Spelling suggestions: "subject:"aan viele levels"" "subject:"aan ziele levels""
1 |
Learning about polyhedra through visual and tactile perception and discussionSaads, Silvia Maria Leao January 2000 (has links)
No description available.
|
2 |
Investigação matemática na aprendizagem da geometria : conexões entre quadriláteros, triângulos e transformações geométricasBaur, Anelise Pereira January 2017 (has links)
Este trabalho de pesquisa investigou o processo de aprendizagem de geometria em uma turma do sexto ano do Ensino Fundamental de uma escola da rede municipal de Porto Alegre. Durante dois meses do ano de 2016, foram desenvolvidos os conceitos de quadriláteros, triângulos e de Transformações Geométricas (translação, rotação e reflexão) sob a perspectiva da Investigação Matemática em sala de aula, metodologia de ensino que possui potencial para desencadear o processo de construção do conhecimento. Durante este período, os estudantes realizaram a investigação de quadriláteros e de triângulos, utilizando o software GeoGebra como recurso das Tecnologias da Informação e Comunicação (TIC). Os alunos construíram estes polígonos no GeoGebra, através de orientações passo-a-passo que foram disponibilizadas através de formulários online. Ao longo destas construções, os estudantes responderam a questionamentos também contidos nestes formulários online, de forma a identificar as propriedades contidas em cada construção, referentes a cada figura geométrica. Posteriormente, registraram as propriedades de cada polígono em uma tabela de características, de forma a organizar as propriedades de cada quadrilátero e de cada triângulo estudado. Para a investigação das Transformações Geométricas, desenvolveu-se um trabalho fazendo-se uso de tesselações no plano (coberturas para o plano). Para esta etapa da investigação, utilizou-se o applet “Design a Tessellation”, que é um recurso online e gratuito no qual o usuário pode criar diferentes coberturas para o plano através de uma unidade de tesselação quadrada. Os alunos fizeram uso de formulários online para responder aos questionamentos sobre as Transformações Geométricas estudadas, assim como folhas com atividades e malhas impressas para a criação de tesselações. Para a análise do processo de aprendizagem dos estudantes, foi utilizada a perspectiva dos níveis de Van Hiele, que classifica os níveis de pensamento geométrico, utilizando também uma abordagem que admite a existência de níveis intermediários. Além disso, este trabalho também formulou uma complementação para os níveis de Van Hiele quanto às Transformações Geométricas, de forma a analisar os dados obtidos com a pesquisa de uma maneira mais detalhada. Com a pesquisa finalizada, conclui-se que houve progresso dos níveis de Van Hiele para os estudantes analisados. / This research investigated the learning process of geometry in a class of the sixth grade of Elementary School, of a municipal school in Porto Alegre. During two months of 2016, the concepts of quadrilaterals, triangles and Geometric Transformations (translation, rotation and reflection) were developed from the perspective of Math Investigation in the classroom, teaching methodology which has the potential to develop the process of knowledge construction. During this period, students performed the investigation of quadrilaterals and triangles, using GeoGebra software as a resource of Information and Communication Technologies (TIC). The students constructed these polygons in GeoGebra, through step-by-step guidelines, which were made available through online forms. Throughout these constructions, the students answered the questions also contained in these online forms, in order to identify the properties contained in each construction, referring to each geometric figure. Later, they registered the properties of each polygon in a table of characteristics, in order to organize the properties of each quadrilateral and of each triangle studied. For the investigation of the Geometric Transformations, a work was developed making use of tessellations in the plane (covers for the plane). For this stage of the research, the "Design a Tessellation" applet was used, which is an online and free resource, where the user can create different covers for the plane, through a square tessellation unit. Students used online forms to answer questions about Geometric Transformations studied, as well as sheets with activities, and printed meshes for the creation of tessellations. For the analysis of the students' learning process, the Van Hiele levels perspective was also used, which classifies the levels of geometric thinking, using an approach that admits the existence of intermediate levels. In addition, this work also formulated a complementation for the Van Hiele levels, regarding Geometric Transformations, in order to analyze the data obtained with the research in a more detailed way. With the research completed, it is concluded that there was progress of the levels of Van Hiele for the analyzed students.
