• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 36
  • 36
  • 12
  • 11
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Urbanizing Agriculture; Vertical Farming as a Potential Solution to Food Security Issues

Quinn, Harley January 2017 (has links)
Sustainable Built Environments Senior Capstone Project / As countries around the world continue to deplete natural resources and as the world’s population continues to grow, many industries, as well as people, have begun to suffer from the strain on dwindling natural resources. Agriculture and food distribution industries send goods from all around the world to stock grocery stores, restaurants, and other retail centers. The high costs of the distribution format causes people to be unable to afford food even though the amount of production is more than sufficient. “Enough food is produced worldwide to feed all the people in the world (Leathers and Foster, 2009). However, despite this alarming truth, nearly one billion people are suffering from chronic hunger today. There are a wide range of factors that contribute to this problem, however, the most significant is poor food distribution.” (Mission: Feeding the World, 2014) In an attempt to diminish these issues, organizations such as the FAO (Food and Agriculture Organization of the United Nations) have focused their research on various ways to grow within smaller regions and lower transportation distances to limit costs. They focus on these attempts largely to reach their Urban Food and Supply goals of providing efficiency in distribution to stabilize supplies of low-cost food to provide for everyone rather than only those who can afford it. (FAO, 2000) Additionally, work has been done to decrease waste at points along the supply chain. The challenge and goal, however, should not be to limit the scope of travel by a small fraction, but completely eradicate it. Focusing on agricultural techniques that occur within urban areas could allow the growth of most agricultural products within the confines of a city. Practicing locally grown agricultural techniques could diminish food distribution costs as the distance of travel would become within a quick drive or walk. The inhabitants of the city could purchase food out of their own neighborhoods at a much lower cost. Restaurants and grocery stores could limit their supplies so that very little went to waste. Additionally, farms would be close by, meaning there would be no issues getting food in enough time as well as allowing a greater awareness of the product’s growing conditions. Residents would immediately have a much greater understanding of their food supply chain and could participate in the growing of those products. Classical agricultural techniques do not work in this setting. In typical agriculture techniques, the growing population will outgrow the amount of land we have to grow crops. (Biello, 2009) Already today, over 80% of the land that is suitable for raising crops is in use (FAO and NASA). Historically, some 15% of that has been laid waste by poor management practices (Despommier, 2011). To simply account for the population growth predicted, food production will have to increase by 70% according to the UN’s Food and Agriculture Organization (2011). As the same percentage of people move towards urban living, the question is, should the food production industries follow suit? Unfortunately, space is both limited and at a premium in an urban environment. Vertical farming could be a solution to agriculture needs with population growth. Vertical farming allows skyscrapers to be filled with floor upon floor of orchards and fields, producing crops all year round (Technology Quarterly, 2010). The benefits of successful vertical farming are exceptional as it could reduce transport costs and carbon emissions, free up land, reduce spoilage, and finally, limit the water usage as compared to classic agriculture techniques. Unfortunately, there are limited examples of vertical farming and it remains mostly untested; however, some examples have begun to show up around the world. In the US, no vertical farms have been constructed, although the materials and technology exists. In the 2015 World’s Fair in Milan, this technology was showcased by Biber Architects in their project “Farm Walls”, a hydroponic technology that allows the plants to grow without soil and vertically (ZipGrow, 2017). Knowing the potential benefits of this type of system, the question remains of should agriculture transfer to this arrangement? What are the potential costs of these systems and technologies? Do the benefits outweigh the costs? Finally, what potential downfalls could result for farmers in non-urban environments? This capstone intends to analyze the costs and benefits of vertical farming technology as well as explore case studies of existing vertical farms to determine if it is an appropriate strategy for cities to adapt to address food insecurity.
2

