• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 8
  • 8
  • 8
  • 7
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of intelligent systems for evaluating voltage profile and collapse under contingency operation

Mohammed, Mahmoud M. Jr. January 1900 (has links)
Doctor of Philosophy / Department of Electrical and Computer Engineering / Shelli K. Starrett / Monitoring and control of modern power systems have become very complex tasks due to the interconnection of power grids. These large-scale power grids confront system operators with a huge set of system inputs and control parameters. This work develops and compares intelligent systems-based algorithms which may be considered by power system operators or planners to help manage, process, and evaluate large amounts of data due to varying conditions within the system. The methods can be used to provide assistance in making operational control and planning decisions for the system in a timely manner. The effectiveness of the proposed algorithms is tested and validated on four different power systems. First, Artificial Neural Network (ANN) models are developed and compared for two different voltage collapse indices and utilizing two different-sized sets of inputs. The ANNs monitor and evaluate the voltage profile of a system and generate intelligent conclusions regarding the status of the system from a voltage stability perspective. A feature reduction technique, based on the analysis of generated data, is used to decrease the number of inputs fed to the ANN, decreasing the number of physical quantities that need to be measured. The major contribution of this work is the development of four different algorithms to control the VAR resources in a system. Four different objectives were also considered in this part of the work, namely: minimization of the number of control changes needed, minimization of the system power losses, minimization of the system's voltage deviations, and consideration of the computational time required. Each of the algorithms is iterative in nature and is designed to take advantage of a method of decoupling the load flow Jacobian matrix to decrease the time needed per iteration. The methods use sensitivity information derived from the load flow Jacobian and augmented with equations relating the desired control and dependent variables. The heuristic-sensitivity based method is compared to two GA-based methods using two different objective functions. In addition, a FL algorithm is added to the heuristic-sensitivity algorithm and compared to a PS-based algorithm. The last part of this dissertation presents the use of one of the GA-based algorithms to identify the size of shunt capacitor necessary to enhance the voltage profile of a system. A method is presented for utilizing contingency cases with this algorithm to determine required capacitor size.
2

Numerical Performance of the Holomorphic Embedding Method

January 2018 (has links)
abstract: Recently, a novel non-iterative power flow (PF) method known as the Holomorphic Embedding Method (HEM) was applied to the power-flow problem. Its superiority over other traditional iterative methods such as Gauss-Seidel (GS), Newton-Raphson (NR), Fast Decoupled Load Flow (FDLF) and their variants is that it is theoretically guaranteed to find the operable solution, if one exists, and will unequivocally signal if no solution exists. However, while theoretical convergence is guaranteed by Stahl’s theorem, numerical convergence is not. Numerically, the HEM may require extended precision to converge, especially for heavily-loaded and ill-conditioned power system models. In light of the advantages and disadvantages of the HEM, this report focuses on three topics: 1. Exploring the effect of double and extended precision on the performance of HEM, 2. Investigating the performance of different embedding formulations of HEM, and 3. Estimating the saddle-node bifurcation point (SNBP) from HEM-based Thévenin-like networks using pseudo-measurements. The HEM algorithm consists of three distinct procedures that might accumulate roundoff error and cause precision loss during the calculations: the matrix equation solution calculation, the power series inversion calculation and the Padé approximant calculation. Numerical experiments have been performed to investigate which aspect of the HEM algorithm causes the most precision loss and needs extended precision. It is shown that extended precision must be used for the entire algorithm to improve numerical performance. A comparison of two common embedding formulations, a scalable formulation and a non-scalable formulation, is conducted and it is shown that these two formulations could have extremely different numerical properties on some power systems. The application of HEM to the SNBP estimation using local-measurements is explored. The maximum power transfer theorem (MPTT) obtained for nonlinear Thévenin-like networks is validated with high precision. Different numerical methods based on MPTT are investigated. Numerical results show that the MPTT method works reasonably well for weak buses in the system. The roots method, as an alternative, is also studied. It is shown to be less effective than the MPTT method but the roots of the Padé approximant can be used as a research tool for determining the effects of noisy measurements on the accuracy of SNBP prediction. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2018
3

