Spelling suggestions: "subject:"nader"" "subject:"bader""
11 |
Using Sentiment Analysis of Twitter Discourse to Understand Sentiment Towards Salmon Aquaculture Among Stakeholders Over TimeGlutting, Lisa 22 June 2022 (has links)
The intersection of the environment, the economy and society create a wicked problem in salmon aquaculture in Canada. To provide a unique insight into the challenges of the salmon aquaculture industry amongst key stakeholders, this thesis investigates the sentiment of several important stakeholder groups in the salmon aquaculture industry: academics, industry, ENGOs, Government, Indigenous peoples, and the media. By scraping data from Twitter from the years 2006 to 2021, it examines aquaculture sentiment from a global English-speaking view, as well as a subset of Canadian data. This thesis addresses the following questions: How does public sentiment towards salmon aquaculture differ over time? How does public sentiment towards salmon aquaculture differ among stakeholder groups?
Data is analyzed through a stakeholder management theory framework using sentiment analysis. Data is collected from Twitter because users prefer it to other social media sites to share their unprompted thoughts, ideas, and opinions. The data is scrapable using the open-source Twitter scraper Twint. The data is processed using Google Colab notebooks: raw data is preprocessed into 273,319 tweets (rows) of clean data, which are analyzed using VADER’s natural language processing tool, yielding a sentiment score between -1 and +1 for each tweet.
This thesis explores the dependent variable of sentiment and the independent variable of time. Findings are examined through the lens of overall sentiment, sentiment from year to year (2006-2021), sentiment per stakeholder category, and sentiment per stakeholder category per year. Sentiment from 2007 to 2021 is expected to be increasingly negative because of significant negative events in the salmon aquaculture industry from 2006 to 2021. There have been many policy changes, lawsuits, fish escapes and concerns from ENGOs, Indigenous groups, and researchers about salmon aquaculture during this time. However, the data contradicts this hypothesis by trending positively over time.
The overall dataset is consistent and clusters around a mean of 0.3 (slightly positive), a median of 0.4 and a standard deviation of 0.4. The skewness of the general data is -0.994, meaning that the distribution has a moderate negative skew (most tweets have positive sentiment). The dataset has an R-squared value of 0.64, meaning that the data represents a moderate model, and an R-squared value of 0.79 (when removing outliers) shows an absolute strong model. All eight stakeholder group categories display a moderately negative skewness value and a positive mean sentiment. The Academic / Researcher Group and the Industry / Worker stakeholder groups show strong models, and the other stakeholder categories with lower R-squared values show weaker models.
This thesis provides new insight into the growing and expanding salmon aquaculture industry. Further, understanding stakeholder sentiment can allow a government, individual, or group to be more proactive in its decision-making rather than reactive. The data allows for open dialogue with all stakeholders and promotes future research, analysis, and collaboration within the salmon aquaculture industry.
|
12 |
Investerarnas position : En studie om semantisk analys av forumstrådar på wallstreetbets. / The investors’ position : A study about semantic analysis of forum threads on wallstreetbets.Josefsson, Olof January 2021 (has links)
This thesis was aimed to evaluate if sentiment related to stocks expressed on the subforum “Wallstreetbets” also reflects the traded volume in the stock market. For this purpose, a collection of comment data from posts filtered under the “Hot” section was issued between the 6th of April 2021 and the 20th of April 2021 on daily basis at 22.00 (GMT+2). The comments were preprocessed to filter out noise, and thereafter comments that contained mentions of stocks were analyzed using VADER, an algorithm for grading sentiment. In total sentiment regarding 13 different stocks were fitted into a mixed effect model with random slopes and intercepts. The results showed a positive correlation between sentiment expressed and the traded volume. This indicates that by studying the forum we can better understand how people invested in stocks make investment decisions, which potentially could lead to a competitive advantage over time.
