Spelling suggestions: "subject:"volcanic complex"" "subject:"volcanic 3complex""
1 |
Petrogêneses do complexo vulcânico Yate (42, 30ºS), Andes do Sul, Chile / Petrogenesis of the Yate Volcanic Complex (42, 30ºS), Andes Southern, ChileMella Barra, Mauricio Alejandro 17 February 2009 (has links)
O Complexo Vulcânico Yate (CVY) está localizado na Zona Vulcânica Sul dos Andes, Chile. É constituído pelos vulcões Yate, Hornopirén e Gualaihué, além de um conjunto de cones monogênicos conhecido como Centros Eruptivos Cordón Cabrera; aflora em uma área de aproximadamente 400 km2, representado por uma sequência vulcânica de mais de 2.000 metros de sessão vertical contínua. O Vulcão Yate é o maior dos vulcões do complexo, correspondendo a um tipo combinado constituído por cinco unidades litoestratigráficas que se estendem no tempo desde o Pleistoceno Superior (c. 122 ka) até o Holoceno. O Vulcão Hornopirén corresponde a um vulcão estromboliano com registro de atividade eruptiva mais antiga, no Pleistoceno Inferior-Médio (c. 1,4-0,26 Ma), estendendo-se até Holoceno. Por fim, o Vulcão Gualaihué corresponde a um vulcão tipo escudo com atividades efusiva, restrita ao Pleistoceno Médio (c. 440 ka), e freatomagmática no Holoceno. A assinatura geoquímica diversificada das rochas do CVY levou à individualização de quatro tipos de basaltos e andesitos basálticos (BABs) com associações mineralógicas particulares: (i) de alto alumínio e baixo magnésio (BAB-A), com olivina-clinopiroxênio-plagioclásio; (ii) de baixo alumínio e alto magnésio (BAB-AM), com olivina-plagioclásio; (iii) de alto magnésio (BO), com olivina; e (iv) de alto potássio (BAB-K), com coexistência de duas associações mineralógicas incongruentes, olivinaplagioclásio e plagioclásio-clinopiroxênio-orotopiroxênio. A assinatura isotópica desses BABs diferenciase apenas em termos da razão 87Sr/86Sr, em parte acompanhada pelas razões 06Pb/204Pb; as razões 143Nd/144Nd, no entanto, são pouco variáveis. Quando comparados, os BAB-A são as rochas mais radiogênicas, sendo que as razões isotópicas de Sr (> 0,70440) não se correlacionam com a razão Rb/La, sugerindo que o enriquecimento isotópico não teria relação com contaminação crustal. A modelagem quantitativa sugere que esses BABs poderiam ser produto de graus variáveis de fusão parcial de um manto peridotítico, na presença de água (c. 1%). Modelo petrogenético semelhante é proposto para os BAB-AM e BO, todavia com volume de água menor. Já os BAB-K apresentam claras evidências de desequilíbrio mineral, sugerindo a atuação de ambos assimilação e mistura de magmas na sua gênese.Com respeito às rochas mais evoluídas (ABSiO2, andesitos e dacitos), presentes exclusivamente no Vulcão Yate, as características texturais e químicas são pouco conclusivas, sendo as tendências geoquímicas divergentes daquelas típicas de cristalização fracionada. O comportamento geoquímico, endossado pelas texturas de desequilíbrio mineral comuns a esses magmas, mostra mistura (mixing ou mingling) de magmas como um mecanismo importante em suas histórias petrogenéticas. Por fim, a gênese dos riolitos (com anfibólio) parece sugerir fusão parcial de uma crosta anfibolítica ou cristalização fracionada a partir de um magma andesítico, a ~12 km de profundidade. A evolução magmática no CVY, desde o Pleistoceno Inferior-Médio até o Holoceno, incluiria atividade eruptiva de magmas básicos (BABs), ao longo de estruturas N-S (Vulcão Hornopirén) e NE-SW (Vulcão Gualaihué), os quais também devem ter interagido com uma câmara magmática em evolução (Vulcão Yate, c. 10 km de profundidade), provavelmente disposta na junção destas estruturas. Essa interação teria produzido graus variáveis de mistura, cristalização fracionada e assimilação crustal de seus produtos. / The Yate Volcanic Complex (CVY) is located in the Southern Volcanic Zone of the Chilean Andes, at 42°30S, comprising the Yate, Gualaihué and Hornopirén volcanoes. The Yate volcano is a major compound type in which effusive activity occurred since Upper Pleistocene (c. 122 ka) until Holocene. Hornopirén and Gualaihué are minor, and represent strombilian- and shield-type volcanoes, respectively. Effusive activity in Hornopirén extended since Lower to Middle Pleistocene (c. 1,4 Ma to 260 ka), and in Gualaihué was around Middle