are generated. These Bloch-like excited states are capable of phase coupling across the grating. Additionally, surface plasmon polaritons (SPPs) are excited propagating at the interface of the silver and the adjacent dielectric layers. Thanks to the periodicity of the metallic stripes, SPPs are subject to efficient Bragg scattering into the light cone in air. Modes up to order number 30 are detectable as quasi-linear periodic lines in the dispersion pattern. A Fourier analysis reveals an in- or out-of-phase coupling of the modes and a spread of the coherence over macroscopic distances of more than 40 µm. This strategy of embedding metal patterns into an organic microcavity yields a viable route towards electrically contacted organic solid-state lasers. / In dieser Arbeit werden erstmals dünne, unstrukturierte sowie lateral strukturierte metallische Schichten in organische Mikroresonatoren eingebettet und anschließend die optischen Eigenschaften mittels spektroskopischer Verfahren untersucht. Es zeigt sich, dass die erwarteten hohen optischen Verluste durch die Absorption des elektrischen Feldes im Metall deutlich reduziert sind, verglichen mit dem Fall einer freistehenden, nicht eingebetteten Metallschicht gleicher Dicke. Als Folge der Wechselwirkung der photonischen Kavitätsmode mit dem Metall spaltet diese in zwei miteinander gekoppelte Moden auf. Diese neuartigen Moden werden als Tamm-Plasmonen bezeichnet. Die Kopplung sowie die spektrale Differenz beider Moden ist zum einen durch die optischen Eigenschaften und die Dicke der eingebetteten Metallschicht definiert, zum anderen durch die optische Dicke der angrenzenden dielektrischen Schichten. Dadurch ist eine Optimierung des Systems im Hinblick auf Absorption und Emissionswellenlänge der Bauteile möglich, so dass selbst bei Raumtemperatur kohärente Emission eines Tamm-Zustands erzielt werden kann. Eine erarbeitete analytische Rechnung bestätigt und erklärt die experimentell gemessene, polarisationsabhängige Aufspaltung der auftretenden resonanten Moden. Im zweiten Teil der Arbeit sind organische Mikroresonatoren, deren eingebettete Metallschicht in lateraler Richtung auf verschiedene Weisen strukturiert sind, Gegenstand der Untersuchungen. Als Folge dieser Strukturierung kommt es zur lateralen Beschränkung der photonischen Zustandsdichte, was durch eine Diskretisierung der Energiespektren der resultierenden optischen Moden experimentell nachweisbar ist. Werden periodische Metallstreifen mittels Photolithographie erzeugt, so kommt es neben einer weiteren Beeinflussung der Zustandsdichte auch zu Effekten, die durch diese Periodizität bedingt sind. Entsprechend reproduziert sich die Kavitätsmode mehrfach im Impulsraum. Oberflächenplasmonen, die auf der Grenzfläche zwischen dem Metall und den dielektrischen Schichten propagieren, werden auf Grund der Periodizität bis in den experimentell zugänglichen Lichtkegel gestreut. Dabei werden Plasmonenresonanzen bis hin zur 30. Ordnung gemessen. Im letzten Experiment werden derart periodisch strukturierte Metall-Organik-Mikroresonatoren auf ihre Lasertätigkeit hin untersucht. Eine lokal begrenzte optische Anregung mittels eines gepulsten Lasers führt zur Ausbildung verschiedener Bloch-ähnlicher Moden, deren Kohärenz sich lateral bis zu 40 µm ausbreitet. Eine Fourieranalyse zeigt eindeutige und feste Phasenbeziehungen zwischen angrenzenden Maxima der Moden. Zusammenfassend ergeben sich interessante metall-organische Systeme, die minimale Absorption und niedrige Laserschwellen aufweisen und die prinzipielle Eignung zur elektrischen Kontaktierung besitzen.
73

Carrier ethernet network solutions: transport protocol and optical backplane design