|
3 |
Investigação matemática na aprendizagem da geometria : conexões entre quadriláteros, triângulos e transformações geométricasBaur, Anelise Pereira January 2017 (has links)
Este trabalho de pesquisa investigou o processo de aprendizagem de geometria em uma turma do sexto ano do Ensino Fundamental de uma escola da rede municipal de Porto Alegre. Durante dois meses do ano de 2016, foram desenvolvidos os conceitos de quadriláteros, triângulos e de Transformações Geométricas (translação, rotação e reflexão) sob a perspectiva da Investigação Matemática em sala de aula, metodologia de ensino que possui potencial para desencadear o processo de construção do conhecimento. Durante este período, os estudantes realizaram a investigação de quadriláteros e de triângulos, utilizando o software GeoGebra como recurso das Tecnologias da Informação e Comunicação (TIC). Os alunos construíram estes polígonos no GeoGebra, através de orientações passo-a-passo que foram disponibilizadas através de formulários online. Ao longo destas construções, os estudantes responderam a questionamentos também contidos nestes formulários online, de forma a identificar as propriedades contidas em cada construção, referentes a cada figura geométrica. Posteriormente, registraram as propriedades de cada polígono em uma tabela de características, de forma a organizar as propriedades de cada quadrilátero e de cada triângulo estudado. Para a investigação das Transformações Geométricas, desenvolveu-se um trabalho fazendo-se uso de tesselações no plano (coberturas para o plano). Para esta etapa da investigação, utilizou-se o applet “Design a Tessellation”, que é um recurso online e gratuito no qual o usuário pode criar diferentes coberturas para o plano através de uma unidade de tesselação quadrada. Os alunos fizeram uso de formulários online para responder aos questionamentos sobre as Transformações Geométricas estudadas, assim como folhas com atividades e malhas impressas para a criação de tesselações. Para a análise do processo de aprendizagem dos estudantes, foi utilizada a perspectiva dos níveis de Van Hiele, que classifica os níveis de pensamento geométrico, utilizando também uma abordagem que admite a existência de níveis intermediários. Além disso, este trabalho também formulou uma complementação para os níveis de Van Hiele quanto às Transformações Geométricas, de forma a analisar os dados obtidos com a pesquisa de uma maneira mais detalhada. Com a pesquisa finalizada, conclui-se que houve progresso dos níveis de Van Hiele para os estudantes analisados. / This research investigated the learning process of geometry in a class of the sixth grade of Elementary School, of a municipal school in Porto Alegre. During two months of 2016, the concepts of quadrilaterals, triangles and Geometric Transformations (translation, rotation and reflection) were developed from the perspective of Math Investigation in the classroom, teaching methodology which has the potential to develop the process of knowledge construction. During this period, students performed the investigation of quadrilaterals and triangles, using GeoGebra software as a resource of Information and Communication Technologies (TIC). The students constructed these polygons in GeoGebra, through step-by-step guidelines, which were made available through online forms. Throughout these constructions, the students answered the questions also contained in these online forms, in order to identify the properties contained in each construction, referring to each geometric figure. Later, they registered the properties of each polygon in a table of characteristics, in order to organize the properties of each quadrilateral and of each triangle studied. For the investigation of the Geometric Transformations, a work was developed making use of tessellations in the plane (covers for the plane). For this stage of the research, the "Design a Tessellation" applet was used, which is an online and free resource, where the user can create different covers for the plane, through a square tessellation unit. Students used online forms to answer questions about Geometric Transformations studied, as well as sheets with activities, and printed meshes for the creation of tessellations. For the analysis of the students' learning process, the Van Hiele levels perspective was also used, which classifies the levels of geometric thinking, using an approach that admits the existence of intermediate levels. In addition, this work also formulated a complementation for the Van Hiele levels, regarding Geometric Transformations, in order to analyze the data obtained with the research in a more detailed way. With the research completed, it is concluded that there was progress of the levels of Van Hiele for the analyzed students.