Pleistocene (c. 440 ka), with subordinate phreatomagmatic eruptions during Holocene. Four types of basalt and basalt andesite associations (BABs) were recognized in YVC: (i) a high-Al and low-Mg group (BAB-A), with olivine-clinopyroxene-plagioclase phenocrystal assembly; (ii) a high-Mg and low-Al group (BAB-AM), with olivine-plagioclase; (iii) a high-Mg group (BO), with olivine and, (iv) a K-rich group (BAB-K) including two incongruent mineral assemblies, olivineplagioclase and clinopyroxene-orthopyroxene. Sr (and Pb) isotopic ratios show different patterns for BABs. When compared together, BAB-A is the most radiogenic group, with 87Sr/86Sr ratios higher than 0.70440 showing no correlation with Rb/La ratios. This suggests that isotopic (and incompatible element) enrichment may not be exactly related to crustal contamination. Quantitative modeling points to partial melting, in c. 1% water (slab-derived fluids), of an enriched peridotite as a possible mechanism involved in the genesis of BAB-A magmas. Similar petrogenetic model is envisaged for BAB-AM and BO; however, minor water contents during melting should be required for. Striking features of mineral disequilibrium suggest each (K-rich) crust assimilation and magma mixing influenced compositional signature of the BAB-K magmas. Magma mixing and mingling seems to be also an important petrogenetic mechanism in genesis of the evolved magmas (silica-rich basalt andesites, andesites, dacites) from the YVC, as shown by petrographic (olivine-clinopyroxene [Mg# 0,8], coexisting with clinopyroxene-orthopyroxene [Mg# 0,76-0,63]) and geochemical features. Genesis of amph-riolites, however, can be explained to each partial melting of amphibolite crust or ~12 km-deep fractional crystallization from an andesitic magma. In summary, the magmatic evolution of YVC, from the Middle Pleistocene to Holocene, is dominated by geochemically distinct basic magmas emplaced along NS- and SW-trending structures. Chemical and mechanical interaction between these magmas occurred into the magma chamber, located at the junction of those structures. In addition, partial melting of the crust produced the most evolved magmas of the complex.
|
2 |
Petrogêneses do complexo vulcânico Yate (42, 30ºS), Andes do Sul, Chile / Petrogenesis of the Yate Volcanic Complex (42, 30ºS), Andes Southern, ChileMauricio Alejandro Mella Barra 17 February 2009 (has links)
O Complexo Vulcânico Yate (CVY) está localizado na Zona Vulcânica Sul dos Andes, Chile. É constituído pelos vulcões Yate, Hornopirén e Gualaihué, além de um conjunto de cones monogênicos conhecido como Centros Eruptivos Cordón Cabrera; aflora em uma área de aproximadamente 400 km2, representado por uma sequência vulcânica de mais de 2.000 metros de sessão vertical contínua. O Vulcão Yate é o maior dos vulcões do complexo, correspondendo a um tipo combinado constituído por cinco unidades litoestratigráficas que se estendem no tempo desde o Pleistoceno Superior (c. 122 ka) até o Holoceno. O Vulcão Hornopirén corresponde a um vulcão estromboliano com registro de atividade eruptiva mais antiga, no Pleistoceno Inferior-Médio (c. 1,4-0,26 Ma), estendendo-se até Holoceno. Por fim, o Vulcão Gualaihué corresponde a um vulcão tipo escudo com atividades efusiva, restrita ao Pleistoceno Médio (c. 440 ka), e freatomagmática no Holoceno. A assinatura geoquímica diversificada das rochas do CVY levou à individualização de quatro tipos de basaltos e andesitos basálticos (BABs) com associações mineralógicas particulares: (i) de alto alumínio e baixo magnésio (BAB-A), com olivina-clinopiroxênio-plagioclásio; (ii) de baixo alumínio e alto magnésio (BAB-AM), com olivina-plagioclásio; (iii) de alto magnésio (BO), com olivina; e (iv) de alto potássio (BAB-K), com coexistência de duas associações mineralógicas incongruentes, olivinaplagioclásio e plagioclásio-clinopiroxênio-orotopiroxênio. A assinatura isotópica desses BABs diferenciase apenas em termos da razão 87Sr/86Sr, em parte acompanhada pelas razões 06Pb/204Pb; as razões 143Nd/144Nd, no entanto, são pouco variáveis. Quando comparados, os BAB-A são as rochas mais radiogênicas, sendo que as razões isotópicas de Sr (> 0,70440) não se correlacionam com a razão Rb/La, sugerindo que o enriquecimento isotópico não teria relação com contaminação