• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 12
  • 7
  • 6
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 93
  • 47
  • 19
  • 17
  • 15
  • 13
  • 11
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Fiber Fabry-Perot interferometer (FFPI) sensor using vertical cavity surface emitting laser (VCSEL)

Lee, Kyung-Woo 30 October 2006 (has links)
This research represents the first effort to apply vertical cavity surface emitting lasers (VCSELs) to the monitoring of interferometric fiber optic sensors. Modulation of the drive current causes thermal tuning of the laser light frequency. Reflection of this frequency-modulated light from a fiber Fabry-Perot interferometer (FFPI) sensor produces fringe patterns which can be used to measure the optical path difference of the sensor. Spectral characteristics were measured for 850nm VCSELs to determine the combination of dc bias current, modulation current amplitude and modulation frequency for which single mode VCSEL operation and regular fringe patterns are achieved. The response characteristics of FFPI sensors were determined experimentally for square, triangular, saw-tooth waveforms at frequencies from 10kHz to 100kHz. The dependence of VCSEL frequency on the dc bias current was determined from spectral measurements to be ~165GHz/mA. An independent measurement of this quantity based on counting fringes from the FFPI sensor as the laser modulated was in good agreement with this value. The effect of optical feedback into the laser was also studied. By observing the fringe shift as the FFPI sensor was heated, a fractional change in optical length with temperature of 6.95 X 10-6/°C was determined in good agreement with previous measurements on a 1300nm single mode fiber. The performance of 850nm VCSEL/FFPI systems was compared with their counterparts using 1300nm distributed feedback (DFB) lasers. The results of these experiments show that the 850nm VCSEL/FFPI combination gives regular fringe patterns at much lower bias current and modulating current amplitudes than their 1300nm DFB/FFPI counterparts.
52

Modulation Properties of Vertical Cavity Light Emitters

Stevens, Renaud January 2001 (has links)
It is estimated that, between the year 2000 and 2003, thenumber of online Internet users will grow from 250 millions to500 millions. This growth results in rapidly increasing demandfor fibre-optic communication bandwidth, occurring at alllevels: from access and local area networks (LANs) tometro-area networks (MANs). A now established solution for manyapplications such as interconnects and Gigabit Ethernet is thevertical cavity surface emitting laser (VCSEL). The advantagesof VCSELs are numerous: low fabrication and coupling costs,large modulation bandwidth, array integration and tunability.VCSEL-based modules, with speed up to 2.5 Gbit/s are nowcommercially available for multimode fibre (MMF) basedapplications. However, devices operating at long wavelength andhigher transmission rates (10Gbit/s and more) will be needed inthe near future. The purpose of the work presented in this thesis was toobtain an understanding of the high-speed properties of VCSELs,in order to extend the modulation frequency at which they canbe used in fibre optical communication systems. An approach forsystematic high-speed characterisation of VCSELs is presentedand both its potential benefits and problems are discussed. Itis shown that the VCSEL dynamics, under certain conditions, canbe well described by a small number of parameters that can beextracted from small signal measurements and used forfurtheroptimisation. The calibrated small-signal modulation responsesof VCSELs have been measured and fitted to an analyticaltransfer function allowing the estimation of the resonancefrequency, damping factor and parasitic cut-off at differentbias points. This data can be used to determine the relativeimportance of different bandwidth limiting effects due todamping, thermal heating and parasitics. Small signal analysis and transmission experiments wereperformed with a large sample of VCSELs covering the variousranges of applications. Visible VCSELs and resonant cavitylight emitting diodes (RCLEDs) for very short reach plasticoptical fibre (POF) applications, 850nm datacom VCSELs forshort distance multimode fibre networks, and long wavelengthVCSELs for long haul single mode fibre transmission. <b>Keywords:</b>Semiconductor lasers, VCSEL, high-speedmodulation, fibre optic networks, datacom, RCLED, plasticoptical fibre
53