|
4 |
Investigação matemática na aprendizagem da geometria : conexões entre quadriláteros, triângulos e transformações geométricasBaur, Anelise Pereira January 2017 (has links)
Este trabalho de pesquisa investigou o processo de aprendizagem de geometria em uma turma do sexto ano do Ensino Fundamental de uma escola da rede municipal de Porto Alegre. Durante dois meses do ano de 2016, foram desenvolvidos os conceitos de quadriláteros, triângulos e de Transformações Geométricas (translação, rotação e reflexão) sob a perspectiva da Investigação Matemática em sala de aula, metodologia de ensino que possui potencial para desencadear o processo de construção do conhecimento. Durante este período, os estudantes realizaram a investigação de quadriláteros e de triângulos, utilizando o software GeoGebra como recurso das Tecnologias da Informação e Comunicação (TIC). Os alunos construíram estes polígonos no GeoGebra, através de orientações passo-a-passo que foram disponibilizadas através de formulários online. Ao longo destas construções, os estudantes responderam a questionamentos também contidos nestes formulários online, de forma a identificar as propriedades contidas em cada construção, referentes a cada figura geométrica. Posteriormente, registraram as propriedades de cada polígono em uma tabela de características, de forma a organizar as propriedades de cada quadrilátero e de cada triângulo estudado. Para a investigação das Transformações Geométricas, desenvolveu-se um trabalho fazendo-se uso de tesselações no plano (coberturas para o plano). Para esta etapa da investigação, utilizou-se o applet “Design a Tessellation”, que é um recurso online e gratuito no qual o usuário pode criar diferentes coberturas para o plano através de uma unidade de tesselação quadrada. Os alunos fizeram uso de formulários online para responder aos questionamentos sobre as Transformações Geométricas estudadas, assim como folhas com atividades e malhas impressas para a criação de tesselações. Para a análise do processo de aprendizagem dos estudantes, foi utilizada a perspectiva dos níveis de Van Hiele, que classifica os níveis de pensamento geométrico, utilizando também uma abordagem que admite a existência de níveis intermediários. Além disso, este trabalho também formulou uma complementação para os níveis de Van Hiele quanto às Transformações Geométricas, de forma a analisar os dados obtidos com a pesquisa de uma maneira mais detalhada. Com a pesquisa finalizada, conclui-se que houve progresso dos níveis de Van Hiele para os estudantes analisados. / This research investigated the learning process of geometry in a class of the sixth grade of Elementary School, of a municipal school in Porto Alegre. During two months of 2016, the concepts of quadrilaterals, triangles and Geometric Transformations (translation, rotation and reflection) were developed from the perspective of Math Investigation in the classroom, teaching methodology which has the potential to develop the process of knowledge construction. During this period, students performed the investigation of quadrilaterals and triangles, using GeoGebra software as a resource of Information and Communication Technologies (TIC). The students constructed these polygons in GeoGebra, through step-by-step guidelines, which were made available through online forms. Throughout these constructions, the students answered the questions also contained in these online forms, in order to identify the properties contained in each construction, referring to each geometric figure. Later, they registered the properties of each polygon in a table of characteristics, in order to organize the properties of each quadrilateral and of each triangle studied. For the investigation of the Geometric Transformations, a work was developed making use of tessellations in the plane (covers for the plane). For this stage of the research, the "Design a Tessellation" applet was used, which is an online and free resource, where the user can create different covers for the plane, through a square tessellation unit. Students used online forms to answer questions about Geometric Transformations studied, as well as sheets with activities, and printed meshes for the creation of tessellations. For the analysis of the students' learning process, the Van Hiele levels perspective was also used, which classifies the levels of geometric thinking, using an approach that admits the existence of intermediate levels. In addition, this work also formulated a complementation for the Van Hiele levels, regarding Geometric Transformations, in order to analyze the data obtained with the research in a more detailed way. With the research completed, it is concluded that there was progress of the levels of Van Hiele for the analyzed students.