crustal. A modelagem quantitativa sugere que esses BABs poderiam ser produto de graus variáveis de fusão parcial de um manto peridotítico, na presença de água (c. 1%). Modelo petrogenético semelhante é proposto para os BAB-AM e BO, todavia com volume de água menor. Já os BAB-K apresentam claras evidências de desequilíbrio mineral, sugerindo a atuação de ambos assimilação e mistura de magmas na sua gênese.Com respeito às rochas mais evoluídas (ABSiO2, andesitos e dacitos), presentes exclusivamente no Vulcão Yate, as características texturais e químicas são pouco conclusivas, sendo as tendências geoquímicas divergentes daquelas típicas de cristalização fracionada. O comportamento geoquímico, endossado pelas texturas de desequilíbrio mineral comuns a esses magmas, mostra mistura (mixing ou mingling) de magmas como um mecanismo importante em suas histórias petrogenéticas. Por fim, a gênese dos riolitos (com anfibólio) parece sugerir fusão parcial de uma crosta anfibolítica ou cristalização fracionada a partir de um magma andesítico, a ~12 km de profundidade. A evolução magmática no CVY, desde o Pleistoceno Inferior-Médio até o Holoceno, incluiria atividade eruptiva de magmas básicos (BABs), ao longo de estruturas N-S (Vulcão Hornopirén) e NE-SW (Vulcão Gualaihué), os quais também devem ter interagido com uma câmara magmática em evolução (Vulcão Yate, c. 10 km de profundidade), provavelmente disposta na junção destas estruturas. Essa interação teria produzido graus variáveis de mistura, cristalização fracionada e assimilação crustal de seus produtos. / The Yate Volcanic Complex (CVY) is located in the Southern Volcanic Zone of the Chilean Andes, at 42°30S, comprising the Yate, Gualaihué and Hornopirén volcanoes. The Yate volcano is a major compound type in which effusive activity occurred since Upper Pleistocene (c. 122 ka) until Holocene. Hornopirén and Gualaihué are minor, and represent strombilian- and shield-type volcanoes, respectively. Effusive activity in Hornopirén extended since Lower to Middle Pleistocene (c. 1,4 Ma to 260 ka), and in Gualaihué was around Middle Pleistocene (c. 440 ka), with subordinate phreatomagmatic eruptions during Holocene. Four types of basalt and basalt andesite associations (BABs) were recognized in YVC: (i) a high-Al and low-Mg group (BAB-A), with olivine-clinopyroxene-plagioclase phenocrystal assembly; (ii) a high-Mg and low-Al group (BAB-AM), with olivine-plagioclase; (iii) a high-Mg group (BO), with olivine and, (iv) a K-rich group (BAB-K) including two incongruent mineral assemblies, olivineplagioclase and clinopyroxene-orthopyroxene. Sr (and Pb) isotopic ratios show different patterns for BABs. When compared together, BAB-A is the most radiogenic group, with 87Sr/86Sr ratios higher than 0.70440 showing no correlation with Rb/La ratios. This suggests that isotopic (and incompatible element) enrichment may not be exactly related to crustal contamination. Quantitative modeling points to partial melting, in c. 1% water (slab-derived fluids), of an enriched peridotite as a possible mechanism involved in the genesis of BAB-A magmas. Similar petrogenetic model is envisaged for BAB-AM and BO; however, minor water contents during melting should be required for. Striking features of mineral disequilibrium suggest each (K-rich) crust assimilation and magma mixing influenced compositional signature of the BAB-K magmas. Magma mixing and mingling seems to be also an important petrogenetic mechanism in genesis of the evolved magmas (silica-rich basalt andesites, andesites, dacites) from the YVC, as shown by petrographic (olivine-clinopyroxene [Mg# 0,8], coexisting with clinopyroxene-orthopyroxene [Mg# 0,76-0,63]) and geochemical features. Genesis of amph-riolites, however, can be explained to each partial melting of amphibolite crust or ~12 km-deep fractional crystallization from an andesitic magma. In summary, the magmatic evolution of YVC, from the Middle Pleistocene to Holocene, is dominated by geochemically distinct basic magmas emplaced along NS- and SW-trending structures. Chemical and mechanical interaction between these magmas occurred into the magma chamber, located at the junction of those structures. In addition, partial melting of the crust produced the most evolved magmas of the complex.
