• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 19
  • 4
  • 3
  • 2
  • Tagged with
  • 67
  • 29
  • 22
  • 22
  • 22
  • 14
  • 13
  • 12
  • 10
  • 10
  • 9
  • 9
  • 7
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Incorporating human factors into process plant lifecycle: HF during design and operation of a process plant

Widiputri, Diah Indriani 10 June 2011 (has links)
Major accidents in the process industries occurred mostly as an outcome of multiple failures in different safety barriers and their interrelation with unsafe acts by frontline operators. This has become the reason why safety analyses in terms of plant technical aspects cannot be performed independently from analysing human response to the changing technology. Unsafe acts and errors by operators must be seen as a symptom of system insufficiencies and underlying problems, rather than as the cause of an accident. With this paradigm, the need to optimally configure the system and the whole working condition to understand human’s limitation and requirements becomes very evident. It is too naive to desire that human operators make zero error by asking them to change their behaviour and to perfectly adapt to the system. Human Factors (HF) attempts to cope with the need to understand the interrelation between human operators, the technology they are working with and the management system, with the aim to increase safety and efficiency. In achieving this goal, HF must be incorporated into the whole plant lifecycle, from the earliest design stage to plant operation and modifications. Moreover, HF analysis must comprise all kinds of operators’ activities and responsibilities in operating process plants, which can include manual works in field and supervisory control conducted remotely from a control centre/room. This work has developed techniques that provide systematic way to incorporate HF into process plant lifecycle. The new HF analysis technique, PITOPA-Design, in a combination with the classic PITOPA, is applicable for an implementation during design and operation of a plant. With the awareness that safety analysis and HF cannot be performed separately, an interconnection with HAZOPs is made possible by means of this new technique. Moreover, to provide a systematic analysis of operators’ work in control room, an additional technique, the PITOPA-CR was also developed. This HF technique can as well be integrated into a general HF analysis both during design phase and plant operation. In addition to it, results coming from PITOPA-CR will provide information required to optimally configure control and alarm system, as well as the whole alarm management system to better understand the limitation and requirements of control room operators. The structure of the development can be described as follows: i) Development of HAZOPA (the Hazards and Operator Actions Analysis), which provides the interconnection between HF analysis and HAZOPs, ii) Development of PITOPA-Design, a technique to incorporate HF consideration into design phase, which is differentiated into 3 stages to comprise the conceptual design, the basic engineering and the detail engineering phase, iii) Development of PITOPA-CR, a technique for HF analysis in control room, iv) Integration of PITOPA-CR into alarm management system, development of a technique for alarm prioritization.:ACKNOWLEDGEMENT i ABSTRACT iii ZUSAMMENFASSUNG iv CONTENTS v TABLE OF FIGURES viii LIST OF TABLES x NOMENCLATURE xi ACRONYMS AND ABBREVIATIONS xii CHAPTER 1 1 INTRODUCTION 1 1.1 Background 1 1.2 Objectives 2 1.3 Scope of Work 3 CHAPTER 2 5 THEORETICAL BACKGROUND 5 2.1 Fundamentals of Human Error 5 2.2 Human Factors (HF) 8 2.3 Motivations to Consider HF in Process Safety 9 2. 3. 1 Accidents that Address HF in Process Safety 11 2. 3. 2 Regulation and Legal Requirements 16 2. 3. 3 Business Value 19 2.4 Work of Operators in Complex Systems 19 2. 4. 1 Role of Operators in Complex Systems 20 2. 4. 2 Problems with Computerisation and Automation 24 2. 4. 3 Allocation of Functions and Levels of Automation 25 2.5 Performance Influencing Factors (PIFs) 27 2.6 Distributed Control System (DCS) and Alarm Systems 29 2. 6. 1 Alarm, Alarm System and Alarm Management 30 2. 6. 2 Most Common Alarm Problems 33 2. 6. 3 Improving Alarm Performance through Prioritization 34 2.7 Safety Analysis Methods 38 2.7.1 Qualitative Safety Analysis 39 2.7.2 Quantitative Safety Analysis 43 2.8 Mathematical Algorithms 44 2.8.1 Techniques for Multi-Criteria Decision Making (MCDM) 44 2.8.2 Classification Methods 47 CHAPTER 3 50 RECENT DEVELOPMENTS IN HF STUDIES 50 3. 