|
5 |
Levels of thought in geometry of pre-service mathematics educators according to the van Hiele modelVan Putten, Sonja 20 May 2008 (has links)
This study aimed to investigate the level of understanding of Euclidian geometry, in terms of theoretical knowledge as well as its problem-solving application, in pre-service mathematics education (PME) students at the University of Pretoria. In order to do so, a one group pre-test/ post-test procedure was conducted around an intensive geometry module, and a representational group of students was interviewed before and after the module to discuss their high school experiences of learning geometry and to analyse their attitudes towards the subject. The van Hiele Theory of Levels of Thought in Geometry was used as the theoretical framework for this study. The PME students in this study, prior to their completion of the geometry module, lacked the content knowledge, skills and insight in Euclidian geometry that is expected at matric level (Level 3). The pre-test results revealed that half the group could only be classified as being on Level 0. By the time the post-test was written, 60% of the group had moved onto Level 1 as their maximum competence level. This implies that these students were all brought to greater insight by the teaching they received during the geometry module. However, the overall improvement in the group as revealed in the post-test results, consisted of an upward movement of only one level. Therefore, the geometry module offered did not bring about sufficient improvement for these students to be able to teach geometry adequately (Level 3 is required). The students who were interviewed for this study uniformly expressed their dislike or fear of Euclidian geometry in general, but described the positive change in their attitude during the course of the module because of the way it was presented. Training of students for a career as mathematics educators which includes an in-depth van Hiele-based geometry module would facilitate the acquisition of insight and relational understanding. / Dissertation (MEd)--University of Pretoria, 2008. / Curriculum Studies / MEd / unrestricted
|
6 |
TRILHOS MATEMÁTICOS COMO CONTEXTO PARA O ENSINO E A APRENDIZAGEM DE GEOMETRIA ESPACIAL COM ESTUDANTES DO TERCEIRO ANO DO ENSINO MÉDIOGehrke, Tatiéle Tamara 22 March 2017 (has links)
Submitted by MARCIA ROVADOSCHI (marciar@unifra.br) on 2018-08-20T16:42:01Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_TatieleTamaraGehrke.pdf: 3347128 bytes, checksum: 0f23c0cadd61c9ebaa70b9288b0db807 (MD5) / Made available in DSpace on 2018-08-20T16:42:01Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_TatieleTamaraGehrke.pdf: 3347128 bytes, checksum: 0f23c0cadd61c9ebaa70b9288b0db807 (MD5)
Previous issue date: 2017-03-22 / The purpose of this dissertation is to answer the following problem: How the proposition and resolution of problems created from the observations collected through the realization of a Mathematical Trail in the environment in which the students live can contribute to the teaching and learning of geometric solids with students of the third year of High School? The objective is to investigate if the proposition and resolution of problems created from the observations collected through the accomplishment of a Mathematical Rail in the environment in which the students live contributes to the teaching and learning of the geometric solids with students of the third year of High School. The subjects that participated in the research were students of the 3rd year of the High School of the State School of Secondary Education Presidente Afonso Pena, in the city of Paraíso do Sul / RS. The research was qualitative, based on the ideas of Van Hiele on the development of geometric thinking and Problem Solving. The instruments used involved a diagnostic test, the accomplishment of the Mathematical Trail, the didactic sequence elaborated by the students based on the data collected on the trail and the didactic sequence elaborated by the teacher-researcher, besides a class diary in which the events occurred in Classroom and the documents produced in the productions and resolutions of the problems. The activities developed in the didactic sequences were planned taking into account the levels of Van Hiele, in order to assist in the development of geometric reasoning. After the activities developed and the results analyzed, it was found that the students felt involved with the proposed activities, especially in relation to the Mathematical Trail, from which they could observe and create problems according to their observations in a familiar environment. In addition, it can be concluded that the Problem Solving methodology was valid because it enabled the students to carry out a collective and collaborative work, in addition to favoring the construction of knowledge in a participatory manner. / Com esta dissertação, busca-se responder o seguinte problema: Como a proposição e resolução de problemas criados a partir das observações coletadas por meio da realização de um Trilho Matemático no ambiente em que os estudantes vivem podem contribuir para o ensino e aprendizagem dos sólidos geométricos com estudantes do terceiro ano do Ensino Médio? O objetivo é investigar se a proposição e resolução de problemas criados a partir das observações coletadas por meio da realização de um Trilho Matemático no ambiente em que os estudantes vivem contribui para o ensino e aprendizagem dos sólidos geométricos com estudantes do terceiro ano do Ensino Médio. Os sujeitos participantes da pesquisa foram estudantes do 3° ano do Ensino Médio da Escola Estadual de Ensino Médio Presidente Afonso Pena, do município de Paraíso do Sul/RS. A pesquisa foi de cunho qualitativo, fundamentada nas ideias de Van Hiele sobre o desenvolvimento do pensamento geométrico e na Resolução de Problemas. Os instrumentos utilizados envolveram um teste diagnóstico, a realização do Trilho Matemático, a sequência didática elaborada pelos estudantes com base nos dados coletados no trilho e a sequência didática elaborada pela professora-pesquisadora, além de diário de aula no qual foram registrados os acontecimentos ocorridos em sala de aula e os documentos produzidos nas produções e resoluções dos problemas. As atividades desenvolvidas nas sequências didáticas foram planejadas levando em consideração os níveis de Van Hiele, com intuito de auxiliar no desenvolvimento do raciocínio geométrico. Após as atividades desenvolvidas e os resultados analisados, constatou-se que os estudantes se sentiram envolvidos com as atividades propostas, especialmente em relação ao Trilho Matemático, a partir do qual puderam observar e criar problemas de acordo com suas observações num ambiente familiar. Além disso, pode-se concluir que a metodologia Resolução de Problemas foi válida, pois possibilitou aos estudantes a realização de um trabalho coletivo e colaborativo, além de favorecer a construção do conhecimento de forma participativa.