Estevez, Claudio Ignacio 15 January 2010 (has links)
The Metro Ethernet network (MEN) expands the advantages of Ethernet to cover areas wider than LAN. MENs running Ethernet Services as specified by the Metro Ethernet Forum (MEF) are known as Carrier Ethernet Networks (CENs). CENs can cover not only metro areas, but it can expand to cover global areas by connecting multiple MENs. Next-generation CENs are expected to support 100 GbE. With arising technologies for Ultra Long-haul (ULH) networks the bandwidth bottleneck of CENs is shifting to other areas like the transport layer protocol (such as the Transport Control Protocol or TCP) and the chip-to-chip channel capacity found at the network edge, which in general has an electrical backplane. Traditional TCP is well known to have difficulties reaching the full available bandwidth, due to its inefficient AIMD mechanisms under a high-delay-bandwidth-product environment. At the network edge, network equipment with electrical backplanes poses many problems including inductive-capacitive effects that limit its bandwidth. These are the two main issues addressed in this work. To resolve the transport layer issue, this work proposes a transport protocol that fully utilizes the available bandwidth while preserving TCP-friendliness and providing QoS support that is compatible with Ethernet Services. It can guarantee throughputs above the Committed Information Rate (CIR), which is specified in the Service Level Agreement (SLA). To resolve the physical layer limitations, a novel optical coupling technique is examined to encourage the use of optical backplanes for network-edge and core technology. The proposed technique consists of aligning the normal of the laser emission plane, waveguide plane and the normal of the photodetector active region plane with the purpose of reducing optical power loss caused by common methods of light manipulation. By addressing the shortcomings of both Traditional TCP and electrical backplane technology the overall throughput can be significantly increased.
74

Long-Wavelength Vertical-Cavity Lasers : Materials and Device Analysis

Mogg, Sebastian January 2003 (has links)
<p>Vertical-cavity lasers (VCLs) are of great interest as lightsources for fiber-optic communication systems. Such deviceshave a number of advantages over traditional in-plane laserdiodes, including low power consumption, efficient fibercoupling, on-chip testability, as well as potential low-costfabrication and packaging. To date, GaAs-based VCLs operatingat 850 nm are the technology of choice for short-distance,high-speed data transmission over multimode fiber. Forlong-distance communication networks, long-wavelength (LW) VCLsoperating in the 1.3 and 1.55-&#956m transmission windowsof standard singlemode fibers are desired. However, despiteconsiderable worldwide development efforts, the commercialbreakthrough of such devices has still to be achieved. This ismainly due to shortcomings of the intrinsic material propertiesof InP-based material systems, traditionally employed in LWlaser diodes. While LW quantum well (QW) active regions basedon InP are well established, efficient distributed Braggreflectors (DBRs) are better built up in the AlGaAs/GaAsmaterial system. Therefore, earlier work on LW VCLs has focusedon hybrid techniques such as bonding between InP-based QWs andAlGaAs/GaAs DBRs using waferfusion. More recently, however, themain interest in this field has shifted towards all-epitaxialGaAs-based devices employing novel 1.3-&#956m activematerials with strained GaInNAs QWs as one of the mostpromising candidates.</p><p>The main focus of this thesis is on the characterization andanalysis of LW VCLs and building blocks thereof, based on bothInP and GaAs substrates. This includes a theoretical study on1.3-&#956m InGaAsP/InP multiple QW active regions, as wellas an experimental investigation of novel, highly strained1.2-&#956m InGaAs/GaAs single QWs. Two high-accuracyabsolute reflectance measurement setups were built for thecharacterization of various DBRs. Reflectance measurementsrevealed that n-type doping is much more detrimental to theperformance of AlGaAs/GaAs DBRs than previously anticipated.Near-room temperature operation of a single-fused1.55-&#956m VCL with an InP/InGaAsP bottom DBR wasobtained. A thermal analysis of this device structure clearlyindicated its limited capabilities in terms of high-temperatureoperation. As a result, further efforts were directed towardsall-epitaxial GaAs-based VCLs. Record-long emission wavelengthsto above 1260 nm were obtained from InGaAs VCLs based on anextensive gain–cavity detuning. These devices showed verypromising performance characteristics in terms of thresholdcurrent and light output power, indicating good potential forbeing a viable alternative to GaInNAs-based VCLs.</p>
75

Simulation of three dimensional current spreading in photonic crystal VCSEL structures