1 Methods for HF analysis 50 A. Task Analysis 50 B. Techniques for Operators Actions Analysis 51 3. 2 Human Reliability Analyses (HRA) 52 3. 3 Consideration of Human Error in HAZOP 53 3. 4 HF in Process Plant Design 54 3. 5 HF in Alarm Management and DCS-Design 55 3. 6 The Need for Further Development of HF Methods 57 CHAPTER 4 58 MOTIVATION OF THE WORK 58 CHAPTER 5 61 PROCESS INDUSTRY TOOL FOR OPERATOR ACTIONS ANALYSIS (PITOPA) 61 5.1 The New Technique for Operator Actions Analysis (OAA) 64 5.2 Technique for Performance Influencing Factors (PIFs) Evaluation 65 5.3 Validation of PITOPA in the Process Industry 67 CHAPTER 6 71 EXTENDING HAZOP TO INTEGRATE HF INTO 71 GENERAL SAFETY ANALYSIS 71 6.1 Development of HAZOPA (The Hazard, Operability and Operator Actions Analysis) 72 6.2 Case Study 75 CHAPTER 7 85 APPROACH TO INCORPORATING HF CONSIDERATION 85 INTO PLANT DESIGN 85 7.1 Development of an Approach for HF Analysis in Design – The PITOPA-Design 85 7.1.1 HF Analysis in Conceptual Design Phase (HFAD–Conceptual) 88 7.1.2 HF Analysis in Basic Engineering (HFAD – Basic) 93 7.1.3 HF Analysis in Detail Engineering (HFAD-Detail) 107 7.2 Technique for HF-Design Parameters Evaluation 109 7.3 Intermediate Summary 114 CHAPTER 8 115 IMPLEMENTATION OF THE NEW PITOPA-DESIGN: 115 A CASE-STUDY 115 8.1 Conceptual Design 115 8.2 Basic Engineering 123 8.3 Detail Engineering 127 CHAPTER 9 132 APPROACH FOR IMPROVING OPERATOR PERFORMANCE 132 IN CONTROL ROOM 132 9.1 Performance Influencing Factors (PIFs) for Supervisory & Monitoring Tasks 134 9.2 Development of PITOPA-Control Room (PITOPA-CR) 140 9.2.1 Analysis of Normal Operation 142 9.2.2 Analysis of Abnormal Operation 150 9.3 Alarm Prioritization 156 9.3.1 A survey on Alarm Prioritization 156 9.3.2 Incorporation of CROAA into Alarm Prioritization 157 9.4 Intermediate Summary 165 CHAPTER 10 167 INCORPORATION OF OPERATOR ACTIONS ANALYSIS INTO ALARM MANAGEMENT 167 CHAPTER 11 171 RESULTS AND FUTURE WORKS 171 11. 1 Results 171 11. 2 Future Works 172 BIBLIOGRAPHY 174 APPENDIX A A-1 APPENDIX B B-1 / Schwere Unfälle in der Prozessindustrie erfolgen meist aus einem Zusammenspiel mehrerer verschiedener Fehler und der gleichzeitigen Wechselwirkung mit falschem menschlichem Handeln. Dabei sind diese Fehlhandlungen nicht als Unfallursache anzusehen, sondern sie resultieren aus Fehlern, die in dem System selbst zu finden sind. Aus diesem Grund kann bei der Sicherheitsanalyse die technische Analyse nicht unabhängig von der Betrachtung des Human Factors (HF) durchgeführt werden. Um eine Reduzierung der Fehlhandlungen zu erreichen, müssen das Anlagendesign, die Bedienbarkeit und die Arbeitsumgebung an die menschlichen Fähigkeiten angepasst werden. Human Factors (HF) betrachtet die Interaktion zwischen menschlichen, technischen und organisatorischen Aspekten einer Anlage, mit dem Ziel die Sicherheit und Effektivität der Anlage zu optimieren. Dafür ist eine Einbindung von HF in den gesamten Lebenszyklus einer Anlage notwendig. So müssen HF- Analysen nicht nur während des Betriebs einer Anlage und bei Prozessmodifikationen durchgeführt werden, sondern auch während des gesamten Design- Prozesses, da gerade in den frühen Design-Phasen das Optimierungspotential besonders hoch ist. Eine solche Analysemethode muss alle Aufgaben eines Operators erfassen, so dass zwischen manueller Arbeit und der Arbeit in der Leitwarte unterschieden werden muss. In dieser Arbeit wurden Analysentechniken entwickelt, die einen systematischen Ansatz zur Berücksichtigung des HF über den gesamten Lebenszyklus einer verfahrenstechnischen Anlage darstellen. Mit Hilfe der neuen Analysemethode, PITOPA-Design, können Untersuchungen sowohl während der Designphase als auch während des Betriebs einer Anlage durchgeführt werden. Da solche HF-Analyse immer in Verbindung mit einer klassischen Sicherheitsanalyse erfolgen muss, bindet die neue Methode die HAZOP-Analyse direkt ein. Darüber hinaus wurde ein weiterer Ansatz für die Analyse von Operatorhandlungen in einer Messwartenarbeit entwickelt. Diese neue Analysentechnik, PITOPA-CR, bildet die Grundlage für Verbesserungen im Alarmsystem und wird in das Alarmmanagementsystem eingebunden. Die Arbeit ist wie folgt strukturiert: i) Entwicklung von HAZOPA (the Hazards and Operator Actions Analysis). Diese Methode stellt die Einbindung der HF-Analyse in HAZOP dar. ii) Entwicklung