• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 4
  • 2
  • Tagged with
  • 54
  • 54
  • 18
  • 17
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Análise da diversidade genética de Begomovírus em tomateiro (Lycopersicon esculentum Mill) no Centro-Oeste Paulista /

Cotrim, Marco Antonio de Andrade, 1979- January 2005 (has links)
Orientador: Renate Krause Sakate / Banca: Marcelo Agenor Pavan / Banca: Ricardo Gioria / Resumo: A variabilidade genética dos vírus pertencentes ao gênero Begomovirus que infectam o tomateiro (Lycopersicon esculentum) foi avaliada em regiões produtoras do Centro-Oeste paulista. No período de janeiro de 2003 a fevereiro de 2004, 166 amostras de tomate apresentando sintomas típicos de doenças causadas por begomovírus, foram coletadas em propriedades produtoras de tomate. Após a extração do DNA, a infecção viral foi verificada por meio de PCR nessas amostras, utilizando-se oligonucleotídeos universais para o gênero. A presença de begomovírus foi observada em 60% das amostras coletadas. O sequenciamento direto dos produtos de PCR de 17 dessas amostras e comparação com seqüências de nucleotídeos depositadas no GenBank indicou a possível presença do Tomato severe rugose virus (ToSRV), da espécies tentativa Tomato yellow vein streak virus (ToYVSV), do Sida mottle virus (SiMoV) e de uma possível nova espécie. A presença do ToSRV e do SiMoV ainda não havia sido reportada no estado de São Paulo. Estes resultados indicam alta diversidade de espécies de begomovírus infectando tomate, servindo como um alerta para melhoristas que trabalham na busca de fontes de resistência de tomate a este importante grupo de patógenos. / Abstract: The genetic variability of viruses belonging to the Begomovirus genus infecting tomatoes (Lycopersicon esculentum Mill) was evaluated in production areas from mid-western region of São Paulo state. From January 2003 to February 2004, 166 tomato samples with typical symptoms of begomovírus infection were collected from the field. After DNA extraction, the presence of begomoviruses was verified by PCR using universal primers. The presence of begomoviruses was observed on 60% of the collected samples. Direct sequencing of PCR products of 17 selected samples and comparison with nucleotide sequences deposited in GenBank indicated the possible presence of Tomato severe rugose virus (ToSRV), the tentative species Tomato yellow vein streak virus (ToYVSV), Sida mottle virus (SiMoV) and a possible new specie of begomovirus. The presence of ToSRV and SiMoV had not yet been reported in São Paulo state. These results indicate the existence of a high degree of genetic diversity of begomovírus species infecting tomatoes, and serve as an alert for breeders searching for resistance against this important group of pathogens. / Mestre
52

Atividade da superoxido dismutase, catalase, peroxidases e acumulo de H2O2 associados a infecção de um Carlavirus em soja e um Potyvirus no feijoeiro / Activity of superoxide dismutase, catalase, peroxidase and accumulation of H2O2 associated with the infection of a Carlavirus in soybean and a Potyvirus in bean

Messias, Ueliton 09 December 2008 (has links)
Orientador:Jorge Vega / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-12T04:10:59Z (GMT). No. of bitstreams: 1 Messias_Ueliton_D.pdf: 899792 bytes, checksum: c79dd05dd46e901a7add3fa66d7afc3f (MD5) Previous issue date: 2008 / Resumo: As plantas defendem-se continuamente contra ataques de bactérias, vírus, fungos, invertebrados e de outras plantas. O estresse oxidativo é um tipo de resposta fisiológica da planta após o reconhecimento do patógeno, podendo resultar em sintomas nas plantas dependendo da sensibilidade do hospedeiro, e também relacionada à mecanismos de defesa. Foram analisadas plantas de soja cultivares BRS132 (muito sensível) e IAC17 (pouco sensível) infectadas pelo Cowpea mild mottle virus (CPMMV) e plantas de feijoeiro cultivar BT2 infectado pelo Cowpea aphid-borne virus (CABMV). O trabalho teve como objetivos avaliar a concentração de peróxido de hidrogênio, analisar a resposta antioxidante das plantas à infecção viral quanto às variações na atividade da superóxido dismutase, catalase, ascorbato peroxidase, guaiacol peroxidase e