|
3 |
Timescales of large silicic magma systems : investigating the magmatic history of ignimbrite eruptions in the Altiplano-Puna Volcanic Complex of the Central Andes through U-Pb zircon datingKern, Jamie M. 05 June 2012 (has links)
The Altiplano-Puna Volcanic Complex in the Central Andes is one of the youngest large silicic volcanic fields (LSVFs) in the world, erupting over 13,000 km³ of material during multiple supereruptions from 11 to 1 Ma. Understanding the timescales over which magma is stored in the crust prior to eruption is crucial to understanding the development of LSVFs such as the APVC. The residence time of a magma is defined as the time between magma formation and its eruption. While the eruption age of a volcanic system is generally well constrained through ⁴⁰Ar/³⁹Ar dating of sanidine and biotite crystals, determining the time of magma formation offers a bigger challenge. U-Pb dating of zircon—an early crystallizing, ubiquitous phase in silicic systems—is a commonly used method for determining the timing of magma formation.
U-Pb zircon ages were collected for 16 ignimbrites representing the temporal and spatial distribution of the APVC. Zircon crystallization histories show significant overlap between eruptive centers of similar age separated by as much as 200 km. Ignimbrites erupted from the same multicyclic caldera show little relationship. This suggests that ignimbrites may share a deeper, regional source. Timescales of zircon crystallization for individual ignimbrites range from ~400 ka to more than 1 Ma, with little correlation with age or erupted volume. Ignimbrites with longer crystallization timescales frequently exhibit a stepped age distribution and highly variable U contents, suggesting that these ignimbrites likely formed in a very crystalline, low melt fraction environment while ignimbrites with short crystallization times and constrained U concentrations crystallized in high melt fraction systems. Zircon crystallization histories record periods of continuous zircon crystallization in the APVC that extend over 1.5-2 Ma pulses and correlate well with eruptive pulses recognized by previous studies.
Overall, zircon crystallization histories of the magmas feeding ignimbrite eruptions in the APVC record long timescales of magmatic activity from a shared regional source, likely the Altiplano-Puna Magma Body currently detectable underlying the APVC. / Graduation date: 2012
|
4 |
Growth, Structure and Evolution the Lyttelton Volcanic Complex, Banks Peninsula, New ZealandHampton, Samuel Job January 2010 (has links)
The Lyttelton Volcanic Complex, north-western Banks Peninsula, New Zealand, is comprised of five overlapping volcanic cones. Two magma systems are postulated to have fed Banks Peninsula’s basaltic intraplate volcanism, with simultaneous volcanism occurring in both the north-western and south-eastern regions of Banks Peninsula, to form Lyttelton and Akaroa Volcanic Complexes respectively. The elongate form of Banks Peninsula is postulated to relate to the upward constraining of magmatism in a north-west / south-east fault bounded zone. The Lyttelton Volcanic Complex resulted from the development of a pull-apart basin, with a number of releasing bend faults, controlling the location of eruptive sites. Cone structure further influenced the pathway magma propagated, with new eruptive sites developing on the un-buttressed flanks, resulting in the eruption and formation of a new cone, or as further cone growth recorded as an eruptive package.
Each cone formed through constructional or eruptive phases, termed an eruptive package. Eruptive packages commonly terminate with a rubbly a’a to blocky lava flow, identified through stratigraphic relationships, lava flow trends and flow types, a related dyking regime, and radial erosional features (i.e. ridges and valleys). Within the overall evolving geochemical trend of the Lyttelton Volcanic Complex, are cyclic eruptive phases, intrinsically linked to eruptive packages. Within an eruptive package, crystal content fluctuates, but there is a common trend of increasing feldspar content, with peak levels corresponding to a blocky lava flow horizon, indicating the role of increased crystalinity and lava flow rheology. Cyclic eruptive phases relate to discreet magma batches within the higher levels of the edifice, with crystal content increasing as each magma batch evolves, limiting the ability of the volcanic system, over time, to erupt. Evolving magmas resulted in explosive eruptions following effusive eruptives, and / or result in the intrusion of hypabyssal features such as dykes and domes, of more evolved compositions (i.e. trachyte). Each eruptive package hosts a radial dyke swarm, reflecting the stress state of a shallow level magma chamber or a newly developed stress field due to gravitational relaxation in the newly constructed edifice, at the time of emplacement.
