• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 47
  • 21
  • 19
  • 17
  • 12
  • 11
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Adaptive Control of Systems in Cascade with Saturation

Kannan, Suresh Kumar 28 November 2005 (has links)
This thesis extends the use of neural-network-based model reference adaptive control to systems that occur as cascades. In general, these systems are not feedback linearizable. The approach taken is that of approximate feedback linearization of upper subsystems whilst treating the lower-subsystem states as virtual actuators. Similarly, lower-subsystems are also feedback linearized. Typically, approximate inverses are used for linearization purposes. Model error arising from the use of an approximate inverse is minimized using a neural-network as an adaptive element. Incorrect adaptation due to (virtual) actuator saturation and dynamics is avoided using the Pseudocontrol Hedging method. Using linear approximate inverses and linear reference models generally result in large desired pseudocontrol for large external commands. Even if the provided external command is feasible (null-controllable), there is no guarantee that the reference model trajectory is feasible. In order to mitigate this, nonlinear reference models based on nested-saturation methods are used to constrain the evolution of the reference model and thus the plant states. The method presented in this thesis lends itself to the inner-outer loop control of air vehicles, where the inner-loop controls attitude dynamics and the outer-loop controls the translational dynamics of the vehicle. The outer-loop treats the closed loop attitude dynamics as an actuator. Adaptation to uncertainty in the attitude, as well as the translational dynamics, is introduced, thus minimizing the effects of model error in all six degrees of freedom and leading to more accurate position tracking. A pole-placement approach is used to choose compensator gains for the tracking error dynamics. This alleviates timescale separation requirements, allowing the outer loop bandwidth to be closer to that of the inner loop, thus increasing position tracking performance. A poor model of the attitude dynamics and a basic kinematics model is shown to be sufficient for accurate position tracking. In particular, the inner-outer loop method was used to control an unmanned helicopter and has subsequently been applied to a ducted-fan, a fixed-wing aircraft that transitions in and out of hover, and a full-scale rotorcraft. Experimental flight test results are also provided for a subset of these vehicles.
22

VTOL UAV - A Concept Study

Moëll, Daniel, Nordin, Joachim January 2008 (has links)
<p>This thesis deals with the development of a Conceptual Design Tool for unmanned helicopters, so called VTOL UAVs. The goal of the Design Tool is:</p><p>• Quick results</p><p>• Good accuracy</p><p>• Easy to use</p><p>The two first points of the goal are actually more or less dependent on each other. In almost all cases a high accuracy gives a slow calculator and vice versa. In order to fulfill the goal a compromise between calculation accuracy and calculation time needs to be done.</p><p>To make the Design Tool an easy to use program a graphical user interface is used. The graphical user interface allows the user to systematically work his way thru the program from a fictive mission to a complete design of a helicopter. The pre-requirements on the user have been eliminated to a minimum, but for the advanced user the possibilities to create more specific and complex helicopters are good.</p><p>In order to develop a Conceptual Design Tool the entire helicopter needs to be seen as a complete system. To see the helicopter as a system all of the sub parts of a helicopter need to be studied. The sub parts will be compared against each other and some will be higher prioritized than other.</p><p>The outline of this thesis is that it is possible to make a user friendly Conceptual Design Tool for VTOL UAVs. The design procedure in the Design Tool is relatively simple and the time from start to a complete concept is relatively short. It will also be shown that the calculation results have a good agreement with real world flight test data.</p>
23

A Modular Onboard Processing System for Small Unmanned Vehicles

Garcia, Richard D 01 February 2006 (has links)
This work describes the design and implementation of a generic lightweight onboard processing system for miniature Unmanned Vehicles (UVs) that is computationally powerful and highly adaptable. First, several classical approaches to giant scale and full size UV onboard processing systems are described along with their corresponding limitations. Second, a detailed study is presented that describes the key characteristics of an onboard system along with associated limitations. Next, an implementation of a generic onboard system capable of vision processing and servo based control is presented along with detailed hardware specifications and implementation software. Last, experimental data, both laboratory and field, are presented to show validation of the onboard processing system design, functionality, and key characteristics presented. Two primary contributions are made in this work. i) Identification of key characteristics of an onboard system allows for a high level validation of the hardware of an onboard system along with a design template for a reconfigurable, platform independent, processing system for UVs. ii) Detailed design and implementation of an adaptable onboard processing system that is both computationally powerful and easily adapted. This system is validated by showing satisfiability of the design characteristics necessary for an adaptable onboard system along with fully operational field test and their corresponding results.
24

Modeling, Estimation and Attitude Control of an Octorotor Using PID and L1 Adaptive Control Techniques / Modellering, estimering och attitydreglering av en oktakopter med användning av PID- och L1-adaptiv teknik