von PITOPA-Design, zur HF-Analyse während des gesamten Designprozesses einer verfahrenstechnischen Anlage. Die Methode wurde in 3 Teile eingeteilt, um die drei Designsphasen Conceptual-, Basic-, und Detail-Design zu erfassen. iii) Entwicklung von PITOPA-CR, zur HF-Analyse in der Messwarte. iv) Einbindung von PITOPA-CR in das Alarmmanagementsystem und Entwicklung einer Technik zur Alarmpriorisierung.:ACKNOWLEDGEMENT i ABSTRACT iii ZUSAMMENFASSUNG iv CONTENTS v TABLE OF FIGURES viii LIST OF TABLES x NOMENCLATURE xi ACRONYMS AND ABBREVIATIONS xii CHAPTER 1 1 INTRODUCTION 1 1.1 Background 1 1.2 Objectives 2 1.3 Scope of Work 3 CHAPTER 2 5 THEORETICAL BACKGROUND 5 2.1 Fundamentals of Human Error 5 2.2 Human Factors (HF) 8 2.3 Motivations to Consider HF in Process Safety 9 2. 3. 1 Accidents that Address HF in Process Safety 11 2. 3. 2 Regulation and Legal Requirements 16 2. 3. 3 Business Value 19 2.4 Work of Operators in Complex Systems 19 2. 4. 1 Role of Operators in Complex Systems 20 2. 4. 2 Problems with Computerisation and Automation 24 2. 4. 3 Allocation of Functions and Levels of Automation 25 2.5 Performance Influencing Factors (PIFs) 27 2.6 Distributed Control System (DCS) and Alarm Systems 29 2. 6. 1 Alarm, Alarm System and Alarm Management 30 2. 6. 2 Most Common Alarm Problems 33 2. 6. 3 Improving Alarm Performance through Prioritization 34 2.7 Safety Analysis Methods 38 2.7.1 Qualitative Safety Analysis 39 2.7.2 Quantitative Safety Analysis 43 2.8 Mathematical Algorithms 44 2.8.1 Techniques for Multi-Criteria Decision Making (MCDM) 44 2.8.2 Classification Methods 47 CHAPTER 3 50 RECENT DEVELOPMENTS IN HF STUDIES 50 3. 1 Methods for HF analysis 50 A. Task Analysis 50 B. Techniques for Operators Actions Analysis 51 3. 2 Human Reliability Analyses (HRA) 52 3. 3 Consideration of Human Error in HAZOP 53 3. 4 HF in Process Plant Design 54 3. 5 HF in Alarm Management and DCS-Design 55 3. 6 The Need for Further Development of HF Methods 57 CHAPTER 4 58 MOTIVATION OF THE WORK 58 CHAPTER 5 61 PROCESS INDUSTRY TOOL FOR OPERATOR ACTIONS ANALYSIS (PITOPA) 61 5.1 The New Technique for Operator Actions Analysis (OAA) 64 5.2 Technique for Performance Influencing Factors (PIFs) Evaluation 65 5.3 Validation of PITOPA in the Process Industry 67 CHAPTER 6 71 EXTENDING HAZOP TO INTEGRATE HF INTO 71 GENERAL SAFETY ANALYSIS 71 6.1 Development of HAZOPA (The Hazard, Operability and Operator Actions Analysis) 72 6.2 Case Study 75 CHAPTER 7 85 APPROACH TO INCORPORATING HF CONSIDERATION 85 INTO PLANT DESIGN 85 7.1 Development of an Approach for HF Analysis in Design – The PITOPA-Design 85 7.1.1 HF Analysis in Conceptual Design Phase (HFAD–Conceptual) 88 7.1.2 HF Analysis in Basic Engineering (HFAD – Basic) 93 7.1.3 HF Analysis in Detail Engineering (HFAD-Detail) 107 7.2 Technique for HF-Design Parameters Evaluation 109 7.3 Intermediate Summary 114 CHAPTER 8 115 IMPLEMENTATION OF THE NEW PITOPA-DESIGN: 115 A CASE-STUDY 115 8.1 Conceptual Design 115 8.2 Basic Engineering 123 8.3 Detail Engineering 127 CHAPTER 9 132 APPROACH FOR IMPROVING OPERATOR PERFORMANCE 132 IN CONTROL ROOM 132 9.1 Performance Influencing Factors (PIFs) for Supervisory & Monitoring Tasks 134 9.2 Development of PITOPA-Control Room (PITOPA-CR) 140 9.2.1 Analysis of Normal Operation 142 9.2.2 Analysis of Abnormal Operation 150 9.3 Alarm Prioritization 156 9.3.1 A survey on Alarm Prioritization 156 9.3.2 Incorporation of CROAA into Alarm Prioritization 157 9.4 Intermediate Summary 165 CHAPTER 10 167 INCORPORATION OF OPERATOR ACTIONS ANALYSIS INTO ALARM MANAGEMENT 167 CHAPTER 11 171 RESULTS AND FUTURE WORKS 171 11. 1 Results 171 11. 2 Future Works 172 BIBLIOGRAPHY 174 APPENDIX A A-1 APPENDIX B B-1
62

Schallspektroskopische Charakterisierung von submikronen Emulsionen

Babick, Frank 14 February 2005 (has links)