Two distinct erosional structures are modelled; radial valleys and cone-controlled valleys. Radial valleys reflect radial erosion about a cone’s summit, while cone-controlled valleys are regions where eruptive packages and cones from different centres meet, allowing stream development. Interbedded epiclastic deposits within the Lyttelton lava flow sequences indicate volcanic degradation during volcanic activity. As degradation of the volcanic complex progressed, summit regions coalesced, later becoming unidirectional breached, increasing the area of the drainage basin and thus the potential to erode and transport extensive amounts of material away, ultimately forming Lyttelton Harbour, Gebbies Pass, and the infilled Mt Herbert region. Epiclastic deposits on the south-eastern side of Lyttelton Harbour indicate a paleo-valley system (paleo-Lyttelton Harbour) existed prior to 8.1 Ma, while the morphology of the Lyttelton Volcanic Complex directed the eruptive sites, style and resultant morphology of the proceeding volcanic groups.
|
5 |
Influência do Complexo Vulcânico de Abrolhos na evolução tectono-sedimentar da porção centro-sul da bacia do Espírito Santo / Influence of the Abrolhos Volcanic Complex on the tectono-sedimentary evolution in the Espírito Santo basinWalter Dias Ferreira Neto 10 October 2012 (has links)
A busca por novas acumulações de hidrocarbonetos necessita de esforços exploratórios contínuos, gerando novas possibilidades e modelos geológicos e diminuindo os riscos associados à atividade exploratória. O interesse no entendimento da formação de armadilhas, migração e reservatórios de hidrocarbonetos, associado à halocinese motivou a realização deste trabalho. Apresenta-se como principal objetivo deste trabalho a caracterização e a descrição da evolução halocinética na porção centro-sul da bacia do Espírito Santo. Dados de poços, sísmicos e gravimetria foram utilizados com o intuito de gerar uma interpretação geológica integrada, possibilitando entender à influência do Complexo Vulcânico de Abrolhos (CVA) na evolução tectonossedimentar da área, por meio da técnica de restauração de seção geológica. Na área estudada, ocorreu uma intensa atividade halocinética, já a partir do Albiano, em resposta a distensão causada pela subsidência da bacia e a abertura do Atlântico Sul. Durante o Neocretáceo, cunhas clásticas do Rio Doce adentraram na bacia provocando um novo pulso halocinético, resultando num aumento da taxa de sedimentação nas mini-bacias. Em outras regiões esta progradação causou a migração da camada-mãe de sal para porções distais da bacia, acarretando uma deficiência no suprimento de sal. Isto ocasionou o colapso de alguns diápiros associados a uma quiescência tectônica na área. A principal fase tectônica na área ocorreu no Eoterciário, época em que ocorre a implantação do CVA, formando estilos estruturais característicos de terrenos compressivos, com falhas de empurrão, popups, dobras e gotas de sal. Esta nova configuração tectônica na área mudou os eixos dos principais depocentros, que passaram a ser controlados pelos altos estruturais gerados pela tectônica compressiva, e pelos seus baixos relativos, que passaram a receber os sedimentos sin-tectônicos. (As associações destas características de remobilização tectonossedimentar formou uma nova compartimentação, a saber: a) Zona de translação; b) Zona dobrada e c) Zona de Cavalgamento com falhas de empurrão . Esta nova configuração tectônica tem sua formação diretamente relacionada à implantação do CVA. / The search for new accumulations of hydrocarbons needs continuous exploratory efforts, in order to create new geological models and lessen the risks associated with exploratory activities. This work was motivated by the urge to understand the formation of traps, migration and reservoir properties, associated with halokinesis. The main goal of this work is the characterization and reporting of the halokinesis evolution in the south-central part of the Espirito Santo Basin. Seismic, gravity and well data incorporated in geological section reconstruction were used in the integrated geological interpretation, allowing a better understanding of the AVC (Abrolhos Volcanic Complex) in the tectonic and sedimentary evolution of the area. Intensive halokinesis activity was registered from Albian time, in response to an earlier stretching phase that resulted in subsidence of the basin and the opening to the South Atlantic ocean. During the Early Cretaceous, clastics of the Rio Doce were introduced in the basin provoking new haloknesis trigger, generating an increment of sedimentary rates in the sub-basins. In other regions, the progradation of the clastic wedge caused the migration of the mother salt layer to the distal portions of the basin, suppressing the supply of salt. The process created a collapse of some diapirs associated with a tectonic quiescence in the area. The main tectonic phase occurred in the Early Tertiary. The introduction of AVC occurred in this period, forming structural styles, typical of compressional tectonics, with thrust faults, pop-ups, folds, and salt canopies. This new tectonic configuration in the area has changed the axis of main sedimentary depocenter that became controlled by the high structures generated by the compressional tectonics, and by the associate low, that began to receive syntectonic sediments. The associations of these characteristics of tectonic and sedimentary remobilization formed a new compartmentalization in the basin, such as: a translation zone, b.Folded zone, c. Hangingwall thrust block zone. They are strongly connected to the emplacement of AVC. This new tectonic configuration has its formation directly related to the emplacement of AVC.