siringaldazina peroxidase e verificar as localizações dos vírus e das peroxidases em diferentes tecidos das plantas. O CPMMV induziu uma doença aguda, com sintomas severos e culminando com a morte da planta de soja 'BRS132'. Na soja 'IAC17', o vírus induziu uma doença crônica com mosaico leve a partir da segunda folha trifoliolada. As concentrações de peróxido de hidrogênio e as atividades da catalase, ascorbato peroxidase, guaiacol peroxidase e siringaldazina peroxidase foram maiores nas plantas infectadas, tanto na soja 'BRS132' como na soja 'IAC17', em relação às plantas sadias. O CPMMV foi localizado nos tecidos do pecíolo e do caule, na soja 'BRS132' nas regiões periféricas e medula, e na soja 'IAC17' principalmente nas regiões periféricas. No feijoeiro cultivar BT2, o CABMV induziu resposta aguda na primeira folha foram maiores nas plantas infectadas, exceto a atividade da superóxido dismutase, que apresentou valores similares nas plantas infectadas e nas sadias. O CABMV foi localizado nas regiões periféricas e medula dos tecidos do pecíolo, e no caule a invasão foi limitada à região periférica. As peroxidases e a siringaldazina peroxidase foram localizadas nas mesmas regiões do pecíolo onde foram detectados o CPMMV e o CABMV. No feijoeiro 'BT2', a infecção viral induziu uma resposta semelhante à observada na soja 'BRS132', com algumas diferenças relacionadas ao fato de que neste caso, a infecção pelo CABMV não resultou na morte da planta de feijoeiro. Também se observou aumento expressivo de atividade da siringaldazina peroxidase no 7º dia após inoculação, diferente da soja 'BRS132' em que este aumento ocorreu mais tarde. A invasão generalizada dos vírus no pecíolo foi semelhante em feijoeiro 'BT2' e soja 'BRS132', principalmente nos dias em que começou a ocorrer abscisão dos folíolos. Já a invasão do caule foi generalizada em soja 'BRS132' e limitada à região periférica em feijoeiro. Possivelmente, o aumento precoce de atividade da siringaldazina peroxidase em feijoeiro, já no 7º dia após inoculação, limitou a invasão do vírus aos tecidos periféricos do caule. Isto explicaria o fato de o feijoeiro 'BT2' não sofrer morte da gema apical e da planta. trifoliolada, apresentando sintomas de mosaico, maior rugosidade, lesões necróticas nas nervuras e folíolos ''fechados''. Nesta cultivar, todos os parâmetros avaliados. / Abstract: Plants defend themselves from attacks of bacteria, fungi, viruses, invertebrate and other plants. Oxidative stress is a kind of physiological response of the plant related to defense mechanisms after recognition the pathogen, which may result in disease symptoms depending on host sensitivity. In this work, plants of two varieties of soybean infected by Cowpea Mild Mottle Virus (CPMMV), one highly sensitive (BRS132) and other with low sensitivity (IAC17) to the virus, were analyzed. Also, responses of bean plants (cv. Black Turtle 2, BT2) to Cowpea Aphid-Borne Mosaic Virus (CABMV) were examined. The parameters assessed included peroxide content (as hydrogen peroxide, H2O2), and activity of the following enzymes: superoxide dismutase, catalase, ascorbate peroxidase, guayacol peroxidase and syringadazine peroxidase. Distribution of virus and peroxidases in different tissues was also examined. In soybean cv BRS132, CPPMV induced an acute disease with severe symptoms finally resulting in plant death. In the less sensitive soybean cv IAC17, CPMMV induced a chronic disease with mild mosaic which was only visible in the second trifoliate and later leaves. Peroxide content and activity of guayacol and syringaldazine peroxidases were higher in infected plants of both cultivars. The virus was immuno-localized in stem and petiole cross sections, appearing in peripheral tissues and pith in cv BRS132, whereas in cv IAC17 it was localized mainly in the peripheral portion. In bean cv BT2, CABMV induced a acute response in the first trifoliate leaf, which presented a rough mosaic, necrotic lesions in veins and a "wilted" aspect. In this species all the assessed parameters showed higher values in the infected plants. Only the activity of superoxide dismutase was similar in healthy and infected plants. The vírus was localized in the pith and peripheral tissues of bean