Robustness and Stability Analysis with a Heavily-Meshed Distribution Network

Krishnan, Anaga 07 June 2019 (has links)
Power distribution systems continue to evolve to accommodate the advancements in the field of microgrids and renewable energy resources. The future grids will be highly connected and will require increased reliability of the network. To this effect, low-voltage distribution systems with meshed or networked topology can be utilized. Currently, the use of low-voltage heavily-meshed distribution systems is restricted to urban areas with high load density that require increased reliability of power. A reason for this is the high cost of construction of such systems and complex topology which creates additional challenges. The direction of power flow in such systems is not unidirectional, which makes the power flow analysis difficult. Complicated network analysis techniques are required to determine the fault currents and protection settings in the network. Due to the aforementioned reasons, there is limited work analyzing the effectiveness of existing power flow algorithms to solve complex meshed systems. In this thesis, the robustness of two power flow algorithms is compared using an index called static stability breakdown margin parameter of circuit elements. For this study, a low-voltage heavily-meshed distribution test system is also proposed. Additionally, a study is conducted to show how reliable the meshed test system is against any fault in the system. The steady-state voltage stability of the test system is observed during the event of a fault. The stability margin parameter is then used to determine the vulnerable components in the system which need to be strengthened to increase the stability and voltage profile of the system. / Master of Science / Distribution systems carry electricity from the transmission system and deliver it to the customers. Distribution systems mainly operate using two topologies for their feeders: Radial and Meshed. The majority of customers are served using radial distribution systems, as in the radial feeders power flows in one direction (i.e. from substation to the end-user). They are simple in design and operation and are constructed at a moderate cost. However, if there is a fault along the main feeder, there will be an interruption of power to the end-use customer. On the other hand, meshed distribution systems involve multiple paths of power flow between all the points in the network. If a fault occurs along the feeder, the power flow is rerouted to the other available paths. Thus, Heavily Due to their complex topology, meshed systems are expensive to construct and deploy. The power flow analysis of these systems poses many challenges. Because of these reasons, their use is mainly restricted to urban areas with high load density which require very high reliability. The future grid is becoming increasingly complex and evolving to a meshed distribution topology has its own advantages. However, as presently the use of meshed systems is sparse, the work done on evaluating the stability of these systems is minimal. As a result of which, this thesis focuses on determining the optimal power flow solvers for these complex systems, analyzing their stability under abnormal operating conditions, and suggesting methods to reinforce the vulnerabilities in the system.
4

Steady State Voltage Stability Enhancement Using Shunt and Series FACTS Devices

Lakkireddy, Jahnavi 13 August 2014 (has links)
It is specifically important to focus on voltage stability analysis of the power system to avoid worst case scenarios such as voltage collapse. The purpose of this thesis is to identify methods for enhancing the steady-state voltage stability using FACTS devices and determining their impact on real and reactive power losses, improvement of bus voltage magnitude, and transmission line loadability. To achieve this, FACTS devices such as Static VAR Compensator (SVC), Static Synchronous Compensator (STATCOM), and Thyristor Controlled Series Capacitor (TCSC) are used in the test system as three separate test cases. The results obtained assist in drawing conclusions on the effectiveness of each FACTS devices at generator, load and swing buses, on lines between two load buses, and between a load bus and a generator bus, in terms of metrics such as voltage magnitude profile, PV curves, and active and reactive power losses.
5

Exploration of a Scalable Holomorphic Embedding Method Formulation for Power System Analysis Applications