Processing technologies for long-wavelength vertical-cavity lasers

Salomonsson, Fredrik January 2001 (has links)
Vertical-cavity surface-emitting lasers (VCSELs) areattractive as potential inexpensive high-performance emittersfor fibre-optical communication systems. Their surface-normalemission together with the small dimensions are beneficial forlow-cost fabrication since it allows on-wafer testing,simplified packaging and effective fibre-coupling. Forhigh-speed data transmission up to hundreds of metres, 850-nmVCSELs are today the technology of choice. For higher bandwidthand longer distance networks, emission at long-wavelength(1.3-1.55 µm) is required. Long-wavelength VCSELs are,however, not available since no materials system offershigh-index-contrast distributed Bragg reflectors (DBRs) as wellas high-gain active regions at such wavelengths.High-performance DBRs may be built up from AlGaAs/GaAsmultilayers, but long wavelength quantum wells (QWs) are onlywell established in the InP system. Therefore, the bestperforming devices have relied on wafer-fusion betweenInP-based QWs and AlGaAs-DBRs. More recently, however, the mainefforts have been shifted towards all-epitaxial GaAs-baseddevices, employing 1.3-µm GaInNAs QWs. In this thesis, different processing technologies forlong-wavelength VCSELs are described. This includes a thoroughinvestigation of wafer-fusion between InP and GaAs regardingelectro-optical as well as metallurgical properties, and thedevelopment of a stable low-pressure process for the selectiveoxidation of AlAs. Optimised AlGaAs/GaAs DBRs were designed andfabricated. An important and striking observation from thatstudy is that n-type doping potentially is much moredetrimental to device performance than previously anticipated.These investigations were exploited in the realisation of twonew VCSEL designs. Near-room-temperature continuous-waveoperation of a single-fused 1.55-µm VCSEL was obtained.This demonstrated the potential of InGaAsP/InP DBRs inhigh-performance VCSELs, but also revealed a high sensitivityto self-heating. Further efforts were therefore directedtowards all-epitaxial GaAs-based structures. This resulted in ahigh-performance 1215-nm VCSEL with a highly strained InGaAssingle QW. This can be viewed as a basis for longer-wavelengthVCSELs, i.e., with an emission wavelength approaching 1300 nm,either by an extensive device detuning or with GaInNAs QWs. <b>Keywords</b>: VCSEL, vertical cavity laser, semiconductorlaser, long-wavelength, DBR, oxidation, wafer fusion, InGaAs,semiconductor processing
54

Application of Vertical-cavity Surface-emitting Lasers for Simultaneous Laser Speckle Contrast and Intrinsic Optical Signal Imaging: Toward Chronic Portable Cortical Hemodynamic Imaging

Ringuette, Dene 15 August 2012 (has links)
We demonstrated simultaneous intrinsic optical signal imaging (IOSI) and laser speckle contrast imaging (LSCI) using coherence modulation of vertical-cavity surface-emitting laser (VCSEL) diodes. The unique properties of VCSELs were exploited to deliver rapidly switched coherent and non-coherent illumination suitable for high resolution LSCI and IOSI, respectively. Utilizing three near-infrared VCSELs we were able to map changes in cortical blood oxygenation and flow during ischemia. Additionally, the subtle reflectance changes associated with cortical spreading depression were imaged using non-coherent VCSEL illumination. We are currently using two-photon laser-scanning microscopy to quantify the accuracy of LSCI and IOSI implementations. The small size and efficiency of VCSELs and modern photo diodes, makes the development of implantable dual-mode imaging devices feasible. Devices capable of chronic imaging of cortical hemodynamics could significantly enhance the range of studies available to neuroscientists and significantly aid clinicians postoperatively. The research presented in this thesis significantly furthers this objective.
55

Application of Vertical-cavity Surface-emitting Lasers for Simultaneous Laser Speckle Contrast and Intrinsic Optical Signal Imaging: Toward Chronic Portable Cortical Hemodynamic Imaging

Ringuette, Dene 15 August 2012 (has links)
We demonstrated simultaneous intrinsic optical signal imaging (IOSI) and laser speckle contrast imaging (LSCI) using coherence modulation of vertical-cavity surface-emitting laser (VCSEL) diodes. The unique properties of VCSELs were exploited to deliver rapidly switched coherent and non-coherent illumination suitable for high resolution LSCI and IOSI, respectively. Utilizing three near-infrared VCSELs we were able to map changes in cortical blood oxygenation and flow during ischemia. Additionally, the subtle reflectance changes associated with cortical spreading depression were imaged using non-coherent VCSEL illumination. We are currently using two-photon laser-scanning microscopy to quantify the accuracy of LSCI and IOSI implementations. The small size and efficiency of VCSELs and modern photo diodes, makes the development of implantable dual-mode imaging devices feasible. Devices capable of chronic imaging of cortical hemodynamics could significantly enhance the range of studies available to neuroscientists and significantly aid clinicians postoperatively. The research presented in this thesis significantly furthers this objective.
56