Sorunda Skafferi / Sorunda Skafferi

Lundgren, Sofia January 2023 (has links)
I SKAFFERIET integrerar man forskning och produktion av VERTIKAL ODLING med SAMLINGSPLATSER för folket i SORUNDA. Anställda forskar om och håller utbildningar kring hur man effektivast kan odla HYDROPONISKT. Huset kan ses som en MASKIN där utformningen baserats på att MAXIMERA FÖRUTSÄTTNINGARNA för vertikal odling.  Huset är uppdelat i två delar. Ena delen är glasad och där sker den vertikala odlingen. Den andra delen är klädd i SOLPANELER och där finns samlingsplatserna. Odlingen är separerad från övriga huset av HYGIENSKÄL. Tanken är att plantorna ska få SOLLJUS från söder, och vid behov finns UV-LAMPOR under vintern eller vid behov.  Näringslösningen som växterna står i kommer från biomassa, vilken i sin tur kommer från restprodukter vid jordbruket i området.Växterna står i en NÄRINGSLÖSNING bestående av REGNVATTEN, som samlas från taket till en vattentank i huset, samt av BIOMASSA som kommer från spillprodukter från jordbruket i Sorunda.  Varorna som produceras kommer att gå direkt till den LOKALA COOP samt de två LOKALA RESTAURANGERNA som idag ännu inte använder några lokala matvaror. / In Skafferiet they integrate research and production of vertical farming with gathering places for the people living in Sorunda. Employees research about vertical farming and hold courses about how to grow fruits and vegetables hydroponically in the most efficient way. The house is divided into two parts. The first part has a glass facade and that is where the vertical farming takes place. The second part has a sunpanel facade and inside is where the gathering rooms are. The two parts are divided because of hygiene reasons since the crops are being sold in the supermarket, in the bottom floor and in the two local restaurants in Sorunda which today do not sell any locally produced products.  The idea is that the crops get sunlight from the south and during night and winter there are UV-lamps to cover the plants´ needs. The crops stand in a nutrient solution of rain water, that is being collected from the roof into water tanks, and of biomass from waste products from Sorunda agriculture.
3

TORN I SKOG / Towers Among Trees

Forsblom, Oskar January 2022 (has links)
This project focuses on sustainable production. The monocultural large-scale agriculture and forestry contributes with great strain on nature in the form of deforestation and eutrophication. At the same time, production is a central part of rural supply, and inthe extension also for all residents of the country. Unlike the city where demand drives land prices to such an extent that it pays to build vertically, the typology of the countryside is rather characterized by the opposite. Still, the relatively low land value in the countryside is so important for the ecological and economic sustainability of the whole country. What would happen if we priced the ecological values in evaluation of rural land prices, could it also be possible to build vertically even there? With this as a starting point, I have designed a vertical aquaponic cultivation tower, which produces both vegetables and crops, but also fish and energy. The tower is clad with both solar cells and solar panels, which ensures a sustainable self-sufficient energy supply, while excess energy can also supply surrounding buildings and businesses. In this project, I have replaced a 110 ha large cultivation area with vertical cultivation towers corresponding to the same production capacity in crops but which to the surface only occupy 1.1 ha. My idea with the saved land is to allow it to return to nature, primeval forest in the long run. In addition to the obvious ecological benefits, a changed use of land can enable a place for recreation in the middle of this “tower forest”, something that the classic arable farming rarely allows to any great extent. / I detta tredje och avslutande projekt här i Alberga har jag tagit avstamp i en av demest centrala utmaningarna för landsbygden. Detta handlar om hållbar produktion.Av Sveriges totala landyta brukas idag 8 % av marken för jordbruk, att jämföramed den bebyggda ytan på 3 %. Ytterligare ca 62 % nyttjas för skogsbruk. (SCB,Markanvändningen i Sverige). Det monokulturella storskaliga jord och skogsbruketbidrar med stora påfrestningar för naturen i form av avskogning och övergödning.Samtidigt är produktionen en central del av landsbygdens försörjning, och iförlängningen även för alla landets invånare. Till skillnad från i staden där efterfrågan driver markpriser i en sådan grad att detlönar sig att bygga på höjden är landsbygdens typologi snarare kännetecknad av detmotsatta. Ändå är den relativt lågt värderade marken på landsbygden så viktig förden ekologiska och ekonomiska hållbarheten för hela landet. Vad skulle hända om viprisade in de ekologiska värdena i landsbygdens markpriser, skulle det då kunna lönasig att även där bygga på höjden? Med detta som utgångspunkt har jag utformat ett vertikalt aquaponiskt odlingstorn, som både producerar grönsaker och grödor, men även fisk och energi. Tornet är klätt med både solceller och solpaneler vilket säkerställer en hållbar självförsörjande energitillgång, samtidigt som överskott av energi även kan förse omkringliggande bebyggelse och verksamheter. I detta projekt har jag ersatt ett 110 ha stort odlingsareal med vertikala odlingstorn motsvarande samma produktionskapacitet i grödor men som till ytan bara upptar 1,1 ha. Min tanke med den bespararade marken är att tillåta den återgå till skog, urskog på lång sikt.Förutom de uppenbara ekologiska fördelarna så kan även den ändrade markanvändingenmöjliggöra en plats för rekreation mitt i odlingstornsskogen, något som det klassiskaåkerjordbruket sällan tillåter i någon större utsträckning.
4