|
13 |
Sentiment Analysis and Time-series Analysis for the COVID-19 vaccine TweetsSandaka, Gowtham Kumar, Gaekwade, Bala Namratha January 2021 (has links)
Background: The implicit nature of social media information brings many advantages to realistic sentiment analysis applications. Sentiment Analysis is the process of extracting opinions and emotions from data. As a research topic, sentiment analysis of Twitter data has received much attention in recent years. In this study, we have built a model to perform sentiment analysis to classify the sentiments expressed in the Twitter dataset based on the public tweets to raise awareness of the public's concerns by training the models. Objectives: The main goal of this thesis is to develop a model to perform a sentiment analysis on the Twitter data regarding the COVID-19 vaccine and find out the sentiment’s polarity from the data to show the distribution of the sentiments as following: positive, negative, and neutral. A literature study and an experiment are set to identify a suitable approach to develop such a model. Time-series analysis performed to obtain daily sentiments over the timeline series and daily trend analysis with events associated with the particular dates. Method: A Systematic Literature Review is performed to identify the most suitable approach to accomplish the sentiment analysis on the COVID-19 vaccine. Then, through the literature study results, an experimental model is developed to distribute the sentiments on the analyzed data and identify the daily sentiments over the timeline series. Result: A VADER is identified from the Literature study, which is the best suitable approach to perform the sentiment analysis. The KDE distribution is determined for each sentiment as obtained by the VADER Sentiment Analyzer. Daily sentiments over the timeline series are generated to identify the trend analysis on Twitter data of the COVID-19 vaccine. Conclusion: This research aims to identify the best-suited approach for sentiment analysis on Twitter data concerning the selected dataset through the study of results. The VADER model prompts optimal results among the sentiments polarity score for the sentiment analysis of Twitter data regarding the selected dataset. The time-series analysis shows how daily sentiments are fluctuant and the daily counts. Seasonal decomposition outcomes speak about how the world is reacting towards the current COVID-19 situation and daily trend analysis elaborates on the everyday sentiments of people.
|
14 |
Exploring the Potential of Twitter Data and Natural Language Processing Techniques to Understand the Usage of Parks in Stockholm / Utforska potentialen för användning av Natural Language Processing på Twitter data för att förstå användningen av parker i StockholmNorsten, Theodor January 2020 (has links)
Traditional methods used to investigate the usage of parks consists of questionnaire which is both a very time- and- resource consuming method. Today more than four billion people daily use some form of social media platform. This has led to the creation of huge amount of data being generated every day through various social media platforms and has created a potential new source for retrieving large amounts of data. This report will investigate a modern approach, using Natural Language Processing on Twitter data to understand how parks in Stockholm being used. Natural Language Processing (NLP) is an area within artificial intelligence and is referred to the process to read, analyze, and understand large amount of text data and is considered to be the future for understanding unstructured text. Twitter data were obtained through Twitters open API. Data from three parks in Stockholm were collected between the periods 2015-2019. Three analysis were then performed, temporal, sentiment, and topic modeling analysis. The results from the above analysis show that it is possible to understand what attitudes and activities are associated with visiting parks using NLP on social media data. It is clear that sentiment analysis is a difficult task for computers to solve and it is still in an early stage of development. The results from the sentiment analysis indicate some uncertainties. To achieve more reliable results, the analysis would consist of much more data, more thorough cleaning methods and be based on English tweets. One significant conclusion given the results is that people’s attitudes and activities linked to each park are clearly correlated with the different attributes each park consists of. Another clear pattern is that the usage of parks significantly peaks during holiday celebrations and positive sentiments are the most strongly linked emotion with park visits. Findings suggest future studies to focus on combining the approach in this report with geospatial data based on a social media platform were users share their geolocation to a greater extent. / Traditionella metoder använda för att förstå hur människor använder parker består av frågeformulär, en mycket tids -och- resurskrävande metod. Idag använder mer en fyra miljarder människor någon form av social medieplattform dagligen. Det har inneburit att enorma datamängder genereras dagligen via olika sociala media plattformar och har skapat potential för en ny källa att erhålla stora mängder data. Denna undersöker ett modernt tillvägagångssätt, genom användandet av Natural