Zu den wenigen Methoden, die sich für eine prozessnahe Charakterisierung von dispersen Stoffsystemen bezüglich der Partikelgrößenverteilung eignen, zählt die Schalldämpfungsspektroskopie. Dennoch ist ihr Einsatz in der industriellen Praxis auf einen überschaubaren Bereich an Messaufgaben und Stoffsystemen beschränkt. Insbesondere findet sie kaum Einsatz für die Partikelgrößenanalyse von submikronen Emulsionen. Die vorliegende Arbeit macht es sich deshalb zum Ziel, ausgehend von grundsätzlichen Überlegungen die Eignung der Schalldämpfungsspektroskopie zur prozessnahen Charakterisierung des Dispersitätszustandes von submikronen Emulsionen zu bewerten und zu verbessern. Schwerpunkte der Arbeit sind die modellhafte Beschreibung des Schalldämpfungsverhaltens von hoch konzentrierten Partikelsystemen im Submikrometerbereich, die Abschätzung des Einflusses von Emulgatoren auf die Schalldämpfung, die Erkennbarkeit von Einzelheiten der Partikelgrößenverteilung, die Sensitivität berechneter Partikelgrößenverteilungen bezüglich der Partikelkonzentration und der verschiedenen Stoffeigenschaften sowie die Auswertung von Schalldämpfungsspektren bei Unkenntnis dieser Modellparameter. Die angesprochenen Aspekte werden am Beispiel typischer Charakterisierungsaufgaben diskutiert. / The ultrasonic spectroscopy is one of few measurement methods applicable to the online characterization of disperse systems with regard to particle size distribution. However, its application in industrial practise is restricted to a rather low number of measurement tasks and material systems. In particular it is hardly used for the particle size analysis of submicron emulsions. This thesis therefore aims to the evaluation of the ultrasonic spectroscopy regarding its applicability to the online characterization of submicron emulsions. Main issues of the thesis are the modelling of sound attenuation in dense particle systems, the estimation on the influence that surfactant layers exert on sound attenuation, the resolution at which size distribution can be measured, the sensitivity of calculated size distributions to model parameters (particle concentration and material properties) and the analysis of measured attenuation spectra by unknown model parameters. The meanining of these issues are illustrated for typical characterization tasks.
63

Обоснование параметров фильтровально-пульсационной машины для обезвоживания глубоководных органо-минеральных осадков / Begründung der Parameter einer pulsierenden Filtermaschine zur Entwässerung organisch-mineralischer Tiefsee-Sedimente

Shevchenko, Oleksandr 27 September 2017 (has links) (PDF)
В результате проведенных теоретических и экспериментальных исследований процесса обезвоживания тонкодисперсной суспензии глубоководных органо-минеральных осадков Черного моря в фильтровально-пульсационной машине определены основные ее параметры, а также установлены зависимости этих параметров от показателей процесса фильтрования. Разработаны конструкция фильтровально-пульсационной машины и методика расчета ее параметров применительно к морским органо-минеральным осадкам, а также обоснованы рациональные режимные и конструктивные параметры данной машины. / Die Dissertation begründet die Parameter der pulsierenden Filtermaschine zur Entwässerung feindisperser Suspension, organisch-mineralische Tiefsee-Sedimente aus dem Schwarzen Meer, welche aufgrund der theoretischen und experimentallen Untersuchungen des Filtrationsprozesses beim statischen und pulsierenden Druck, sowie der entwickelten Abhängigkeiten dieser Parameter von Suspensionseigenschaften und Filtrationskennwerten definiert werden können. Es wurde eine neue Konstruktion der pulsierenden Filtermaschine und eine Methodik zur Parameterberechnung in Bezug auf marine Sedimentsuspension entwickelt, sowie die rationellen Betriebs- und Konstruktionsparameter der pulsierenden Filtermaschine definiert. Dabei wurde auch die Effizienz unter Einsatz von pulsierenden im Vergleich zum statischen Druck bei der Sedimententwässerung bewertet.
64

Closure relations for CFD simulation of bubble columns

Ziegenhein, Thomas, Lucas, Dirk, Rzehak, Roland, Krepper, Eckhard 28 May 2014 (has links)
This paper describes the modelling of bubbly flow in a bubble column considering non-drag forces, polydispersity and bubble induced turbulence using the Eulerian two-fluid approach. The set of used closure models describing the momentum exchange between the phases was chosen on basis of broad experiences in modelling bubbly flows at the Helmholtz-Zentrum Dresden-Rossendorf. Polydispersity is modeled using the inhomogeneous multiple size group (iMUSIG) model, which was developed by ANSYS/CFX and Helmholtz-Zentrum Dresden-Rossendorf. Through the importance of a comprehensive turbulence modeling for coalescence and break-up models, bubble induced turbulence models are investigated. A baseline has been used which was chosen on the basis of our previous work without any adjustments. Several variants taken from the literature are shown for comparison. Transient CFD simulations are compared with the experimental measurements and Large Eddy Simulations of Akbar et al. (2012).