petioles, and only in the peripheral region of stems. Peroxidase and syringaldazine peroxidase activities were localized in the same tissues of the petiole where the CPMMV was localized in soybean plants and CABMV in bean plants. The response to CABMV observed in bean cv BT2 was similar to the response of soybean BRS132 to CPMMV, with some differences, since in bean the virus infection did not induce plant death. A significant rise in syringadazine activity was detected seven days after inoculation (DAI) in beans, while in soybean this increase occurred one day later. Both species also showed similar pattern of invasion of petiole tissues by the virus, mainly at the moment of abscission of leaflets. However, the virus invasion of stem was generalized in soybean BRS132 and contrastingly, limited to the peripheral tissues in bean. One possibility is that the early increase in syringaldazine activity observed in bean 7 DAI is indicative of some type of restriction to the spread of the virus, limiting it to the stem peripheral tissues. Probably this restricted spread of the virus in the stem underlies the survival of the apical meristem in bean cv BT2 in contrast to the death of the meristem in soybean cv BRS132. / Doutorado / Doutor em Biologia Vegetal
53

Relación estructura-función de las proteínas virales implicadas en el movimiento de los carmovirus y su interacción con factores celulares

Serra Soriano, Marta 10 March 2016 (has links)
[EN] Previous results obtained in the research group where this thesis has been performed shown that the MNSV uses the cellular secretory pathway, through its membrane protein DGBp2 (p7B) to reach the cell periphery. Knowledge about signals/motifs of membrane proteins that facilitate or permit such transport was then rather scarce. In this work we determined the residues involved in the transport of a viral transmembrane protein through the early secretory pathway (DGBp2, MNSV p7B). The residues involved are located in both the Nt (cytosolic) and Ct region (luminal) being one of the first examples in plants of a luminal ER export signal. With this information we have proposed a model in which after insertion and correct folding of the protein in the ER membrane, the luminal Ct of p7B interacts through the K49 residue with a transmembrane adapter associated with the actin cytoskeleton for movement and concentration in the RE-cortical. Nt cytoplasmic seems to be necessary to associate with the COPII vesicle components. Moreover, we have deepened in the study of the interactome of the carmovirus MPs and we have identified through a two-hybrid assay (Y2H), three cellular proteins capable of interacting with three DGBp1 from three different carmovirus (MNSV, TCV and CarMV). These cellular factors are the 60S ribosomal protein P3 (RPP3A), the g subunit of the translation initiation factor 3 (eIF3g) and the transcription factor WRKY36. These interactions were confirmed by BiFC. Furthermore, mutagenesis assays showed that binding domain of these DGBp1 is a FNF conserved domain at the very Ct end. The fact that these three proteins interact with the same host factors suggest a possible mechanism common to most if not all carmoviruses. The unstructured Nt region of MNSV CP, as for other RNA viruses, generally is responsible for viral RNA binding so it is usually called R domain. By using substitution and deletion mutants, we have shown that this R domain (which in MNSV comprising the first 94 residues) is not involved only in the packaging and binding of the viral genome, but is also responsible of CP multifunctionality. By EMSA assays with deletion mutants we could determine that the R domain was essential for binding of RNA. It was further noted that within the R domain there was a conserved region between aa 60 to 91 region, which appears to play a role in both the genomic RNA binding and in vitro encapsidation of subgenomic RNAs. However, in packaging assays, it was observed that the R domain is essential for full genome encapsidation and that the region between residue 31 and 91 is required for both cell to cell and systemic movement. Finally, using PVX as an expression vector, we showed that MNSV CP can act as a suppressor of silencing most likely by