|
6 |
Influência do Complexo Vulcânico de Abrolhos na evolução tectono-sedimentar da porção centro-sul da bacia do Espírito Santo / Influence of the Abrolhos Volcanic Complex on the tectono-sedimentary evolution in the Espírito Santo basinWalter Dias Ferreira Neto 10 October 2012 (has links)
A busca por novas acumulações de hidrocarbonetos necessita de esforços exploratórios contínuos, gerando novas possibilidades e modelos geológicos e diminuindo os riscos associados à atividade exploratória. O interesse no entendimento da formação de armadilhas, migração e reservatórios de hidrocarbonetos, associado à halocinese motivou a realização deste trabalho. Apresenta-se como principal objetivo deste trabalho a caracterização e a descrição da evolução halocinética na porção centro-sul da bacia do Espírito Santo. Dados de poços, sísmicos e gravimetria foram utilizados com o intuito de gerar uma interpretação geológica integrada, possibilitando entender à influência do Complexo Vulcânico de Abrolhos (CVA) na evolução tectonossedimentar da área, por meio da técnica de restauração de seção geológica. Na área estudada, ocorreu uma intensa atividade halocinética, já a partir do Albiano, em resposta a distensão causada pela subsidência da bacia e a abertura do Atlântico Sul. Durante o Neocretáceo, cunhas clásticas do Rio Doce adentraram na bacia provocando um novo pulso halocinético, resultando num aumento da taxa de sedimentação nas mini-bacias. Em outras regiões esta progradação causou a migração da camada-mãe de sal para porções distais da bacia, acarretando uma deficiência no suprimento de sal. Isto ocasionou o colapso de alguns diápiros associados a uma quiescência tectônica na área. A principal fase tectônica na área ocorreu no Eoterciário, época em que ocorre a implantação do CVA, formando estilos estruturais característicos de terrenos compressivos, com falhas de empurrão, popups, dobras e gotas de sal. Esta nova configuração tectônica na área mudou os eixos dos principais depocentros, que passaram a ser controlados pelos altos estruturais gerados pela tectônica compressiva, e pelos seus baixos relativos, que passaram a receber os sedimentos sin-tectônicos. (As associações destas características de remobilização tectonossedimentar formou uma nova compartimentação, a saber: a) Zona de translação; b) Zona dobrada e c) Zona de Cavalgamento com falhas de empurrão . Esta nova configuração tectônica tem sua formação diretamente relacionada à implantação do CVA. / The search for new accumulations of hydrocarbons needs continuous exploratory efforts, in order to create new geological models and lessen the risks associated with exploratory activities. This work was motivated by the urge to understand the formation of traps, migration and reservoir properties, associated with halokinesis. The main goal of this work is the characterization and reporting of the halokinesis evolution in the south-central part of the Espirito Santo Basin. Seismic, gravity and well data incorporated in geological section reconstruction were used in the integrated geological interpretation, allowing a better understanding of the AVC (Abrolhos Volcanic Complex) in the tectonic and sedimentary evolution of the area. Intensive halokinesis activity was registered from Albian time, in response to an earlier stretching phase that resulted in subsidence of the basin and the opening to the South Atlantic ocean. During the Early Cretaceous, clastics of the Rio Doce were introduced in the basin provoking new haloknesis trigger, generating an increment of sedimentary rates in the sub-basins. In other regions, the progradation of the clastic wedge caused the migration of the mother salt layer to the distal portions of the basin, suppressing the supply of salt. The process created a collapse of some diapirs associated with a tectonic quiescence in the area. The main tectonic phase occurred in the Early Tertiary. The introduction of AVC occurred in this period, forming structural styles, typical of compressional tectonics, with thrust faults, pop-ups, folds, and salt canopies. This new tectonic configuration in the area has changed the axis of main sedimentary depocenter that became controlled by the high structures generated by the compressional tectonics, and by the associate low, that began to receive syntectonic sediments. The associations of these characteristics of tectonic and sedimentary remobilization formed a new compartmentalization in the basin, such as: a translation zone, b.Folded zone, c. Hangingwall thrust block zone. They are strongly connected to the emplacement of AVC. This new tectonic configuration has its formation directly related to the emplacement of AVC.