Fiber Fabry-Perot interferometer (FFPI) sensor using vertical cavity surface emitting laser (VCSEL)

Lee, Kyung-Woo 30 October 2006 (has links)
This research represents the first effort to apply vertical cavity surface emitting lasers (VCSELs) to the monitoring of interferometric fiber optic sensors. Modulation of the drive current causes thermal tuning of the laser light frequency. Reflection of this frequency-modulated light from a fiber Fabry-Perot interferometer (FFPI) sensor produces fringe patterns which can be used to measure the optical path difference of the sensor. Spectral characteristics were measured for 850nm VCSELs to determine the combination of dc bias current, modulation current amplitude and modulation frequency for which single mode VCSEL operation and regular fringe patterns are achieved. The response characteristics of FFPI sensors were determined experimentally for square, triangular, saw-tooth waveforms at frequencies from 10kHz to 100kHz. The dependence of VCSEL frequency on the dc bias current was determined from spectral measurements to be ~165GHz/mA. An independent measurement of this quantity based on counting fringes from the FFPI sensor as the laser modulated was in good agreement with this value. The effect of optical feedback into the laser was also studied. By observing the fringe shift as the FFPI sensor was heated, a fractional change in optical length with temperature of 6.95 X 10-6/°C was determined in good agreement with previous measurements on a 1300nm single mode fiber. The performance of 850nm VCSEL/FFPI systems was compared with their counterparts using 1300nm distributed feedback (DFB) lasers. The results of these experiments show that the 850nm VCSEL/FFPI combination gives regular fringe patterns at much lower bias current and modulating current amplitudes than their 1300nm DFB/FFPI counterparts.
57

Modulation Properties of Vertical Cavity Light Emitters

Stevens, Renaud January 2001 (has links)
<p>It is estimated that, between the year 2000 and 2003, thenumber of online Internet users will grow from 250 millions to500 millions. This growth results in rapidly increasing demandfor fibre-optic communication bandwidth, occurring at alllevels: from access and local area networks (LANs) tometro-area networks (MANs). A now established solution for manyapplications such as interconnects and Gigabit Ethernet is thevertical cavity surface emitting laser (VCSEL). The advantagesof VCSELs are numerous: low fabrication and coupling costs,large modulation bandwidth, array integration and tunability.VCSEL-based modules, with speed up to 2.5 Gbit/s are nowcommercially available for multimode fibre (MMF) basedapplications. However, devices operating at long wavelength andhigher transmission rates (10Gbit/s and more) will be needed inthe near future.</p><p>The purpose of the work presented in this thesis was toobtain an understanding of the high-speed properties of VCSELs,in order to extend the modulation frequency at which they canbe used in fibre optical communication systems. An approach forsystematic high-speed characterisation of VCSELs is presentedand both its potential benefits and problems are discussed. Itis shown that the VCSEL dynamics, under certain conditions, canbe well described by a small number of parameters that can beextracted from small signal measurements and used forfurtheroptimisation. The calibrated small-signal modulation responsesof VCSELs have been measured and fitted to an analyticaltransfer function allowing the estimation of the resonancefrequency, damping factor and parasitic cut-off at differentbias points. This data can be used to determine the relativeimportance of different bandwidth limiting effects due todamping, thermal heating and parasitics.</p><p>Small signal analysis and transmission experiments wereperformed with a large sample of VCSELs covering the variousranges of applications. Visible VCSELs and resonant cavitylight emitting diodes (RCLEDs) for very short reach plasticoptical fibre (POF) applications, 850nm datacom VCSELs forshort distance multimode fibre networks, and long wavelengthVCSELs for long haul single mode fibre transmission.</p><p><b>Keywords:</b>Semiconductor lasers, VCSEL, high-speedmodulation, fibre optic networks, datacom, RCLED, plasticoptical fibre</p>
58