sequestering sRNAs. With very few exceptions, plant viruses use the phloem to move from infection sites to distal parts of the plant. In order to know the phloem proteome of infected plants and to identify in the future potential host proteins that facilitate or hinder the systemic transport of viruses, in the last chapter we conducted a comparative proteomic analysis by 2D-DIGE between phloem of MNSV-infected and healthy melon plants. From a total of 1046 spots, 25 were detected having significant abundance changes between the two conditions. After mass spectrometric analysis, 22 spots corresponding to 19 protein, were identified (13 of which were overrepresented and 9 had decreased abundance). Many of the identified proteins were involved in cell death and control of redox homeostasis. Two of these 19 proteins were never described in phloem proteomic assays. / [ES] Resultados previos obtenidos en el grupo de investigación donde se ha realizado la presente Tesis habían puesto de manifiesto que el MNSV utiliza la ruta de secreción celular, a través de su proteína de membrana DGBp2 (p7B), para alcanzar la periferia celular. Hasta el momento de realizar la presente Tesis los conocimientos sobre las señales/motivos de las proteínas de membrana que facilitan o permiten dicho transporte eran más bien escasos. En este trabajo hemos determinado los residuos implicados en la salida de una proteína transmembrana viral en la ruta de secreción temprana (DGBp2, p7B MNSV). Los residuos implicados se encuentran tanto en la región Nt (citosólica) como en la Ct (luminal) siendo éste uno de los primeros ejemplos descritos en plantas de señal luminal de salida de RE. Con todos estos datos se ha propuesto un modelo en el que después de la inserción y correcto plegamiento de la proteína en la membrana del RE, el Ct luminal de p7B interacciona a través del residuo K49 con un adaptador transmembrana asociado al citoesqueleto de actina para su movimiento y concentración en el RE cortical. El motivo Nt citoplasmático sería necesario para el ensamblaje de la vesícula COPII. Por otra parte se ha profundizado en el estudio del interactoma de las MPs de los carmovirus y se han identificado, mediante un ensayo de doble híbrido (Y2H), tres proteínas celulares capaces de interaccionar con tres DGBp1 procedentes de tres carmovirus diferentes (MNSV, TCV y CarMV). Estos factores celulares son la proteína P3 del ribosoma 60S (RPP3A), la subunidad g del factor de iniciación de la traducción 3 (eIF3g) y el factor de transcripción WRKY36. Estas interacciones fueron confirmadas por BiFC. Además, mediante ensayos de mutagénesis se demostró que el dominio de unión de estas DGBp1 es un dominio Ct (FNF) conservado. El hecho de que estas tres proteínas interaccionen con los mismos factores sugiere un posible mecanismo común para todos o la mayor parte de los carmovirus. Las CPs virales constituyen el paradigma de la multifuncionalidad proteica y, además de su obvio papel estructural, intervienen en un gran número de procesos del ciclo viral, incluyendo el transporte del RNA viral. La región Nt desestructurada de la CP del MNSV, al igual que para otros virus de RNA, generalmente es la encargada de unir el RNA viral por lo que se le suele llamar dominio R. Mediante mutantes de deleción y sustitución se ha demostrado que este dominio R (que en el MNSV comprende los primeros 94 residuos) no interviene solo en la encapsidación y unión del genoma viral, sino que es la responsable de la multifuncionalidad de la CP. Mediante EMSAs con mutantes de deleción se pudo determinar que la región R es esencial para la unión del RNA. Además se observó que dentro del dominio R se encuentra una región conservada entre los aa 60 al 91, que parece desempeñar un papel tanto en la unión de RNA genómico in vitro como en la encapsidación de RNAs subgenómicos. Sin embargo, en ensayos de encapsidación se observó que todo el dominio R es esencial para la encapsidación del genoma completo y que la región comprendida entre el residuo 31 y el 91 es necesaria para el movimiento tanto célula a célula como sistémico. Finalmente, utilizando PVX como vector de expresión, se demostró que la CP del MNSV puede actuar como un supresor del silenciamiento mediante