|
7 |
Differentiation regimes in the Central Andean magma systems: case studies of Taapaca and Parinacota volcanoes, Northern ChileBanaszak, Magdalena 23 April 2014 (has links)
No description available.
|
8 |
Darstellung magmatischer Prozesse über die U-Th Ungleichgewichts-Methode. Vergleich von zwei andinen magmatichen Systemen: Vulkan El Misti (Südperu) versus des Taapaca Vulkankomplexes (Nordchile). / Magmatic processes by U-Th disequilibria method.Comparison of two Andean systems:El Misti Volcano (S. Peru) and Taapaca Volcanic Center (N. Chile).Kiebala, Aneta 03 April 2008 (has links)
No description available.
|
9 |
The evolution of the Brosterlea Volcanic Complex, Eastern Cape, South AfricaSurtees, Grant Bradley January 2000 (has links)
Detailed field mapping (Map, Appendix B) has been conducted in and around the boundaries of a 14x18km, volcanic complex 35km northeast of Molteno in the Eastern Cape Province, South Africa. The structure is interpreted as a subsidence structure, and is filled with two volcaniclastic breccias, numerous lava flows, a number of sedimentary facies, and lies on a base of Clarens Formation overlying Elliot Formation rocks. This is an important study because 'widespread, voluminous fields of basaltic breccias are very rare (see Hanson and Elliot, 1996) and this is the first time that this type of volcanic complex and its deposits have been described. Detailed analyses of the two volcaniclastic breccias revealed changes in colour, clast types, clast sizes, and degree of alteration over relatively short distances both vertically and laterally within a single breccia unit. The variation in clast sizes implies a lack of sorting of the breccias. The lower of the two volcaniclastic breccias fills the subsidence structure, and outcrops between the Stormberg sedimentary sequence and the overlying Drakensberg basalts and was produced from phreatomagmatic eruptions signalling the start of the break-up of Gondwanaland in the mid-Jurassic. The upper volcaniclastic breccia is interbedded with the flood basalts and is separated from the lower breccia by up to 100m of lava flows in places, it is finer-grained than the lower volcaniclastic breccia, and it extends over 10km south, and over 100km north from the volcanic complex. The upper breccia is inferred to have been transported from outside the study area, from a source presumably similar to the subsidence structure in the volcanic complex. The pyroclastic material forming the upper breccia was transported to the subsidence structure as a laharic debris flow, based on its poorly sorted, unwelded and matrix-supported appearance. However, both breccias are unlikely to have been derived from epiclastic reworking of lava flows as they contain glass shards which are atypical of those derived from the autoclastic component of lava flows. The breccias are therefore not "secondary" lahars. There is also no evidence of any palaeotopographic highs from which the breccias could have been derived as gravity-driven flows. Based on the occurrence of three, 1m thick lacustrine deposits, localised peperite, fluvial reworking of sandstone and breccia in an outcrop to the south of the subsidence structure, and channel-lags encountered only in the upper units of the Clarens Formation and only within the subsidence structure, the palaeoenvironment inferred for the subsidence structure is one of wet sediment, possibly a shallow lake, in a topographic depression fed by small streams. Magmatic intrusions below the subsidence structure heated the water-laden, partly consolidated Clarens Formation sandstones, causing the circulation of pore fluid which resulted in the precipitation of minerals forming pisoliths in the sandstones. Intruding magma mixed, nonexplosively, with the wet, unconsolidated sediments near the base of the Clarens Formation (at approximately 100m below the surface), forming fluidal peperite by a process of sediment fluidisation where magma replaces wet sediment and cools slowly enough to prevent the magma fracturing brittly. Formation of fluidal peperite may have been a precursor to the development of FCIs (Fuel Coolant Interactions) (Busby-Spera and White, 1987). The breccias may represent the products of FCIs and may be the erupted equivalents of the peperites, suggesting a possible genetic link between the two. The peperites