65

Обоснование параметров фильтровально-пульсационной машины для обезвоживания глубоководных органо-минеральных осадков

Shevchenko, Oleksandr 16 August 2017 (has links)
В результате проведенных теоретических и экспериментальных исследований процесса обезвоживания тонкодисперсной суспензии глубоководных органо-минеральных осадков Черного моря в фильтровально-пульсационной машине определены основные ее параметры, а также установлены зависимости этих параметров от показателей процесса фильтрования. Разработаны конструкция фильтровально-пульсационной машины и методика расчета ее параметров применительно к морским органо-минеральным осадкам, а также обоснованы рациональные режимные и конструктивные параметры данной машины.:ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ, СИМВОЛОВ, ЕДИНИЦ,ТЕРМИНОВ И СОКРАЩЕНИЙ..................................................................................5 ВВЕДЕНИЕ.......................................................................................9 РАЗДЕЛ 1 СОВРЕМЕННОЕ СОСТОЯНИЕ ИССЛЕДОВАНИЙ МЕТОДОВ И УСТРОЙСТВ ДЛЯ ОБЕЗВОЖИВАНИЯ ОРГАНО-МИНЕРАЛЬНЫХ ОСАДКОВ ЧЕРНОГО МОРЯ............................................................................................17 1.1 Характеристика глубоководных органо-минеральных осадков Черного моря как объекта обезвоживания..................................................................17 1.2 Анализ и классификация оборудования для обезвоживания мелкодисперсных суспензий механическим способом........................22 1.3 Анализ фильтровального оборудования для обезвоживания мелкодисперсных суспензий...........................................................26 1.4 Современное состояние исследований процесса фильтрования мелкодисперсных суспензий...........................................................35 1. 5 Пути повышения производительности фильтровальных машин....43 1.6 Выводы, цель и задачи исследований.........................................48 РАЗДЕЛ 2 ТЕОРЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ РЕЖИМА РАБОТЫ ФИЛЬТРОВАЛЬНО-ПУЛЬСАЦИОННОЙ МАШИНЫ ПРИ ПУЛЬСИРУЮЩЕМ ДАВЛЕНИИ...........50 2.1 Компоновочная схема и основные параметры фильтровально-пульсационной машины.........................................................................................50 2.2 Анализ процесса фильтрования тонкодисперсной суспензии при пульсирующем давлении.......................................................................................58 2.3 Критериальное моделирование процесса обезвоживания тонкодисперсной суспензии......................................................................................70 2.4 Определение параметров экспериментальной установки.............74 Выводы по разделу.........................................................................78 РАЗДЕЛ 3 ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ РЕЖИМОВ РАБОТЫ ФИЛЬТРОВАЛЬНО-ПУЛЬСАЦИОННОЙ МАШИНЫ.................................80 3.1 Выбор методов проведения экспериментальных исследований.....80 3.2 Выбор факторов и интервалов варьирования..............................81 3.3 Постановка и проведение экспериментальных исследований.......86 3.3.1 Лабораторные исследования свойств образцов суспензии.........86 3.3.2 Исследование режима работы фильтровально-пульсационной машины для обезвоживания ГВОМО при пульсирующем давлении........................91 3.3.3 Исследование режима работы фильтровально-пульсационной машины для обезвоживания ГВОМО при статическом давлении..........................101 3.4 Обработка результатов эксперимента и построение математической модели режима работы машины при пульсации давления................102 3.5 Математическая модель режима работы машины при статическом давлении.....................................................................................110 3.6 Анализ влияния параметров фильтровально-пульсационной машины на процесс фильтрования ГВОМО при пульсирующем давлении........................113 3.7 Влияние динамической составляющей давления на процесс обезвоживания ГВОМО.........................................................................................127 Выводы по разделу.......................................................................130 РАЗДЕЛ 4 ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ И РЕАЛИЗАЦИЯ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ......................................................133 4.1 Обоснование параметров фильтровально-пульсационной машины для обезвоживания ГВОМО..................................................................133 4.2 Методика определения параметров фильтровально-пульсационной машины для обезвоживания ГВОМО..................................................................142 4.3 Эффективность обезвоживания ГВОМО при пульсирующем давлении и ожидаемый экономический эффект..................................................................150 4.4 Перспективы использования результатов