Language Processing av Twitter data för att förstå hur parker i Stockholm används. Natural Language Processing (NLP) är ett område inom artificiell intelligens och syftar till processen att läsa, analysera och förstå stora mängder textdata och anses vara framtiden för att förstå ostrukturerad text. Data från Twitter inhämtades via Twitters öppna API. Data från tre parker i Stockholm erhölls mellan perioden 2015–2019. Tre analyser genomfördes därefter, temporal, sentiment och topic modeling. Resultaten från ovanstående analyser visar att det är möjligt att förstå vilka attityder och aktiviteter som är associerade med att besöka parker genom användandet av NLP baserat på data från sociala medier. Det är tydligt att sentiment analys är ett svårt problem för datorer att lösa och är fortfarande i ett tidigt skede i utvecklingen. Resultaten från sentiment analysen indikerar några osäkerheter. För att uppnå mer tillförlitliga resultat skulle analysen bestått av mycket mer data, mer exakta metoder för data rensning samt baserats på tweets skrivna på engelska. En tydlig slutsats från resultaten är att människors attityder och aktiviteter kopplade till varje park är tydligt korrelerat med de olika attributen respektive park består av. Ytterligare ett tydligt mönster är att användandet av parker är som högst under högtider och att positiva känslor är starkast kopplat till park-besök. Resultaten föreslår att framtida studier fokuserar på att kombinera metoden i denna rapport med geospatial data baserat på en social medieplattform där användare delar sin platsinfo i större utsträckning.
|
15 |
Machine Learning Based Stock Price Prediction by Integrating ARIMA model and Sentiment Analysis with Insights from News and InformationBoppana, Teja Sai Vaibhav, Vinakonda, Joseph Sudheer January 2023 (has links)
Background: Predicting stock prices in today’s complex financial landscape is asignificant challenge. An innovative approach to address this challenge is integrating sentiment analysis techniques with the well-established Autoregressive IntegratedMoving Average (ARIMA) model. Modern financial markets are influenced by various factors, including real-time news and social media trends, which demand accuratepredictions. This research recognizes the growing importance of market sentiment derived from news and aims to improve stock price prediction by combining ARIMA’sanalytical capabilities with sentiment analysis. This endeavor seeks to provide aclearer understanding of the intricate dynamics of stock price movements in an eramarked by abundant information and rapidly changing market conditions. The integration of these methods has the potential to enhance the accuracy of stock priceforecasts, offering benefits to investors and financial analysts alike. Objectives: The project involves three key components. It begins by gatheringhistorical stock data for a specific stock ticker and conducting essential data preprocessing. Next, it focuses on extracting news headlines from a prominent financial website and conducting a thorough sentiment analysis of these headlines. Thissentiment analysis provides valuable insights into public sentiment surrounding thechosen stocks, with visualizations representing positive, negative, and neutral trends.Finally, the project aims to combine the findings from both components using an Ensemble Method, resulting in a comprehensive suggestion to user whether to buy,holdor sell the stock. These components collectively aim to improve stock price predictions and assess the adaptability of the ARIMA model to changing market conditionsalong the time and significant events. Methods: This project explores an innovative approach to improve stock pricepredictions, combining the ARIMA model with sentiment analysis methods usingfinancial news data. The study involved collecting historical stock data from YahooFinance, employing moving averages like 5-day, 30-day and 90-day windows, andusing advanced models such as ARIMA for predictions. Our analysis also includestime series plots at various intervals, providing valuable perspectives. Through theEnsemble Method, which integrates quantitative predictions and sentiment analysis,we generated practical recommendations for a five-day forecast. Our work addressedgaps in integrating sentiment analysis into stock prediction models and adapting tochanging market conditions, contributing to the advancement of stock forecastingmethodologies. Results: The ensembled predictive model for stock prices demonstrates favorableoutcomes. The Mean Absolute Error (MAE) is 0.8659, indicating accuracy, and theRoot Mean Squared Error (RMSE) is 0.1732, showing the overall prediction error.The Mean Absolute Percentage Error (MAPE) is 1.8541, suggesting precision in comparison to actual stock prices. The R-squared value is 0.9804, indicating the model’sability to explain variation in stock price data. These findings highlight the model’seffectiveness in providing reliable insights for investors in the dynamic stock market. Conclusions: The analysis with the ARIMA model to enhance stock price predictions. It revealed that sentiment analysis complements traditional methods, providing valuable insights for decision-making. Evaluating ARIMA’s long-term performance suggests adaptable forecasting techniques. This work contributes to advancingfinancial analysis and improving stock price predictions.