Kulkarni, Aditya 19 December 2008 (has links)
An efficient simulation technique for calculating the current distribution in a Vertical Cavity Surface Emitting Laser (VCSEL) is proposed and implemented. The technique consists of a hybrid 1D/3D approach to the problem. The 3D aspect of simulation is essential for devices like a photonic crystal VCSEL where the existing 2D simulation techniques are inadequate. The modular approach of the technique is advantageous, as it provides exibility in dealing with device simulations of varying complexity. It also provides a relatively short simulation time, beneficial for exploring a large design parameter space. The box integration technique is used for discretizing the equations and sparse matrix methods are used in solving the matrices. Simulation results and comparisons are provided for various aspects and modules of the simulator. The results for a few sample simulations indicate that the analysis has reasonable agreement with experimental results. The simulation error can be reduced using more accurate models for the active region of the laser.
76

Budič polovodičového laseru pro 1Gbit/s / Semiconductor laser driver for 1Gbit/s

Chlachula, Filip January 2008 (has links)
This master´s thesis deals with a solution of the driving circuits of semiconductor laser. In the beginning of the thesis there is an analysis of semiconductor lasers and its characteristics. Then the principle of laser diodes and its excitation is described. This thesis is focused on semiconductor laser excitation through the use of direct and modulating current. Several circuits are described, designed and simulated. The best resulting circuit is realized and measured in the laboratory.
77

巻き込み型インダクタを用いたCMOSレーザーダイオードドライバ回路の研究

久保木, 猛 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第19139号 / 情博第585号 / 新制||情||102(附属図書館) / 32090 / 京都大学大学院情報学研究科通信情報システム専攻 / (主査)教授 小野寺 秀俊, 教授 佐藤 亨, 教授 佐藤 高史 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
78

Injection-Locked Vertical Cavity Surface Emitting Lasers (VCSELs) for Optical Arbitrary Waveform Generation

Bhooplapur, Sharad 01 January 2014 (has links)
Complex optical pulse shapes are typically generated from ultrashort laser pulses by manipulating the optical spectrum of the input pulses. This generates complex but periodic time-domain waveforms. Optical Arbitrary Waveform Generation (OAWG) builds on the techniques of ultrashort pulse-shaping, with the goal of making non-periodic, truly arbitrary optical waveforms. Some applications of OAWG are coherently controlling chemical reactions on a femtosecond time scale, improving the performance of LADAR systems, high-capacity optical telecommunications and ultra wideband signals processing. In this work, an array of Vertical Cavity Surface Emitting Lasers (VCSELs) are used as modulators, by injection-locking each VCSEL to an individual combline from an optical frequency comb source. Injection-locking ensures that the VCSELs' emission is phase coherent with the input combline, and modulating its current modulates mainly the output optical phase. The multi-GHz modulation bandwidth of VCSELs updates the output optical pulse shape on a pulse-to-pulse time scale, which is an important step towards true OAWG. In comparison, it is about a million times faster than the liquid-crystal modulator arrays typically used for pulse shaping! Novel components and subsystems of Optical Arbitrary Waveform Generation (OAWG) are developed and demonstrated in this work. They include: 1. Modulators An array of VCSELs is packaged and characterized for use as a modulator for rapid?update pulse?shaping at GHz rates. The amplitude and phase modulation characteristics of an injection-locked VCSEL are simultaneously measured at GHz modulation rates. 2. Optical Frequency Comb Sources An actively mode-locked semiconductor laser was assembled, with a 12.5 GHz repetition rate, ~ 200 individually resolvable comblines directly out of the laser, and high frequency stability. In addition, optical frequency comb sources are generated by modulation of a single frequency laser. 3. High-resolution optical spectral demultiplexers The demultiplexers are implemented using bulk optics, and are used to spatially resolve individual optical comblines onto the modulator array. 4. Optical waveform measurement techniques Several techniques are used to measure generated waveforms, especially for spectral phase measurements, including multi-heterodyne phase retrieval. In addition, an architecture for discriminating between ultrashort encoded optical pulses with record high sensitivity is demonstrated.
79

Caractérisation et modélisation du bruit d'intensité de VCSELs (AlGaAs) et de son influence sur le bruit de phase des liaisons opto-hyperfréquences