may have given way to FCI eruptions due to a number of factors including the drying out of the sediments and/or an increase in the volume of intruded magma below the subsidence structure which may have resulted in a more explosive interaction between sediment and magma. Phreatic activity fragmented and erupted the Clarens Formation sandstone, and stream flows reworked the angular sandstone fragments, pisoliths and sand grains into channelised deposits. With an increase in magmatic activity below the subsidence structure, phreatic activity became phreatomagmatic. The wet, partly consolidated Clarens Formation, and underlying, fully consolidated Elliot Formation sediments were erupted and fragmented. Clasts and individual grains of these sediments were redeposited with juvenile and non-juvenile basaltic material probably by a combination of back fall, where clasts erupted into the air fell directly back into the structure, and backflow where material was erupted out of the structure, but immediately flowed back in as lahars. This material formed the lower volcaniclastic breccia. A fault plane is identified along the southwestern margin of the subsidence structure, and is believed to continue up the western margin to the northwestern corner. A large dolerite body has intruded along the inferred fault plane on the western margin of the structure, and may be related to the formation of the lower volcaniclastic breccia, either directly through fluidisation of wet sediment during its intrusion, or as a dyke extending upwards from a network of sill-like intrusions below the subsidence structure. Geochemical analysis of the Drakensberg basalt lava flows by Mitchell (1980) and Masokwane (1997) revealed four distinct basalt types; the Moshesh's Ford, the Tafelkop, the Roodehoek, and the Vaalkop basalts. Basalt clasts sampled from the lower volcaniclastic breccia were shown to belong to the Moshesh's Ford basalt type which does not outcrop in situ within the subsidence structure. This implies that the Moshesh's Ford basalts were emplaced prior to the formation of the lower volcaniclastic breccia, and may have acted as a "cap-rock" over the system, allowing pressure from the vaporised fluids, heated by intruding basalt, to build up. The Moshesh's Ford basalt type was erupted prior to the resultant phreatomagmatic events forming the lower volcaniclastic breccia.
|
10 |
Ablagerungsfazies der Grobklastika der oberen Halle-FormationGrieswald, Heike 21 June 2016 (has links) (PDF)
Die Sedimente des Halleschen Permokarbonkomplexes gaben schon immer Raum für Spekulationen. Aufgrund ihrer Dominanz an rhyolithischen Geröllen wurden sie über einen langen Zeitraum einheitlich als Postporphyrschutt ausgehalten. Vielfältig wechselnde Faziesbedingungen machten es jedoch notwendig, die Sedimente aufzugliedern. Neuere Erkenntnisse in der Erforschung des Halleschen Permokarbonkomplexes erfordern eine Überprüfung v. a. der nach KUNERT (1995) aufgestellten allgemeinen stratigraphischen Gliederung der Unterrotliegendsedimente in Halle,- Hornburg,- Sennewitz- und Brachwitz-Formation anhand einiger ausgewählter Beispiele. Der ursprüngliche Gedanke der Diplomarbeit bestand darin, eine Fazies- und eine Geröllanalyse der unterpermischen Abtragungsprodukte des Halle-Vulkanitkomplexes anzufertigen. Zur Verfügung standen zwei Kernbohrungen und zwei Aufschlüsse, sowie diverse Unterlagen zu angrenzenden Bohrungen in der Saale-Senke. Die beiden Oberflächenaufschlüsse Riveufer und Teichgrund sollten stratigraphisch aufgenommen werden, so dass eine Fazieszuordnung möglich ist. Die Bohrung Brachwitz 2/62 wurde mit dem Ziel aufgenommen, neuere Theorien über den Ablagerungszeitraum der Rotliegend-Sedimente in Bezug auf den permokarbonen Vulkanismus zu widerlegen oder zu bekräftigen. Die zweite Bohrung (Kb Lochau 7/65) wurde am Rande mit in die Diplomarbeit einbezogen, da sie das immense Spektrum der spätvulkanischen Aktivitäten im Halle Permokarbonkomplex erweitert. Ergebnis ist eine Neugliederung des Rotliegend im Halleschen Permokarbonkomplex, in der nur noch die Halle-Formation mit ihrem ausgeprägten Vulkanismus und die Hornburg-Formation, stellvertretend für alle jüngeren Abtragungsprodukte des Halle Vulkanitkomplexes, unterschieden werden. Mit einem großen Hiatus folgt anschließend die Eisleben-Formation.
|
Page generated in 0.0493 seconds