AT THE TABLE; AN INVESTIGATION OF HOW GROWING, COOKING, AND SHARING FOOD TOGETHER CAN BRING A WEALTH OF BENEFITS

Troilo, Angeline M 01 January 2019 (has links)
MOTIVATION: The value of family mealtime has been well documented by decades of academic research. Children from families, (regardless of race, class or income), that routinely sit down to a meal together, suffer less depression, obesity and substance abuse. They also stay healthier and do better in school (Benefits 2018). There are nutrition, health, social, and mental benefits to eating with others. Research has shown that people eat more fruits and vegetables and other nutrient-rich foods when they share a meal with others. They also drink less soda and eat less fried foods (Benefits 2018). Eating meals together teaches children better communication skills and the opportunity to learn more words (Benefits 2018). PROBLEM: In environments that have limited fresh fruits and vegetables, yet numerous sweet and salty snack food, food insufficiency, and infrequent family meals have been found to be associated with poor dietary intake and/or obesity. (Mason 2014). People and families may make decisions based on their environment or community. For example, a person may choose not to walk or bike to the store or to work because of a lack of sidewalks or safe bike trails. Community, home, child care, school, health care, and workplace settings can all influence people’s daily behaviors. Therefore, it is important to create environments in these locations that make it easier to engage in physical activity and eat a healthy diet (Adult 2018). If we know that eating nutritious meals together at home equals can reduce stress, obesity, and depression, and lead to a happier life, why do people still make other choices? Lack of food education? Resources? Time? METHODS: Direct observational and objective data was collected through a survey to better understand the choices that people make. Research through articles, books, and documentaries will support my findings on the benefits of community kitchens and gardens. Precedents include Shalom Farms, Feed More, and other community kitchens in the country RESULTS: Despite intense nationwide efforts to improve healthy eating, progress has plateaued, and health biases remain (Berge 2017). Community kitchens have been associated with enhanced food skills, improved community food security, and improved social interactions (Iacovou 2013). Studies of community kitchen-based nutrition and cooking instruction program for parents and children suggests increased enjoyment of cooking and decreased consumption of meals away from home (Iacovou 2013). REFLECTIONS & CONCLUSIONS: How might a community cooking school, garden, and table where members share knowledge, resources, and labor to prepare, cook, and consume food improve the member’s health? A kitchen-based nutrition and cooking instruction program for parents and children would bring food freedom, or the right to food, implying that sufficient food is available, that people have the means to access it, and that it adequately meets the individual’s dietary needs and an environment to learn basic cooking techniques and food gardening. This community cooking school and garden will highlight healthful eating, incorporating young children into growing their own produce, cooking, and emphasizing the emotional and social benefits of family meal time. In this space, a variety of programs for all experience and income levels would be available year round. Every class would end with a meal around the table, because eating together is as important as what’s on the plate.
5