|
7 |
The relationship between teachers' instructional practices and learners' levels of geometry thinkingBleeker, Cheryl Ann 16 August 2012 (has links)
The aim of this study was to investigate the relationship between teachers' instructional practices in terms of specific areas of focus pertaining to the teaching and learning of geometry described in literature and, their learners' levels of geometry thinking as elaborated in the Van Hiele theory. A review of literature on the development of geometry understanding was conducted to frame what is meant by 'teachers' instructional practices' as they pertain to the teaching and learning of geometry in this study. These instructional practices are understood to include the appropriate allocation of time for the facilitation of geometry concept development, the use of concrete apparatus, the use of relevant and level appropriate language as well as the use of level appropriate geometry activities. The structure of the curriculum in terms of its content and opportunity for conceptual progression was also considered. Literature reveals continuing discourse regarding the levels of thinking described in the Van Hiele theory, and even though there is no consensus regarding the nature of the levels and that assessing learners' levels of thinking remains difficult and inconclusive, it is generally accepted that the Van Hiele test is a reliable measure in assessing learners' levels of geometry thinking. An exploratory case study design was chosen for this study. The phenomenon being explored is the teaching and learning of geometry in the Foundation and Intermediate Phases of a particular private school. In order to do this, the teachers' timetables and Work Schedules were analysed to determine how much time was allocated to the instruction of Mathematics in general and for the instruction of geometry in particular. These documents also yielded data regarding the type of geometry experiences included in the implemented curriculum. The learners' level of geometry understanding according to the Van Hiele theory was assessed using an instrument designed by Usiskin (1982). This assessment was facilitated by the researcher in the learners' home class and happened in June after six months of instruction in a particular grade level. Data regarding the teachers' perception of geometry and the best method to facilitate the learning of geometry was gathered through a teacher's questionnaire. The teachers were requested to facilitate geometry lessons, which were digitally recorded by the researcher. Each grade level (0-5) was regarded as a sub-unit and analysed as the case for that grade level. The data was then assimilated to present the case of geometry teaching and learning in the Foundation and Intermediate Phases in the school. The findings report that when juxtaposed alongside research, geometry instructional practices in this school, compare favourably with regards to the teachers' professed and observed practice of using concrete aids and tasks that engage the learners actively in developing geometry insight. There is also evidence that these instructional practices support progression through the levels however the shortfall of time allocated to facilitating this progression and the lack of conclusive data regarding the language used and the types of experiences may justify further research into whether this progression is satisfactory. Copyright / Dissertation (MEd)--University of Pretoria, 2011. / Science, Mathematics and Technology Education / unrestricted
|
8 |
Determining High School Geometry Students' Geometric Understanding Using van Hiele Levels: Is There a Difference Between Standards-based Curriculum Students and NonStandards-based Curriculum Students?Genz, Rebekah Loraine 05 July 2006 (has links) (PDF)
Research has found that students are not adequately prepared to understand the concepts of geometry, as they are presented in a high school geometry course (e.g. Burger and Shaughnessy (1986), Usiskin (1982), van Hiele (1986)). Curricula based on the National Council of Teachers of Mathematics (NCTM) Standards (1989, 2000) have been developed and introduced into the middle grades to improve learning and concept development in mathematics. Research done by Rey, Reys, Lappan and Holliday (2003) showed that Standards-based curricula improve students' mathematical understanding and performance on standardized math exams. Using van Hiele levels, this study examines 20 ninth-grade students' levels of geometric understanding at the beginning of their high school geometry course. Ten of the students had been taught mathematics using a Standards-based curriculum, the Connected Mathematics Project (CMP), during grades 6, 7, and 8, and the remaining 10 students had been taught from a traditional curriculum in grades 6, 7, and 8. Students with a Connected Mathematics project background tended to show higher levels of geometric understanding