Processing technologies for long-wavelength vertical-cavity lasers

Salomonsson, Fredrik January 2001 (has links)
<p>Vertical-cavity surface-emitting lasers (VCSELs) areattractive as potential inexpensive high-performance emittersfor fibre-optical communication systems. Their surface-normalemission together with the small dimensions are beneficial forlow-cost fabrication since it allows on-wafer testing,simplified packaging and effective fibre-coupling. Forhigh-speed data transmission up to hundreds of metres, 850-nmVCSELs are today the technology of choice. For higher bandwidthand longer distance networks, emission at long-wavelength(1.3-1.55 µm) is required. Long-wavelength VCSELs are,however, not available since no materials system offershigh-index-contrast distributed Bragg reflectors (DBRs) as wellas high-gain active regions at such wavelengths.High-performance DBRs may be built up from AlGaAs/GaAsmultilayers, but long wavelength quantum wells (QWs) are onlywell established in the InP system. Therefore, the bestperforming devices have relied on wafer-fusion betweenInP-based QWs and AlGaAs-DBRs. More recently, however, the mainefforts have been shifted towards all-epitaxial GaAs-baseddevices, employing 1.3-µm GaInNAs QWs.</p><p>In this thesis, different processing technologies forlong-wavelength VCSELs are described. This includes a thoroughinvestigation of wafer-fusion between InP and GaAs regardingelectro-optical as well as metallurgical properties, and thedevelopment of a stable low-pressure process for the selectiveoxidation of AlAs. Optimised AlGaAs/GaAs DBRs were designed andfabricated. An important and striking observation from thatstudy is that n-type doping potentially is much moredetrimental to device performance than previously anticipated.These investigations were exploited in the realisation of twonew VCSEL designs. Near-room-temperature continuous-waveoperation of a single-fused 1.55-µm VCSEL was obtained.This demonstrated the potential of InGaAsP/InP DBRs inhigh-performance VCSELs, but also revealed a high sensitivityto self-heating. Further efforts were therefore directedtowards all-epitaxial GaAs-based structures. This resulted in ahigh-performance 1215-nm VCSEL with a highly strained InGaAssingle QW. This can be viewed as a basis for longer-wavelengthVCSELs, i.e., with an emission wavelength approaching 1300 nm,either by an extensive device detuning or with GaInNAs QWs.</p><p><b>Keywords</b>: VCSEL, vertical cavity laser, semiconductorlaser, long-wavelength, DBR, oxidation, wafer fusion, InGaAs,semiconductor processing</p>
59

Optoelectronic packaging and reliability of intra- and inter-board level guided-wave optical interconnection

Choi, Jin Ho, 1968- 04 November 2013 (has links)
We have demonstrated a flexible optical waveguide film with integrated VCSEL and PIN photodiode arrays for the fully embedded board level optical interconnection system. One of the most critical issues in the fully embedded board level optical interconnection system is the signal beam coupling between the guided-wave structure and the aperture of VCSEL (or PIN photodiode). The coupling efficiencies of spherical mirrors are calculated as a function of mirror radius. The optimum mirror radius ranges which are compatible with the fully embedded board level optical interconnection system are theoretically verified. The thermal characteristics of a thin film VCSEL are studied both theoretically and experimentally. The thermal resistances of VCSEL with variable thickness, ranging from 10 [mu]m to 200 [mu]m, have been determined by measuring the output wavelength shift as a function of the dissipated power. The thermal simulation results agree reasonably well with experimentally measured data. From the thermal management point of view, a thinned VCSEL has an exclusive advantage due to the reduction of the thermal resistance. The thermal resistance of 10 [mu]m thick VCSEL is 40 % lower than that of 200 [mu]m thick VCSEL. The theoretical analysis of thermal via effects is performed to determine optimized thickness ranges of thin film VCSEL for the fully embedded structure. Thermal resistance of the fully embedded thin film VCSEL with closed and open thermal via structures are also evaluated with the suitable VCSEL thickness reported. The high-performance computing system is demonstrated using a 16-channel optical backplane using thin film volume holographic gratings. The optical backplane contains TO-46-Can-packaged VCSELs and photodiodes as an optical transmitter and receiver, respectively. Optical packaging plates are fabricated for 4 X 8 array packaging for 16-VCSELs and 16-Photodiodes. Packaging issues including crosstalk and alignment tolerance are studied to design a low cost optical packaging scheme. Thin film volume hologram grating is fabricated on glass substrate to redirect light beams. An individual single channel performs at a 100 MHz data transfer rate. The high-performance computing system using 16-channel optical backplane is demonstrated at a 1.6 Gbps data transmission. / text
60

Low-cost micromechanically tunable optical devices strained resonator engineering, technological implementation and characterization /

Tarraf, Amer. Unknown Date (has links)
University, Diss., 2005--Kassel.

Page generated in 0.0391 seconds