исследований.............154 Выводы по разделу........................................................................162 ВЫВОДЫ.......................................................................................164 СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ......................................167 Приложения Приложение А. Расчет параметров лабораторной фильтровальной установки......................................................................................181 Приложение Б. Построение математической модели процесса фильтрования ГВОМО при пульсирующем давлении...............................................186 Приложение В. Результаты экспериментальных исследований процесса фильтрования ГВОМО при статическом давлении.............................190 Приложение Г. Экспериментальные исследования процесса уплотнения ГВОМО..........................................................................................196 Приложение Д. Методика определения рациональных параметров фильтровальной машины для обезвоживания морских органо-минеральных осадков....201 Приложение Е. Методика определения параметров фильтровально-пульсационной машины для обезвоживания органо-минеральных осадков.................204 Приложение Ж. Методика определения параметров вибрационной фильтровальной машины для обезвоживания ГВОМО со шнековой выгрузкой осадка...207 Приложение И. Акты внедрения.......................................................210 / Die Dissertation begründet die Parameter der pulsierenden Filtermaschine zur Entwässerung feindisperser Suspension, organisch-mineralische Tiefsee-Sedimente aus dem Schwarzen Meer, welche aufgrund der theoretischen und experimentallen Untersuchungen des Filtrationsprozesses beim statischen und pulsierenden Druck, sowie der entwickelten Abhängigkeiten dieser Parameter von Suspensionseigenschaften und Filtrationskennwerten definiert werden können. Es wurde eine neue Konstruktion der pulsierenden Filtermaschine und eine Methodik zur Parameterberechnung in Bezug auf marine Sedimentsuspension entwickelt, sowie die rationellen Betriebs- und Konstruktionsparameter der pulsierenden Filtermaschine definiert. Dabei wurde auch die Effizienz unter Einsatz von pulsierenden im Vergleich zum statischen Druck bei der Sedimententwässerung bewertet.:ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ, СИМВОЛОВ, ЕДИНИЦ,ТЕРМИНОВ И СОКРАЩЕНИЙ..................................................................................5 ВВЕДЕНИЕ.......................................................................................9 РАЗДЕЛ 1 СОВРЕМЕННОЕ СОСТОЯНИЕ ИССЛЕДОВАНИЙ МЕТОДОВ И УСТРОЙСТВ ДЛЯ ОБЕЗВОЖИВАНИЯ ОРГАНО-МИНЕРАЛЬНЫХ ОСАДКОВ ЧЕРНОГО МОРЯ............................................................................................17 1.1 Характеристика глубоководных органо-минеральных осадков Черного моря как объекта обезвоживания..................................................................17 1.2 Анализ и классификация оборудования для обезвоживания мелкодисперсных суспензий механическим способом........................22 1.3 Анализ фильтровального оборудования для обезвоживания мелкодисперсных суспензий...........................................................26 1.4 Современное состояние исследований процесса фильтрования мелкодисперсных суспензий...........................................................35 1. 5 Пути повышения производительности фильтровальных машин....43 1.6 Выводы, цель и задачи исследований.........................................48 РАЗДЕЛ 2 ТЕОРЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ РЕЖИМА РАБОТЫ ФИЛЬТРОВАЛЬНО-ПУЛЬСАЦИОННОЙ МАШИНЫ ПРИ ПУЛЬСИРУЮЩЕМ ДАВЛЕНИИ...........50 2.1 Компоновочная схема и основные параметры фильтровально-пульсационной машины.........................................................................................50 2.2 Анализ процесса фильтрования тонкодисперсной суспензии при пульсирующем давлении.......................................................................................58 2.3 Критериальное моделирование процесса обезвоживания тонкодисперсной суспензии......................................................................................70 2.4 Определение параметров экспериментальной установки.............74 Выводы по разделу.........................................................................78 РАЗДЕЛ 3 ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ РЕЖИМОВ РАБОТЫ ФИЛЬТРОВАЛЬНО-ПУЛЬСАЦИОННОЙ МАШИНЫ.................................80 3.1 Выбор методов проведения экспериментальных исследований.....80 3.2 Выбор факторов и интервалов варьирования..............................81 3.3 Постановка и проведение экспериментальных исследований.......86 3.3.1 Лабораторные исследования свойств образцов суспензии.........86 3.3.2 Исследование режима работы фильтровально-пульсационной машины для обезвоживания ГВОМО при пульсирующем давлении........................91 