than the students with a more traditional curriculum (NONcmp) background. Three distinctions of students' geometric understanding were identified among students within a given van Hiele level, one of which was the students' use of language. The use of precise versus imprecise language in students' explanations and reasoning is a major distinguishing factor between different levels of geometric understanding among the students in this study. Another distinction among students' geometric understanding is the ability to clearly verbalize an infinite variety of shapes versus not being able to verbalize an infinite variety of shapes. The third distinction identified among students' geometric understanding is that of understanding the necessary properties of specific shapes versus understanding only a couple of necessary properties for specific shapes.
|
9 |
Geometria na educação infantil: formação e saberes necessários à prática pedagógica / Geometry in early childhood education: training and knowledge necessary to practice serviceBrito, Alice Christina Vaz Ibanhes de Lima 13 December 2012 (has links)
Made available in DSpace on 2016-01-26T18:49:48Z (GMT). No. of bitstreams: 1
.htaccess: 82 bytes, checksum: d923c631439b8b61d73aee22e866c9a7 (MD5)
Previous issue date: 2012-12-13 / This research entitled "Geometry in Early Childhood Education: training and pedagogical knowledge necessary to practice" is linked to the research line 2-Training and Professional Practice Pedagogical Faculty of the Master s Program in Education Unoeste of Presidente Prudente - SP. Aimed to analyze the knowledge of teachers in order to identify the theoriesthat guidethe teaching of Geometry in Early Childhood Education. A descriptive qualitative research approach involving action research-type intervention. In this investigative process intervention walked together to investigative practice, practice and reflective educational practice. The data obtained was analyzed by content analysis. The study was conducted at fortnightly meetings with kindergarten teachers of a private school in the city of Presidente Prudente. During the activities the teachers were able to identify the concept of early childhood education, content and methodology worked as well as the relationship of these data with the pedagogic approaches to teaching in kindergarten, with documents such as the National Curriculum Reference to Education Children and the National Curriculum. Teacher training was analyzed as well as the knowledge of geometry that make your practice and starting points that served as support, rose data that could determine the basis on which rests the work of teachers with geometry. These bases indicated that the actions of the teachers are not directly linked to documents, initial training, or educational guidelines they receive, but are built from the readings that teachers make their classroom practice, embodied in the reference training basic, and that according to the theory of van Hiele are still at the basic level in tending to level 1. / Esta pesquisa intitulada Geometria na Educação Infantil: formação e saberes necessários à prática pedagógica está vinculada à linha de pesquisa 2 Formação e Prática Pedagógica do Profissional Docente, do Programa de Mestrado em Educação da Unoeste de Presidente Prudente - SP. Teve como objetivo analisar os saberes dos docentes, a fim de identificar as teorias que orientam o ensino de Geometria na Educação Infantil. A pesquisa de enfoque qualitativo descritivo envolveu pesquisa-ação do tipo intervenção. Neste processo investigativo de intervenção, caminharam juntas a prática investigativa, a reflexiva e a educativa. Os dados obtidos foram trabalhados pela análise de conteúdo. A intervenção foi desenvolvida em encontros quinzenais com professores de Educação Infantil de um colégio particular do município de Presidente Prudente. No decorrer das atividades desenvolvidas com os professores, foi possível identificar a concepção de Educação Infantil, os conteúdos e a metodologia trabalhada, bem como a relação desses dados com as orientações pedagógicas para o ensino na Educação Infantil, com base em documentos como o Referencial Curricular Nacional para a Educação Infantil e as Diretrizes Curriculares Nacionais. A formação dos professores foi analisada, bem como os saberes de Geometria que fazem da sua prática e valendo-se do referencial que serviu de suporte, foram levantados dados que puderam determinar as bases em que se assenta o trabalho dos professores com a Geometria. Essas bases indicaram que as ações dos docentes não estão diretamente ligadas aos documentos, à formação inicial, ou às orientações pedagógicas que recebem, mas são construídas por meio das leituras que os professores fazem da sua prática em sala de aula, consubstanciados nas referências da formação básica e que, segundo a teoria de van Hiele, se encontram ainda no nível básico, tendendo para o nível 1.