la unión a los sRNAs. Con objeto de conocer el proteoma del floema de plantas infectadas y poder en el futuro identificar posibles proteínas del huésped que faciliten o dificulten el transporte sistémico de los virus, en el último capítulo se llevó a cabo un análisis proteómico comparativo, mediante 2D-DIGE, entre floemas de plantas de melón infectadas con MNSV y plantas sanas. Se detectaron 1046 spots de los cuales 2 poseían cambios significativos entre las dos condiciones Dos de estas 19 proteínas no habían sido descritas previamente en ens / [CAT] Resultats previs obtinguts en el grup de recerca on s'ha realitzat la present Tesi havien posat de manifest que el MNSV utilitza la ruta de secreció cel·lular, a través de la seva proteïna de membrana DGBp2 (p7B), per arribar-hi a la perifèria cel·lular. Fins al moment de realitzar la present Tesi els coneixements sobre els senyals/motius de les proteïnes de membrana que faciliten o permeten aquest transport eren més aviat escassos. En aquest treball hem determinat els residus implicats en el transport d'una proteïna transmembrana viral a través de la ruta de secreció primerenca (DGBp2, p7B MNSV). Els residus implicats es troben tant a la regió Nt (citosòlica) com en la Ct (luminal) sent aquest un dels primers exemples descrits en plantes de senyal luminal de sortida de RE. Amb totes aquestes dades s'ha proposat un model en el qual després de la inserció i correcte plegament de la proteïna en la membrana del RE, el Ct luminal de p7B interacciona a través del residu K49 amb un adaptador transmembrana associat al citoesquelet d'actina per al seu moviment i concentració en el RE cortical. El motiu Nt citoplasmàtic caldria per a l'acoblament de la vesícula COPII. D'altra banda s'ha aprofundit en l'estudi del interactoma de les MPs dels carmovirus i s'han identificat, mitjançant un assaig de doble híbrid (Y2H), tres proteïnes cel·lulars capaces d'interaccionar amb tres DGBp1 procedents de tres Carmovirus diferents (MNSV, TCV i CarMV). Aquests factors cel·lulars són la proteïna P3 del ribosoma 60S (RPP3A), la subunitat g del factor d'iniciació de la traducció 3 (eIF3g) i el factor de transcripció WRKY36. Aquestes interaccions van ser confirmades per BiFC. A més, mitjançant assajos de mutagènesi es va demostrar que el domini d'unió d'aquestes DGBp1 és un domini Ct (FNF) conservat. El fet que aquestes tres proteïnes interaccionen amb els mateixos factors suggereix un possible mecanisme comú per a tots o la major part dels carmovirus. Les CPs virals constitueixen el paradigma de la multifuncionalitat proteica i, a més del seu obvi paper estructural, intervenen en un gran nombre de processos del cicle viral, incloent el transport de l'RNA viral. La regió Nt desestructurada de la CP del MNSV, igual que per altres virus de RNA, generalment és l'encarregada d'unir l'RNA viral pel que se li sol cridar domini R. Mitjançant mutants de deleció i substitució s'ha demostrat que aquest domini R (que en el MNSV comprèn els primers 94 residus) no intervé només a la encapsidación i unió del genoma viral, sinó que és la responsable de la multifuncionalitat de la CP. Mitjançant EMSAs amb mutants de deleció es va poder determinar que el domini R essencial per a la unió de l'RNA. A més es va observar que dins del domini R es troba una regió conservada entre els aa 60 al 91, que sembla tenir un paper tant en la unió de RNA genòmic in vitro com en l'encapsidació de RNAs subgenómicos. No obstant això, en assajos d'encapsidació es va observar que tot el domini R és essencial per a l'encapsidació del genoma complet i que la regió compresa entre el residu 31 i el 91 és essencial per al moviment tant cèl·lula a cèl·lula com sistèmic. Finalment, utilitzant PVX com a vector d'expressió, es va demostrar que la CP del MNSV pot actuar com un supressor de silenciament mitjançant la unió als sRNAs. Amb l'objecte de conèixer el proteoma del floema de plantes infectades i poder en el futur identificar possibles proteïnes de l'hoste que facilitin o dificultin el transport sistèmic dels virus, en l'últim capítol es va dur a terme una anàlisi proteòmic comparatiu, mitjançant 2D-DIGE, entre floemas de plantes de meló infectades amb MNSV i plantes sanes. Es van detectar 1046 espots dels quals 25 tenien canvis significatius entre les dues condicions. Després de sotmetre les proteïnes a una anàlisi d'espectrometria de masses , es van identificar 19 proteïnes que corresponien a 22 espots Dues / Serra Soriano, M. (2016). Relación estructura-función de las proteínas virales implicadas en el movimiento de los carmovirus y su interacción con factores celulares [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/61634 / TESIS