|
16 |
Social media sentiment analysis for firm's revenue predictionDimadi, Ioanna January 2018 (has links)
The advent of the Internet and its social media platforms have affected people’s daily life. More and more people use it as a tool in order to communicate, exchange opin-ions and share information with others. However, those platforms have not only been used for socializing but also for expressing people’s product preferences. This wide spread of social networking sites has enabled companies to take advantage of them as an important way of approaching their target audience. This thesis focuses on study-ing the influence of social media platforms on the revenue of a single organization like Nike that uses them actively. Facebook and Twitter, two widely-used social me-dia platforms, were investigated with tweets and comments produced by consumer’s online discussions in brand’s hosted pages being gathered. This unstructured social media data were collected from 26 Nike official pages, 13 fan pages from each plat-form and their sentiment was analyzed. The classification of those comments had been done by using the Valence Aware Dictionary and Sentiment Reasoner (VADER), a lexicon-based approach that is implemented for social media analysis. After gathering the five-year Nike’s revenue, the degree to which these could be affected by the clas-sified data was examined by using multiple stepwise linear regression analysis. The findings showed that the fraction of positive/total for both Facebook and Twitter ex-plained 84.6% of the revenue’s variance. Fitting this data on the multiple regression model, Nike’s revenue could be forecast with a root mean square error around 287 billion.
|
17 |
Narratives of a Fall: Star Wars Fan Fiction Writers Interpret Anakin Skywalker's Story / Star Wars Fan Fiction Writers Interpret Anakin Skywalker's StoryCarpenter, Sarah Gerina 09 1900 (has links)
viii, 94 p. / My thesis examines Star Wars fan fiction about Anakin Skywalker posted on the popular blogging platform LiveJournal. I investigate the folkloric qualities of such posts and analyze the ways in which fans through narrative generate systems of meaning, engage in performative expressions of gender identity, resistance, and festival, and create transformative works within the present cultural milieu. My method has been to follow the posts of several Star Wars fans on LiveJournal who are active in posting fan fiction and who frequently respond to one another's posts, thereby creating a network of community interaction. I find that fans construct systems of meaning through complex interactions with a network of cultural sources, that each posting involves multiple layers of performance, and that these works frequently act as parody, critique, and commentary on not just the official materials but on the cultural climate that produced and has been influenced by them. / Committee in charge: Dr. Dianne Dugaw, Chair;
Dr. Lisa Gilman, Member;
Dr. Debra Merskin, Member
|
18 |
Understanding Sales Performance Using Natural Language Processing - An experimental study evaluating rule-based algorithms in a B2B settingSmedberg, Angelica January 2023 (has links)
Natural Language Processing (NLP) is a branch in data science that marries artificial intelligence with linguistics. Essentially, it tries to program computers to understand human language, both spoken and written. Over the past decade, researchers have applied novel algorithms to gain a better understanding of human sentiment. While no easy feat, incredible improvements have allowed organizations, politicians, governments, and other institutions to capture the attitudes and opinions of the public. It has been particularly constructive for companies who want to check the pulse of a new product or see what the positive or negative sentiments are for their services. NLP has even become useful in boosting sales performance and improving training. Over the years, there have been countless studies on sales performance, both from a psychological perspective, where characteristics of salespersons are explored, and from a data science/AI (Artificial Intelligence) perspective, where text is analyzed to predict sales forecasting (Pai & Liu, 2018) and coach sales agents using AI trainers (Luo et al., 2021). However, few studies have discussed how NLP models can help