Bergman, Kristoffer, Ekström, Jonatan January 2014 (has links)
A multirotor is a type of aerial vehicle that has attracted a lot of attention in recent years. Multirotors have found applications in a variety of different fields and they are used by scientists and researchers, commercial UAV companies and radio control enthusiasts alike. In this thesis a multirotor with eight rotors, also called an octorotor, is used. A physical model of the octorotor has been developed using theory from rigid body mechanics and aerodynamics. The unknown parameters in this model have been found using several identification experiments. The model has been used for controller design and comparison in a simulation environment. An attitude estimation algorithm has been designed and implemented on the target hardware. The algorithm is referred to as a nonlinear complementary filter and it uses a quaternion rotation representation and onboard measurements to compute an estimate of the current aircraft attitude. Two different attitude controllers have been designed and evaluated. The first controller is based on PID techniques which are commonly used in multirotor flight stabilization systems. The second controller uses a novel control structure based on L1 adaptive control techniques. A baseline attitude PD controller is augmented with an L1 adaptive controller in the rate feedback loop. The two controller structures are compared using a simulation environment based on the developed model of the octorotor. The results show that the proposed structure gives a notable performance increase with respect to robustness against modeling errors and input disturbance rejection compared to the PID controller. However, the L1 adaptive controller is more complex to implement and gives less noise attenuation. The PID controller has been implemented on the platform's hardware and initial flight tests have been performed with promising results. / En multirotor är en typ av flygande farkost som har fått mycket uppmärksamhet under senare år. Multirotorer tillämpas inom flertalet områden och de används av bland annat forskare och vetenskapsmän, kommersiella UAV- företag samt hobbyentusiaster. I detta examensarbete används en multirotor med åtta rotorer, en så kallad oktakopter. En fysikalisk modell av oktakoptern har tagits fram med hjälp av teori från stelkroppsmekanik och aerodynamik. De okända parametrarna i modellen har skattats med hjälp av ett flertal identifieringsexperiment. Modellen har använts för att designa och jämföra regulatorer i en simuleringsmiljö. En algoritm för att skatta farkostens attityd har designats och implementerats på oktakopterns hårdvara. Algoritmen är en variant av ett olinjärt komplementärt filter och använder en kvaternionrepresentation av attitydvinklar och uppmätt sensordata för att skatta farkostens nuvarande attityd. Två olika attitydregulatorer har designats och utvärderats. Den första regulatorn är baserad på PID-teknik vilket är vanligt för stabilisering av multirotorsystem. Den andra regulatorn använder en ny regulatorstruktur baserad på L1-adaptiv teknik. En grundregulator av PD-typ utökas med en L1-adaptiv regulator i vinkelhastighetsloopen. De två regulatorstrukturerna jämförs i en simuleringsmiljö baserad på den framtagna modellen av oktakoptern. Resultaten visar att den föreslagna regulatorstrukturen ger en betydande prestandaökning gällande robusthet mot modellfel och undertryckning av ingångsstörningar jämfört med PID-regulatorn. Dock är L1-regulatorn mer komplex att implementera och den ger mindre brusundertryckning. PID-regulatorn har implementerats på plattformens hårdvara och inledande flygtester har genomförts med lovande resultat.
25

Grey-Box Modelling of a Quadrotor Using Closed-Loop Data

Bäck, Marcus January 2015 (has links)
In this thesis a quadrotor is studied and a linear model is derived using grey-box estimation, a discipline in system identification where a model structure based on physical relations is used and the parameters are estimated using input-output measurements. From IMU measurements and measured PWM signals to the four motors, a direct approach using the prediction-error method is applied. To investigate the impact of the unknown controller the two-stage method, a closed-loop approach in system identification,  is applied as well. The direct approach was enough for estimating the model parameters. The resulting model manages to simulate the major dynamics for the vertical acceleration and the angular rates well enough  for future control design.
26

Methodology and vibrational analysis for measurements on a VTOL RAPS

Krantz, Dino January 2017 (has links)
In this thesis a methodology for measuring vibrations has been produced andinvestigated for APID 60, a rotorcraft in a Vertical Take-off and landing remotelypiloted aircraft system (VTOL RPAS). A comparative study was carried out forthe purpose of identifying the methodology with respect to design modificationscommon to the APID 60. The pilot-study identified experimental modal analysis(EMA) as a feasible part of the methodology for experimentally extracting themodal parameters of a structure. The EMA was performed on the main frameof the APID 60 where an impact hammer test was chosen as the technique forextracting the response data. As a comparison a point mass was added to thestructure to alter the dynamic properties and the test was repeated.The results from the EMA was compared with a modal analysis performednumerically with a calculation software. Comparison of the results from EMAwith the modal analysis performed numerically indicates consistency. This confirmsa good reliability of the methodology produced. However, the structure onwhich the test were preformed is simple in terms of constant structural properties.Further work should therefore investigate whether this methodology of measuringvibrations could be successfully applied to a structure with higher complexity.
27