54

Insights into the Molecular Mechanisms of the N6-Methyladenosine (m6A) Methylation Machinery in the Regulation of the Infection Cycle of RNA Plant Viruses

Alvarado Marchena, Luis Fernando 01 September 2022 (has links)
[ES] La N6-metiladenosina (m6A) es una modificación generalizada en los ARN celulares de diferentes organismos que puede afectar muchos procesos y vías celulares. En las plantas, ocurre mediante un complejo de metilación que contiene varias proteínas: MTA, MTB, FIP37, VIR y HAKAI. Esta modificación es eliminada por desmetilasas de la familia AlkB, mientras que los miembros de la familia ETC son las proteínas mejor descritas que reconocen y procesan los ARN m6A-modificados. Estudios de epitransciptómica viral han revelado un papel igualmente importante de m6A durante la infección por virus; sin embargo, no existe una función pro- o antiviral de m6A generalizada. El laboratorio donde se ha llevado a cabo este trabajo ha sido pionero en el estudio del efecto de m6A en la interacción planta-virus, utilizando como virus modelo el AMV. El AMV pertenece a la familia Bromoviridae, y su genoma está formado por tres (+)ssARN. Los ARN1/2 codifican las subunidades de replicasa (P1 y P2), mientras que el ARN3 codifica la proteína de movimiento (MP) y sirve como molde para la síntesis del sgARN4, que codifica la proteína de cubierta (CP). Al comienzo de esta tesis, nuestro laboratorio ya había informado sobre: la presencia de supuestos motivos m6A en el 3'UTR/RNA3, una región crítica para la replicación de AMV, la primera m6A-desmetilasa de Arabidopsis (ALKBH9B), la relevancia funcional de ALKBH9B para mantener niveles adecuados de m6A/A para la correcta replicación de AMV, la capacidad de la CP de AMV para interactuar con ALKBH9B, posiblemente para usurpar la actividad de ALKBH9B, y la capacidad de las proteínas de Arabidopsis ECT2/3/5 para interactuar con el ARNv de AMV que contienen m6A. Dada la relevancia funcional de m6A en la biología de AMV, en esta tesis se decidió profundizar en el conocimiento de las implicaciones del mecanismo de regulación de m6A en el ciclo infeccioso viral de AMV. Para ello, se decidió: profundizar en la comprensión funcional de la m6A-desmetilasa ALKBH9B, evaluar la función in vivo de los supuestos dos sitios m6A presentes en el 3'UTR/ARN3, y explorar una posible implicación de algunas m6A metiltransferasas en la infección causada por AMV. El mapeo de los subdominios funcionales de atALKBH9B determinó la presencia de IDRs en la región N-terminal, dentro del dominio interno similar a AlkB y en la región C-terminal. Alrededor del 78% del RBD identificado en ALKBH9B está contenido en el IDR C-terminal. Debido a que las IDRs se localizan con frecuencia en proteínas que se someten a LLPS, un proceso que probablemente contribuye a la formación y estabilidad de los gránulos de ARN, es posible que las IDR y la RBD de ALKBH9B puedan actuar de manera cooperativa para promover la formación de gránulos de ARN. El análisis de los putativos motivos DRACH localizados en el bucle de hpB y en el tallo inferior de hpE del 3'UTR/ARN3 de AMV demostró que son sitios críticos involucrados en la replicación in vivo de AMV. La identidad de los residuos 2012A, 2013A y 2014A en el bucle hpB parece ser un requisito estructural clave para la replicación y/o acumulación de AMV. Con respecto a hpE, nuestros resultados determinaron que el supuesto residuo de m6A (1902A), así como el apareamiento de bases del tallo inferior de hpE, también son requisitos esenciales para la síntesis in vivo de ARNs de cadena positiva en AMV. Hasta donde sabemos, esta es la primera evidencia en AMV que muestra que el bucle de hpB y el tallo inferior de hpE están involucrados en la replicación/acumulación viral y la síntesis de ARNs de cadena