3.3.3 Исследование режима работы фильтровально-пульсационной машины для обезвоживания ГВОМО при статическом давлении..........................101 3.4 Обработка результатов эксперимента и построение математической модели режима работы машины при пульсации давления................102 3.5 Математическая модель режима работы машины при статическом давлении.....................................................................................110 3.6 Анализ влияния параметров фильтровально-пульсационной машины на процесс фильтрования ГВОМО при пульсирующем давлении........................113 3.7 Влияние динамической составляющей давления на процесс обезвоживания ГВОМО.........................................................................................127 Выводы по разделу.......................................................................130 РАЗДЕЛ 4 ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ И РЕАЛИЗАЦИЯ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ......................................................133 4.1 Обоснование параметров фильтровально-пульсационной машины для обезвоживания ГВОМО..................................................................133 4.2 Методика определения параметров фильтровально-пульсационной машины для обезвоживания ГВОМО..................................................................142 4.3 Эффективность обезвоживания ГВОМО при пульсирующем давлении и ожидаемый экономический эффект..................................................................150 4.4 Перспективы использования результатов исследований.............154 Выводы по разделу........................................................................162 ВЫВОДЫ.......................................................................................164 СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ......................................167 Приложения Приложение А. Расчет параметров лабораторной фильтровальной установки......................................................................................181 Приложение Б. Построение математической модели процесса фильтрования ГВОМО при пульсирующем давлении...............................................186 Приложение В. Результаты экспериментальных исследований процесса фильтрования ГВОМО при статическом давлении.............................190 Приложение Г. Экспериментальные исследования процесса уплотнения ГВОМО..........................................................................................196 Приложение Д. Методика определения рациональных параметров фильтровальной машины для обезвоживания морских органо-минеральных осадков....201 Приложение Е. Методика определения параметров фильтровально-пульсационной машины для обезвоживания органо-минеральных осадков.................204 Приложение Ж. Методика определения параметров вибрационной фильтровальной машины для обезвоживания ГВОМО со шнековой выгрузкой осадка...207 Приложение И. Акты внедрения.......................................................210
66

Untersuchung des Stabilitätsverhaltens von binären kolloidalen Suspensionen

Paciejewska, Karina Maria 20 December 2010 (has links)
Gegenstand dieser Arbeit war das Stabilitätsverhalten von binären kolloidalen Suspensionen mit hohen Feststoffkonzentrationen (z. B. keramische Suspensionen). Dabei wurde die Stabilität mit Hilfe des Sedimentationsverhaltens bewertet und mit dem Grenzflächenzustand korreliert, der als effektives Zetapotenzial erfasst wurde. Die Untersuchungen erfolgten an drei Oxiden mit unterschiedlichen physiko-chemischen Eigenschaften, wobei die Suspensionszusammensetzung und der pH-Wert über weite Bereiche variiert wurden. Ein wesentliches Ergebnis dieser Arbeit besteht im Nachweis, dass die Löslichkeit der einzelnen partikulären Komponenten in den binären Suspensionen zu einer gegenseitigen Beeinflussung der Grenzflächeneigenschaften führt und dadurch das Stabilitätsverhalten des gesamten Systems maßgeblich bestimmt. Von Relevanz ist zudem das Mischungsverhältnis, von dem zum einen das Löse- und Adsorptionsverhalten und zum anderen die Morphologie von Heteroaggregaten abhängt und das auf diese Weise auch für das makroskopische Verhalten entscheidend ist. Die Arbeit zeigt deutlich, dass das Reich der Kolloide neben universellen Mechanismen von stoffspezifischen Phänomenen beherrscht wird. Daraus folgt, dass eine allumfassende Behandlung der Stabilität nicht möglich ist. Vielmehr kann nur an Beispielen demonstriert werden, welche Art von Phänomenen auftreten und wie sie genutzt oder vermieden werden können.:Vorwort i Inhaltsverzeichnis iii Nomenklatur vii 1 Einleitung 1 1.1 Motivation 2 1.2 Zielstellung 3 1.3 Vorgehen 3 2 Grundlagen kolloidaler Suspensionen 4 2.1 Charakteristik kolloidaler Systeme 4 2.2 Grenzflächen in Suspensionen 5 2.2.1 Elektrochemische Doppelschicht 5 2.2.2 Wechselwirkung zwischen Ionen und Grenzflächen 9 2.2.3 Veränderung der Grenzflächen