Volvo Abisko

Vahtola, Antti January 2020 (has links)
Volvo Abisko is proposing the possibility to experience the Arctic wilderness and the surrounding nature in a responsible way. The author has been hiking in the north, every time asking - what if everybody could experience this? Would it be possible to get into the wild with minimal impact on the environment? What if you wouldn’t need the expertise, the knowledge, or even the equipment to get into the pristine nature and to interact with the untouched Arctic? Volvo Abisko is representing the dream of offering this experience for a broader audience. Abisko - Ábeskovvu in the Same language - is one of the oldest national parks in Northern Sweden, which has been home to the Sami who followed herds of wilds between the forest land and the mountains. Ábeskovvu - “the forest by the great water”, where “the great water” refers to Scandinavia’s largest mountain lake Torneträsk. There were several moral questions during the process - is it the right choice to encourage people to visit these pristine areas? If the goal is to reduce the impact on nature, is it the right choice to create a physical service in such a fragile region? During the research and process, the decision was to design something that people can physically visit. Even if the digital appliances open a lot of opportunities, such as virtual traveling by virtual reality, the author believes that the experience is ideal when the user can engage all the senses to feel the surrounding nature. The idea of proposing sustainable development through design, instead of restricting access from people to certain regions, was quiding the project during the way. The creative process followed the boundaries set by the research, and the seamless functionality of the whole service was the priority. Analog sketching was the primary tool to discover shapes, and exploring the form in 3D helped to understand the space and to make multiple objects to work as one. The design focus of this project is transportation as a service, which is applied to the growing Arctic tourism sector. The concept includes an electric vertical takeoff vehicle (eVTOL) and a cabin, which is designed to be used with the vehicle. The vehicle enables a safe and exciting journey into the wild, letting the users observe the environment from the bird’s perspective. Eventually, the vehicle can land on the cabin, which is designed to give shelter for the users to spend time in the wild - being a base for a hiking adventure or just an attractive place to spend a night in solitude.
28

Návrh bezpilotního rotorového prostředku / Design of UAV Rotorcraft

Vacek, Maxim January 2008 (has links)
The Diploma thesis is concerned with aerodynamic designi of the ducted fan. The aim of this thesis is to compile the metod of the calculation for the effect of ducted fan. The thesis includes the statistical analysis of compare Rotorcraft, which is used to support the proposal of the basic design parameters. The next part of the thesis contains practical utilization, view of the possible pay load, view of the suitable engines and conrol units. The main part is concerned whit aerodynamic calculation of the stream and fan parameters. In the last part of the thesis, basic parameters of flight performances are calculated.
29

A Numerical Vortex Approach To Aerodynamic Modeling of SUAV/VTOL Aircraft

Hunsaker, Douglas F. 02 January 2007 (has links) (PDF)
A combined wing and propeller model is presented as a low-cost approach to preliminary modeling of slipstream effects on a finite wing. The wing aerodynamic model employs a numerical lifting-line method utilizing the 3D vortex lifting law along with known 2D airfoil data to predict the lift distribution across a wing for a prescribed upstream flowfield. The propeller/slipstream model uses blade element theory combined with momentum conservation equations. This model is expected to be of significant importance in the design of tail-sitter vertical take-off and landing (VTOL) aircraft, where the propeller slipstream is the primary source of air flow past the wings in some flight conditions. The algorithm is presented, and results compared with published experimental data.
30

Transitions Between Hover and Level Flight for a Tailsitter UAV

Osborne, Stephen R. 23 July 2007 (has links) (PDF)
Vertical Take-Off and Land (VTOL) Unmanned Air Vehicles (UAVs) possess several desirable characteristics, such as being able to hover and take-off or land in confined areas. One type of VTOL airframe, the tailsitter, has all of these advantages, as well as being able to fly in the more energy-efficient level flight mode. The tailsitter can track trajectories that successfully transition between hover and level flight modes. Three methods for performing transitions are described: a simple controller, a feedback linearization controller, and an adaptive controller. An autopilot navigational state machine with appropriate transitioning between level and hover waypoints is also presented. The simple controller is useful for performing a immediate transition. It is very quick to react and maintains altitude during the maneuver, but tracking is not performed in the lateral direction. The feedback linearization controller and adaptive controller both perform equally well at tracking transition trajectories in lateral and longitudinal directions, but the adaptive controller requires knowledge of far fewer parameters.

Page generated in 0.0157 seconds