positiva, respectivamente. Finalmente, en cuanto al estudio de la influencia de las m6A-metiltransferasas en el ciclo de infección viral de AMV, no se determinó un efecto proviral y/o antiviral en el complejo m6A-ARNm metiltransferasa conformado por atMTA:atMTB, ni en el putativo complejo m6A- ARNr metiltransferasa conformado por atMETTL5-like:atTRMT112-like sobre la biología de AMV. / [CA] La N6-metiladenosina (m6A) és una modificació generalitzada en els ARN cellulars de diferents organismes que pot afectar molts processos i vies cellulars. En les plantes, ocorre mitjançant un complex de metilació que conté diverses proteïnes: MTA, MTB, FIP37, VIR i HAKAI. Aquesta modificació és eliminada per desmetilasas de la família AlkB, mentre que els membres de la família ETC són les proteïnes més ben descrites que reconeixen i processen els ARN m6A-modificats. Estudis de epitransciptómica viral han revelat un paper igualment important de m6A durant la infecció per virus; no obstant això, no existeix una funció pro- o antiviral de m6A generalitzada. El laboratori on s'ha dut a terme aquest treball ha sigut pioner en l'estudi de l'efecte de m6A en la interacció planta-virus, utilitzant com a virus model el AMV. El AMV pertany a la família Bromoviridae, i el seu genoma està format per tres (+) ssARN. Els ARN1/2 codifiquen les subunitats de replicasa (P1 i P2), mentre que l'ARN3 codifica la MP i serveix com a motle per a la síntesi del sgARN4, que codifica la CP. Al començament d'aquesta tesi, el nostre laboratori ja havia informat sobre: la presència de suposats motius m6A en el 3'UTR/RNA3, una regió crítica per a la replicació de AMV, la primera m6A-desmetilasa de Arabidopsis (ALKBH9B), la rellevància funcional d'ALKBH9B per a mantindre nivells adequats de m6A/A per a la correcta replicació de AMV, la capacitat de la CP de AMV per a interactuar amb ALKBH9B, possiblement per a usurpar l'activitat d'ALKBH9B, i la capacitat de les proteïnes de Arabidopsis ECT2/3/5 per a interactuar amb el ARNv de AMV que contenen m6A. Donada la rellevància funcional de m6A en la biologia de AMV, en aquesta tesi es va decidir aprofundir en el coneixement de les implicacions del mecanisme de regulació de m6A en el cicle infecciós viral de AMV. Per a això, es va decidir: aprofundir en la comprensió funcional de la m6A-desmetilasa ALKBH9B, avaluar la funció in vivo dels supòsits dos llocs m6A presents en el 3'UTR/ARN3, i explorar una possible implicació d'algunes m6A metiltransferasas en la infecció causada per AMV. El mapatge dels subdominis funcionals de atALKBH9B va determinar la presència de IDRs a la regió N-terminal, dins del domini intern similar a AlkB i a la regió C-terminal. Al voltant del 78% del RBD identificat en ALKBH9B està contingut en el IDR C-terminal. Pel fet que les IDRs es localitzen amb freqüència en proteïnes que se sotmeten a LLPS, un procés que probablement contribueix a la formació i estabilitat dels grànuls d'ARN, és possible que les IDR i la RBD d'ALKBH9B puguen actuar de manera cooperativa per a promoure la formació de grànuls d'ARN. L'anàlisi dels putatius motius DRACH localitzats en el bucle de hpB i en la tija inferior de hpE del 3'UTR/ARN3 de AMV va demostrar que són llocs crítics involucrats en la replicació in vivo de AMV. La identitat dels residus 2012A, 2013A i 2014A en el bucle hpB sembla ser un requisit estructural clau per a la replicació i/o acumulació de AMV. Respecte a hpE, els nostres resultats van determinar que el suposat residu de m6A (1902A), així com l'aparellament de bases de la tija inferior de hpE, també són requisits essencials per a la síntesi in vivo de ARNs de cadena positiva en AMV. Fins on sabem, aquesta és la primera evidència en AMV que mostra que el bucle de hpB i la tija inferior de hpE estan involucrats en la replicació/acumulació viral i la síntesi de ARNs de cadena positiva, respectivament. Finalment, quant a l'estudi de la influència de les m6A-metiltransferasas en el cicle d'infecció viral de AMV, no es va determinar un efecte proviral i/o antiviral en el complex m6A-ARNm metiltransferasa conformat per atMTA:atMTB, ni en el putatiu complex m6A-ARNr metiltransferasa conformat per atMETTL5-like:atTRMT112-like sobre la biologia de