|
10 |
Geometria na educação infantil: formação e saberes necessários à prática pedagógica / Geometry in early childhood education: training and knowledge necessary to practice serviceBrito, Alice Christina Vaz Ibanhes de Lima 13 December 2012 (has links)
Made available in DSpace on 2016-07-18T17:54:18Z (GMT). No. of bitstreams: 1
.htaccess: 82 bytes, checksum: d923c631439b8b61d73aee22e866c9a7 (MD5)
Previous issue date: 2012-12-13 / This research entitled "Geometry in Early Childhood Education: training and pedagogical knowledge necessary to practice" is linked to the research line 2-Training and Professional Practice Pedagogical Faculty of the Master s Program in Education Unoeste of Presidente Prudente - SP. Aimed to analyze the knowledge of teachers in order to identify the theoriesthat guidethe teaching of Geometry in Early Childhood Education. A descriptive qualitative research approach involving action research-type intervention. In this investigative process intervention walked together to investigative practice, practice and reflective educational practice. The data obtained was analyzed by content analysis. The study was conducted at fortnightly meetings with kindergarten teachers of a private school in the city of Presidente Prudente. During the activities the teachers were able to identify the concept of early childhood education, content and methodology worked as well as the relationship of these data with the pedagogic approaches to teaching in kindergarten, with documents such as the National Curriculum Reference to Education Children and the National Curriculum. Teacher training was analyzed as well as the knowledge of geometry that make your practice and starting points that served as support, rose data that could determine the basis on which rests the work of teachers with geometry. These bases indicated that the actions of the teachers are not directly linked to documents, initial training, or educational guidelines they receive, but are built from the readings that teachers make their classroom practice, embodied in the reference training basic, and that according to the theory of van Hiele are still at the basic level in tending to level 1. / Esta pesquisa intitulada Geometria na Educação Infantil: formação e saberes necessários à prática pedagógica está vinculada à linha de pesquisa 2 Formação e Prática Pedagógica do Profissional Docente, do Programa de Mestrado em Educação da Unoeste de Presidente Prudente - SP. Teve como objetivo analisar os saberes dos docentes, a fim de identificar as teorias que orientam o ensino de Geometria na Educação Infantil. A pesquisa de enfoque qualitativo descritivo envolveu pesquisa-ação do tipo intervenção. Neste processo investigativo de intervenção, caminharam juntas a prática investigativa, a reflexiva e a educativa. Os dados obtidos foram trabalhados pela análise de conteúdo. A intervenção foi desenvolvida em encontros quinzenais com professores de Educação Infantil de um colégio particular do município de Presidente Prudente. No decorrer das atividades desenvolvidas com os professores, foi possível identificar a concepção de Educação Infantil, os conteúdos e a metodologia trabalhada, bem como a relação desses dados com as orientações pedagógicas para o ensino na Educação Infantil, com base em documentos como o Referencial Curricular Nacional para a Educação Infantil e as Diretrizes Curriculares Nacionais. A formação dos professores foi analisada, bem como os saberes de Geometria que fazem da sua prática e valendo-se do referencial que serviu de suporte, foram levantados dados que puderam determinar as bases em que se assenta o trabalho dos professores com a Geometria. Essas bases indicaram que as ações dos docentes não estão diretamente ligadas aos documentos, à formação inicial, ou às orientações pedagógicas que recebem, mas são construídas por meio das leituras que os professores fazem da sua prática em sala de aula, consubstanciados nas referências da formação básica e que, segundo a teoria de van Hiele, se encontram ainda no nível básico, tendendo para o nível 1.
|
Page generated in 0.0754 seconds