characterize sales performance using actual sales transcripts. Thus, there is a need to explore to what extent NLP models can inform B2B businesses of the characteristics embodied within their salesforce. This study aims to fill that literature gap. Through a partnership with a medium-sized tech company based out of California, USA, this study conducted an experiment to try and answer to what extent can we characterize sales performance based on real-life sales communication? And in what ways can conversational data inform the sales team at a California-based mid-sized tech company about how top performers communicate with customers? In total, over 5000 sentences containing over 110 000 words were collected and analyzed using two separate rule-based sentiment analysis techniques: TextBlob developed by Steven Loria (2013) and Valence Aware Dictionary and sEntiment Reasoner (VADER) developed by CJ Hutto and Eric Gilbert (2014). A Naïve Bayes classifier was then adopted to test and train each sentiment output from the two rule-based techniques. While both models obtained high accuracy, above 90%, it was concluded that an oversampled VADER approach yields the highest results. Additionally, VADER also tends to classify positive and negative sentences more correctly than TextBlob, when manually reviewing the output, hence making it a better model for the used dataset.
|
19 |
Optimizing Lexicon-Based Sentiment Analysis for COVID-19 Twitter : Interactions in Health ContextsRamin, Jafari January 2023 (has links)
During the COVID-19 pandemic, the surge in social media usage has elevated interestin sentiment analysis, especially for health-related applications. This bachelor thesisexplores the effectiveness of two lexicon-based sentiment analysis techniques, with afocus on enhancing the accuracy of the Valence Aware Dictionary for SentimentReasoning (VADER) algorithm. This bachelor's thesis delves into two lexicon-basedsentiment analysis methods, primarily aiming to enhance the accuracy of the ValenceAware Dictionary for Sentiment Reasoning (VADER) algorithm. By assessing 5000manually labeled COVID-19-related tweets across four dataset versions, we gauge therelative effectiveness of these methods. The focus lies on understanding the rolepreprocessing techniques play in sentiment analysis and refining the VADER algorithm.The insights drawn can inform the design of more effective public health policies andcommunication approaches by capturing more accurately public sentiment expressed intweets. In health contexts like COVID-19, it's vital to gauge public sentiment, whichhelps identify and manage psychological distress, anxiety, and fear. Through thissentiment exploration, healthcare providers can offer comprehensive care and improvesupport systems and mechanisms during global health crises like COVID-19.
|
20 |
Exploring Swedish Attitudes and Needs Regarding Sustainable Food through Sentiment Analysis in Social MediaAyubu, Victoria Said, Khan, Mohammed Shahid January 2024 (has links)
Social media has recently become an essential component of our daily modern life, with platforms like Facebook, YouTube, and Twitter serving as popular venues for people to share their opinions on various topics, including sustainable food. The interest in consumer sentiments towards sustainable practices has increased particularly after Covid-2019. This study investigates the attitudes and needs of Swedish consumers regarding sustainable food consumption as reflected in their social media interactions using 4588 comments from Facebook and YouTube. The methodology used are sentiment analysis and topic modelling with VADER and Latent Dirichlet Allocation (LDA) respectively. The results reveal a generally strong positive attitude toward sustainable food. However, the study observes further a decline in positive sentiments over time, indicating changing consumer opinions. The primary topic identified is market challenges, such as high pricing. Furthermore, health concerns and environmental considerations are identified both as important factors influencing the choice of sustainable food. The findings highlight the necessity for policy interventions to enhance the affordability and accessibility of sustainable food, as well as the effective use of social media for raising consumer awareness.
|
Page generated in 0.0862 seconds