Skyfarming

Graff, Gordon James 31 May 2011 (has links)
This thesis presents the argument that the concept of vertical farming can help resolve the long-standing paradox of humanity’s inclination toward exponential demographic and economic growth while inhabiting a planet of limited material means. The document is comprised of two parts. The first establishes the intellectual framework necessary to assess agriculture’s effect on human and ecological systems, and explores the philosophies central to rationalizing high-density indoor agriculture with the objectives of human sustainability. The second part focuses exclusively on exploring the technologies and design strategies of the vertical farming concept. This aim is facilitated through the illustration of three design projects, each of which represents a distinct variant of the vertical farming concept. In order to ground the largely conceptual notion of vertical farming within a real-world economic context the thesis includes a thorough cost-analysis of a simplified fourth design. The thesis concludes by addressing the vertical farm’s potential to transform urban resource metabolism from its existing linear dependence on the external environment to a more self-contained, cyclical resource flow reminiscent of that exhibited by natural ecosystems.
6

Skyfarming

Graff, Gordon James 31 May 2011 (has links)
This thesis presents the argument that the concept of vertical farming can help resolve the long-standing paradox of humanity’s inclination toward exponential demographic and economic growth while inhabiting a planet of limited material means. The document is comprised of two parts. The first establishes the intellectual framework necessary to assess agriculture’s effect on human and ecological systems, and explores the philosophies central to rationalizing high-density indoor agriculture with the objectives of human sustainability. The second part focuses exclusively on exploring the technologies and design strategies of the vertical farming concept. This aim is facilitated through the illustration of three design projects, each of which represents a distinct variant of the vertical farming concept. In order to ground the largely conceptual notion of vertical farming within a real-world economic context the thesis includes a thorough cost-analysis of a simplified fourth design. The thesis concludes by addressing the vertical farm’s potential to transform urban resource metabolism from its existing linear dependence on the external environment to a more self-contained, cyclical resource flow reminiscent of that exhibited by natural ecosystems.
7

Effect of Aquaponic vs. Hydroponic Nutrient Solution, Led Light Intensity and Photoperiod on Indoor Plant Growth of Butterhead, Romaine and Kale (<i>L. Sativa, B. oleracea</i>)

Foster, Sean M 01 June 2018 (has links) (PDF)
Vertical farming has been proposed as a solution for providing food security for an increasing, urbanized human population. Light-emitting diode (LED) technology has become increasingly affordable and efficient, making it an ideal choice as artificial lighting for indoor farms. Still largely undiscovered parameters are the optimal plant varieties and types of production systems for plant growth, profit, and human nutrition. Aquaponics may be able to provide sustainable animal protein for vertical farms, increasing their ability to provide more substantial nutrition to consumers. This research aimed to better understand vertical farming as a food production system, and to determine if aquaponics can be an appropriate and applicable fit for it. The experiment was a randomized, factorial design with three independent variables: (1) LED photoperiod interval (2) LED-plant distance, and (3) nutrient solution, as well as several dependent variables to assess both plant yield and quality. A 4-tiered shelving unit was constructed for nutrient film technique (NFT) plant production, and treatments were assigned to each row: (1) LED experiment: Row A, 12/12hr reduced photoperiod with adjustable LEDs 4in. above plant surface; Row B, 2/1hr altered photoperiod interval relative to the control; Row C (control), 16/8hr “standard” photoperiod. (2) Nutrient experiment: Row C, aquaponic nutrient solution; Row H, hydroponic nutrient solution. Rows C and H had matched photoperiod and light intensity. Kale from Row A had significantly lower fresh and dry plant yield relative to the control, Row C (p<0.05). Hydroponic romaine, Row H, had significantly higher plant yield relative to aquaponics, Row C (p<0.05). Butterhead yields were not significantly different in any treatments (p>0.05). Future research may implement a larger sample size of only one plant variety, harvest plants earlier, limit light intensity variation, effectively “balance” the aquaponics system, and have more measures of plant “quality.”
8