durch das Lösen der Partikel 12 2.3 Wechselwirkungen zwischen kolloidalen Partikeln 14 2.3.1 Doppelschichtwechselwirkung 14 2.3.2 Van-der-Waals-Wechselwirkung 16 2.3.3 Bornsche Abstoßung 17 2.3.4 DLVO-Theorie 18 2.3.5 Nicht-DLVO-Effekte 19 2.4 Stabilität binärer Suspensionen 20 2.4.1 Partikelkoagulation in binären Systemen 21 2.4.2 Wechselwirkungen zwischen beschichteten Partikeln 28 2.5 Sedimentation konzentrierter Suspensionen 30 2.5.1 Sedimentationstypen 30 2.5.2 Sedimentation und Stabilität 33 2.6 Stand des Wissens 34 3 Eigenschaften der ausgewählten Oxide 35 3.1 Amorphes SiO2 35 3.1.1 Oberfläche von amorphen SiO2 36 3.1.2 Verhalten vom SiO2 in Wasser 36 3.1.3 Lösen von SiO2 37 3.2 -Al2O3 39 3.3 TiO2 42 4 Experimentelle Untersuchungen 43 4.1 Versuchsübersicht 43 4.2 Verwendete Partikelsysteme 44 4.2.1 Allgemeine Eigenschaften der verwendeten Partikelsysteme 44 4.2.2 Strukturelle Partikeleigenschaften 45 4.3 Verwendete Geräte 47 4.3.1 Elektroakustisches Spektrometer DT 1200 47 4.3.2 Analytische Photozentrifuge – LUMiFuge 116 49 4.4 Zubereitung und Handhabung der Suspensionen 51 4.4.1 Ansatz und Vorbehandlung der Suspensionsproben 52 4.4.2 Durchführung der Messungen 52 4.5 Bestimmung des effektiven Zetapotenzials 53 4.5.1 Auswertung für fraktale Partikel 53 4.5.2 Auswertung für binäre Systeme 55 4.6 Bestimmung der Probenstabilität 55 4.6.1 Durchführung der Sedimentationsanalysen 56 4.6.2 Deutung der Transmissionsprofile 56 4.6.3 Phänomenologische Bewertung der Transmissionsprofile 57 4.6.4 Quantitative Analyse der Transmissionsprofile 62 4.7 Bestimmung des gelösten SiO2 68 4.8 Bewertung der experimentellen Methodik 70 5 Ergebnisse 72 5.1 Wässrige Suspensionen einer partikulären Komponente 72 5.1.1 Einfluss von Art und Konzentration des Hintergrundelektrolyten auf den Zetapotenzial-pH-Verlauf am Beispiel von SiO2 72 5.1.2 Vergleich der Oxide bei standardmäßiger Probenvorbereitung 76 5.1.3 Bewertung der Ergebnisse für die Einstoffsuspensionen 87 5.2 Wässrige Suspensionen zweier unterschiedlicher partikulärer Komponenten 88 5.3 Binäre Suspensionen aus TiO2 und Al2O3 89 5.3.1 Zetapotenzialverläufe der TiO2/Al2O3-Suspensionen 89 5.3.2 Sedimentationsverhalten der TiO2/Al2O3-Suspensionen 91 5.3.3 Stabilität der Suspensionen aus TiO2 und Al2O3 98 5.4 Binäre Suspensionen aus TiO2 und SiO2 99 5.4.1 Zetapotenzialverläufe der TiO2/SiO2-Suspensionen 99 5.4.2 Sedimentationsverhalten der TiO2/SiO2-Suspensionen 100 5.4.3 Lösen und Ausfällung des SiO2 109 5.4.4 Einfluss des gelösten SiO2 auf die Grenzflächen der TiO2/SiO2-Suspensionen 118 5.4.5 Einfluss des gelösten SiO2 auf die Stabilität der TiO2/SiO2-Suspensionen 122 5.4.6 Stabilität der Suspensionen aus TiO2 und SiO2 128 5.5 Binäre Suspensionen aus Al2O3 und SiO2 129 5.5.1 Zetapotenzialverläufe der Al2O3/SiO2-Suspensionen 129 5.5.2 Sedimentationsverhalten der Al2O3/SiO2-Suspensionen 130 5.5.3 Einfluss der Löslichkeit von Al2O3 und SiO2 auf die Eigenschaften der binären Suspensionen 139 5.5.4 Stabilität der Suspensionen aus Al2O3 und SiO2 149 6 Zusammenfassung und Diskussion 150 6.1 Zusammenfassung der Ergebnisse 152 6.2 Diskussion und Ausblick 154 6.3 Fazit 157 7 Literaturverzeichnis 159 8 Abbildungsverzeichnis 180 9 Tabellenverzeichnis 188 Anhang A Hamaker-Funktion 191 Anhang B Berechnung der Stabilitätsverhältnisse 195 Anhang C Experimentelle Versuche 198 Anhang D Reproduzierbarkeit der Stabilitätsversuche 200 Anhang E Laborgeräte, Analysentechnik und Chemikalien 204 Anhang F Bestimmung von gelöstem SiO2 206
67

Thermal energy management and chemical reaction investigation of micro-proton exchange membrane fuel cell and fuel cell system using finite element modelling

McGee, Seán January 2015 (has links)
Fuel cell systems are becoming more commonplace as a power generation method and are being researched, developed, and explored for commercial use, including portable fuel cells that appear in laptops, phones, and of course, chargers. This thesis examines a model constructed on inspiration from the myFC PowerTrekk, a portable fuel cell charger, using COMSOL Multiphysics, a finite element analysis software. As an educational tool and in the form of zero-dimensional, two-dimensional, and three-dimensional models, an investigation was completed into the geometric construction, air conditions and compositions, and product materials with a best case scenario completed that summarizes the results identified. On the basis of the results of this research, it can be concluded that polyoximetylen and high-density polyethylene were considered as possible materials for the majority of the product, though a more thorough investigation is needed. Air flow of above 10 m/s, air water vapour mass fraction below 50% and initial temperature between 308K and 298K was considered in this best scenario. Suggestions on future expansions to this project are also given in the conclusion.

Page generated in 0.0525 seconds