AMV. / [EN] N6-methyladenosine (m6A) is a widespread modification on cellular RNAs of different organisms that can impact many cellular processes and pathways. In plants, m6A-methylation is mainly installed by a methylation complex containing several proteins: MTA, MTB, FIP37, VIR, and HAKAI. This modification is removed by demethylases of the AlkB family, and members of the ECT family are the best described proteins that recognize and process m6A-modified RNAs. Studies of viral epitransciptomics have revealed an equally important role of m6A during virus infection; however, there is no global pro- or antiviral role of m6A that can be generalized. The laboratory where this work was carried out has been a pioneer in the study of the effect of m6A on plant-viruses, using AMV as a model-virus. AMV belongs to the Bromoviridae family and, as the rest of the members of this family, its genome consists of three (+)ssRNAs. RNA1 and RNA2 encode the replicase subunits (P1 and P2), whereas RNA 3 encodes the MP and serves as a template for the synthesis of sgRNA 4, which encodes CP. At the beginning of this thesis, our laboratory had already reported on: the presence of putative m6A-motifs in the 3'UTR RNA3, a critical region for AMV replication, the first Arabidopsis m6A-demethylase (ALKBH9B), the functional relevance of ALKBH9B to maintain adequate m6A/A levels for correct AMV replication, the ability of AMV-CP to interact with ALKBH9B, possibly to usurp ALKBH9B activity, and the capability of Arabidopsis ECT2/3/5 to interact with m6A-containing AMV vRNAs. Given the functional relevance of m6A on the biology of AMV, in this thesis it was decided to deepen the knowledge of the implications of the m6A regulation mechanism on the viral infectious cycle of AMV. For this, it was decided: deepen the functional understanding of the m6A-demethylase ALKBH9B, evaluate the in vivo function of the putative two m6A-sites present in the 3'UTR-RNA 3, and explore a possible involvement of some m6A-methyltransferases in infection caused by AMV. We mapped functional subdomains in the atALKBH9B m6A-demethylase required for its binding to the vRNA and to the CP of AMV. Remarkably, it was observed the presence of IDRs in the N-terminal region, within the internal domain like AlkB and in the C-terminal region. About 78% of the RBD identified in ALKBH9B is contained in the C-terminal IDR. In this context, it has been proposed that the capability to specifically target different RNAs in RBPs containing IDRs is due to conformational flexibility as well as the establishment of extended conserved electrostatic interfaces with RNAs. Additionally, due that IDRs are frequently localized in proteins that undergo LLPS, a process that likely contributes to the formation and stability of RNA granules, it's possible that the IDRs and the RBD of ALKBH9B could act cooperatively to promote RNA granule formation. The analysis of the putative DRACH-motifs located in the hpB loop and the lower-stem of hpE in the 3'UTR RNA 3 present hot sites involved in AMV replication in vivo. The identity of residues 2012A, 2013A and 2014A in the hpB loop appears to be a key structural requirement for AMV replication and/or accumulation. Regarding hpE, our results determined that the putative m6A-residue 1902A, as well as the base pairing of the lower-stem of hpE, are also essential requirements for the in vivo plus-strand synthesis in AMV. To our knowledge, this is the first evidence in AMV to show that the hpB loop and the lower-stem of hpE are involved in viral replication/accumulation and plus-strand synthesis, respectively. Finally, regarding the study of the influence of m6A-methyltransferases on the viral infection cycle of AMV, a non-proviral and/or antiviral effect was determined in the m6A-mRNA methyltransferase complex made up of atMTA:atMTB, nor of the putative m6A-rRNA methyltransferase complex made up of atMETTL5-like:atTRMT112-like on the biology of AMV. / Alvarado Marchena, LF. (2022). Insights into the Molecular Mechanisms of the N6-Methyladenosine (m6A) Methylation Machinery in the Regulation of the Infection Cycle of RNA Plant Viruses [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/185122 / TESIS

Page generated in 0.0843 seconds