Assessing the EnvironmentalPerformance of an In-Store VerticalFarming System : Identifying environmental hotspots for an in-store hydroponic vertical farmingsystem, using Life Cycle Assessment / Bedömning av miljöpåverkan från ett vertikalt odlingssystem placerad i matbutiker

Karlsson, Axel January 2023 (has links)
The world is facing many challenges to be able to ensure food security, such as anincreased food demand coming from an expanding world population andurbanisation, worsened agricultural opportunities from increased land deteriorationand significant environmental impacts coming from the food sector. Thus, there is aneed for new agricultural solutions to meet our needs whilst decreasing impactssimultaneously. A part of these solutions could be found in urban farming andhydroponic vertical farming systems (VFS). VFS uses artificial intelligence toregulate heat, lighting and irrigation to cultivate crops indoors. By placing thesesystems inside a grocery store, new opportunities for these crops are presented,such as water-and-nutrient recirculation, reductions in transports, usage ofpesticides and agricultural land, as well as opportunities for industrial symbiosis inheating and converting carbon dioxide to oxygen. Thus, the aim of this report is toassess the environmental hotspots and areas of improvement of an hydroponic VFSplaced in the grocery store using life cycle assessment (LCA). The study isconducted in partnership with Swegreen, which are the creators behind the studiedVFS model called SAGA, designed to be operated in medium sized grocery storesin Sweden. Results from the study show that energy consumption is a hotspot in most impactcategories, followed by impacts from infrastructure, fertilisers, packaging andconsumer waste management. However, for the climate change impact category,the sensitivity analysis indicates that the impact from the energy consumption ishighly dependent on what type of electricity mix that is being used, since thedifference in impact on climate change between the Swedish electricity mix, andNordic electricity mix ranged from 0.340 to 0.385 kg CO2 eq (carbon dioxideequivalents) per kg produced edible lettuce. Moreover, synergising effects fromintegrating the system into a grocery store, such as cleaning the air from carbondioxide and reusing residual heat from the system, showed the opportunities forgrocery stores to reduce impacts in climate change by up to 43% of the total climatechange impacts from the VFS. However, using these synergising effects effectivelywould require additional investments to build up the necessary infrastructure toachieve these avoided impacts. / Världen står inför många utmaningar för att kunna säkerhetsställalivsmedelsförsörjningen, såsom en ökad efterfrågan på livsmedel till följd av enväxande världsbefolkning och urbanisering, försämrade odlingsmöjligheter till följdav utarmad odlingsmark och växande miljöpåverkan från livsmedelssektorn. Detfinns därför ett behov av nya lösningar för att tillgodose våra behov och samtidigtminska påverkan inom jordbrukssektorn. En del av dessa lösningar kan hittas istadsodling och hydroponiska vertikala odlingssystem (VFS). VFS använderartificiell intelligens för att reglera värme, belysning och bevattning för att odla grödorinomhus. Genom att placera dessa system i en livsmedelsbutik skapas nyamöjligheter för dessa grödor, såsom recirkulation av vatten och näringsämnen,minskade transporter, användning av bekämpningsmedel och jordbruksmark, samtmöjligheter till industriell symbios vid uppvärmning och omvandling av koldioxid tillsyre. Syftet med denna rapport är att bedöma miljömässiga hotspots ochförbättringsområden för en hydroponisk VFS som placeras i livsmedelsbutiker medhjälp av livscykelanalys (LCA). Studien genomförs i samarbete med Swegreen, somär producenten av den studerade VFS-modellen kallad SAGA som är designad föratt drivas i medelstora livsmedelsbutiker i Sverige. Resultaten från studien visar att energiförbrukningen är en hotspot i de flestapåverkanskategorier, följt av påverkan från infrastruktur, gödningsmedel,förpackningar och konsumentens avfallshantering. För klimatpåverkan visarkänslighetsanalysen att påverkan från energiförbrukningen är starkt beroende avvilken typ av el som används, eftersom total klimatpåverkan för den Svenska elmixenoch den Nordiska elmixen var 0.340 respektive 0.385 kg CO2 -ekv(koldioxidekvivalenter) per kg producerad ätbar sallad. När systemet integreras i enlivsmedelsbutik bidrar det till synergieffekter från koldioxidavskiljning ochåteranvändning av spillvärme från systemet. Detta öppnar upp för möjligheter förmataffären att minska klimatpåverkan för upp till 43% av systemets totalaklimatpåverkan. Däremot skulle det krävas ytterligare investeringar för att bygga uppnödvändig infrastruktur för att uppnå dessa synergieffekter.
9