Perchoux, Julien 25 November 2005 (has links) (PDF)
Les qualités des VCSELs (coût, encombrement, intégration, etc...) en font un émetteur incontournable des liaisons datacom, aussi bien que des liaisons analogiques pour applications embarquées. Nous avons établi un système d'équations propres aux VCSELs AlGaAs à émission monomode, incluant les phénomènes de bruit d'intensité. Ce modèle est étendu aux VCSELs à émission multimode pour lesquels l'interaction entre les modes par un phénomène de "spectral hole-burning" est responsable d'une élévation du niveau de RIN (Relative Intensity Noise) aux basses fréquences. Partant des équations d'évolution linéarisées monomodes et bi-modes, nous avons parallèlement développé un schéma électrique équivalent incluant des sources équivalentes de bruit en tension et en courant. La réalisation d'un banc de mesure de bruit de faible puissance pour VCSELs sous pointes et VCSELs fibrés en boîtiers nous ont permis de caractériser le comportement en bruit de ces diodes laser et de valider les résultats de simulation du modèle pour différentes structures de VCSELs à diaphragme d'oxyde sur une très large bande de fréquences jusqu'à 10 GHz. Finalement, prenant en compte les phénomènes non-linéaires des interactions photons-électrons dans la zone active, nous avons modélisé le report du bruit d'intensité basse fréquence du laser vers le signal hyperfréquence modulant directement le VCSEL. La caractérisation du bruit de 10 Hz à 1 MHz de la fréquence du signal de référence transmis par une liaison optoélectronique ayant un VCSEL pour émetteur a validé notre modèle de dégradation de la pureté spectrale.
80

Modeling, Optimization and Power Efficiency Comparison of High-speed Inter-chip Electrical and Optical Interconnect Architectures in Nanometer CMOS Technologies

Palaniappan, Arun 2010 December 1900 (has links)
Inter-chip input-output (I/O) communication bandwidth demand, which rapidly scaled with integrated circuit scaling, has leveraged equalization techniques to operate reliably on band-limited channels at additional power and area complexity. High-bandwidth inter-chip optical interconnect architectures have the potential to address this increasing I/O bandwidth. Considering future tera-scale systems, power dissipation of the high-speed I/O link becomes a significant concern. This work presents a design flow for the power optimization and comparison of high-speed electrical and optical links at a given data rate and channel type in 90 nm and 45 nm CMOS technologies. The electrical I/O design framework combines statistical link analysis techniques, which are used to determine the link margins at a given bit-error rate (BER), with circuit power estimates based on normalized transistor parameters extracted with a constant current density methodology to predict the power-optimum equalization architecture, circuit style, and transmit swing at a given data rate and process node for three different channels. The transmitter output swing is scaled to operate the link at optimal power efficiency. Under consideration for optical links are a near-term architecture consisting of discrete vertical-cavity surface-emitting lasers (VCSEL) with p-i-n photodetectors (PD) and three long-term integrated photonic architectures that use waveguide metal-semiconductor-metal (MSM) photodetectors and either electro-absorption modulator (EAM), ring resonator modulator (RRM), or Mach-Zehnder modulator (MZM) sources. The normalized transistor parameters are applied to jointly optimize the transmitter and receiver circuitry to minimize total optical link power dissipation for a specified data rate and process technology at a given BER. Analysis results shows that low loss channel characteristics and minimal circuit complexity, together with scaling of transmitter output swing, allows electrical links to achieve excellent power efficiency at high data rates. While the high-loss channel is primarily limited by severe frequency dependent losses to 12 Gb/s, the critical timing path of the first tap of the decision feedback equalizer (DFE) limits the operation of low-loss channels above 20 Gb/s. Among the optical links, the VCSEL-based link is limited by its bandwidth and maximum power levels to a data rate of 24 Gb/s whereas EAM and RRM are both attractive integrated photonic technologies capable of scaling data rates past 30 Gb/s achieving excellent power efficiency in the 45 nm node and are primarily limited by coupling and device insertion losses. While MZM offers robust operation due to its wide optical bandwidth, significant improvements in power efficiency must be achieved to become applicable for high density applications.

Page generated in 0.1197 seconds