Gemüseanbau im Hochhaus

Schröder, Fritz-Gerald, Domurath, Nico 19 March 2015 (has links) (PDF)
Wissenschaftler sind weltweit bereits seit geraumer Zeit darum bemüht, Lösungen für die praktikable Umsetzung einer urbanen Produktion frischer Gemüse zu erarbeiten. Die hydroponischer Anbauverfahren haben ein überdurchschnittlich hohes Potential, wenn es um die Einsparung von Produktionsmitteln geht. So können im Pflanzenbau gegenüber dem Freilandanbau bis zu 90 Prozent des eingesetzten Wassers durch geschlossene Kreisläufe eingespart werden. Diese Kreisläufe vermeiden zudem den Eintrag von Düngemittel in die Umwelt. Der geschützte Anbau in Hochhäusern sorgt für ein optimales Pflanzenwachstum ohne ungünstige Witterungseinflüsse. So ist nicht nur eine sichere marktnahe Produktion gewährleistet, es kann auch das ganze Jahr hindurch produziert werden. Transporte von Produkten aus weit entfernten Gegenden anderer Länder können somit vermieden werden. Hinzu kommt die Flächenersparnis und die damit hohe Flächenproduktivität führen. Dennoch zeigen erste Umsetzungsversuche auf, dass es noch einen hohen Grad an Forschungs- und Entwicklungsarbeit bedarf bis eine profitable Lösung für den Markt bereit steht. Insbesondere der hohe technische Aufwand und Energiebedarf erster Testanlagen sind hier als besondere Herausforderung anzusehen. In dem umfassend angelegten Forschungs- und Entwicklungsvorhaben mit dem Namen BrickBorn Farming – Nahrungsmittelproduktion in Gebäuden städtischer Gebiete sollen verschiedenste Aspekte weiterentwickelt und miteinander verknüpft werden.
10

ARTIFICIAL INTELLIGENCE FOR VERTICAL FARMING – CONTROLLING THE FOOD PRODUCTION

Abukhader, Rami, Kakoore, Samer January 2021 (has links)
The Covid-19 crisis has highlighted the vulnerability of access to food and the need for local and circular food supply chains in urban environments. Nowadays, Indoor Vertical Farming has been increased in large cities and started deploying Artificial Intelligence to control vegetations remotely. This thesis aims to monitor and control the vertical farm by scheduling the farming activities by solving a newly proposed Job-shop scheduling problem to enhance food productivity. The Job-shop scheduling problem is one of the best-known optimization problems as the execution of an operation may depend on the completion of another operation running at the same time. This paper presents an efficient method based on genetic algorithms developed to solve the proposed scheduling problem. To efficiently solve the problem, a determination of the assignment of operations to the processors and the order of each operation so that the execution time is minimized. An adaptive penalty function is designed so that the algorithm can search in both feasible and infeasible regions of the solution space. The results show the effectiveness of the proposed algorithm and how it can be applied for monitoring the farm remotely. / <p>The presentation was held in zoom</p>

Page generated in 0.0179 seconds