January 2017 (has links)
abstract: The holomorphic embedding method (HEM) applied to the power-flow problem (HEPF) has been used in the past to obtain the voltages and flows for power systems. The incentives for using this method over the traditional Newton-Raphson based nu-merical methods lie in the claim that the method is theoretically guaranteed to converge to the operable solution, if one exists. In this report, HEPF will be used for two power system analysis purposes: a. Estimating the saddle-node bifurcation point (SNBP) of a system b. Developing reduced-order network equivalents for distribution systems. Typically, the continuation power flow (CPF) is used to estimate the SNBP of a system, which involves solving multiple power-flow problems. One of the advantages of HEPF is that the solution is obtained as an analytical expression of the embedding parameter, and using this property, three of the proposed HEPF-based methods can es-timate the SNBP of a given power system without solving multiple power-flow prob-lems (if generator VAr limits are ignored). If VAr limits are considered, the mathemat-ical representation of the power-flow problem changes and thus an iterative process would have to be performed in order to estimate the SNBP of the system. This would typically still require fewer power-flow problems to be solved than CPF in order to estimate the SNBP. Another proposed application is to develop reduced order network equivalents for radial distribution networks that retain the nonlinearities of the eliminated portion of the network and hence remain more accurate than traditional Ward-type reductions (which linearize about the given operating point) when the operating condition changes. Different ways of accelerating the convergence of the power series obtained as a part of HEPF, are explored and it is shown that the eta method is the most efficient of all methods tested. The local-measurement-based methods of estimating the SNBP are studied. Non-linear Thévenin-like networks as well as multi-bus networks are built using model data to estimate the SNBP and it is shown that the structure of these networks can be made arbitrary by appropriately modifying the nonlinear current injections, which can sim-plify the process of building such networks from measurements. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017
6

Reactive Power Planning And Operation of Power Systems with Wind Farms for Voltage Stability Improvement

Moger, Tukaram January 2015 (has links) (PDF)
In recent years, the electric power industry around the world is changing continuously due to transformation from regulated market structure to deregulated market structure. The main aim of the transformation of electric supply industry under open access environment is to overcome the some of the limitations faced by the vertically integrated system. It is believed that this transformation will bring in new technologies, integration of other sources of energy such as wind, solar, fuel cells, bio-gas, etc., which are self sustainable and competitive, and better choice for the consumers and so on. As a result, several new issues and challenges have emerged. One of the main issues in power systems is to support reactive power for maintaining the system voltage profile with an acceptable margin of security and reliability required for system operation. In this context, the thesis addresses some of the problems related to planning and operation of reactive power in power systems. Studies are mainly focused on steady state operation of grid systems, grid connected wind farms and distribution systems as well. The reactive power support and loss allocation using Y-bus approach is proposed. It computes the reactive power contribution from various reactive sources to meet the reactive load demand and losses. Further, the allocation of reactive power loss to load or sink buses is also computed. Detailed case studies are carried out on 11-bus equivalent system of Indian southern region power grid under different loading conditions and also tested on 259-bus equivalent system of Indian western region power grid. A comparative analysis is also carried out with the proportional sharing principle and one of the circuit based approach in the literature to highlight the features of the proposed approach. A new reactive power loss index is proposed for identification of weak buses in the system. The new index is computed from the proposed Y-bus approach for the system under intact condition as well as some severe contingencies cases. Fuzzy logic approach is used to select the important and severe line contingencies from the contingency list. The validation of weak load buses identification from the proposed reactive power loss index with that from other well known existing methods in the literature such as Q-V sensitivity based modal analysis and continuation power flow method is carried out to demonstrate the effectiveness of the proposed index. Then, a short-term reactive power procurement/optimal reactive power dispatch analysis is also carried out to determine the optimum size of the reactive compensation devices to be placed at the weak buses for reactive compensation performance analysis in the system. The proposed approach is illustrated on a sample 5-bus system, and tested on sample 10-bus equivalent system and 72-bus equivalent system of Indian southern region power grid. A comprehensive power flow analysis of PQ type models for wind turbine generating units is presented. The different PQ type models of fixed/semi-variable speed wind turbine generating units are considered for the studies. In addition, the variable speed wind turbine generating units are considered in fixed power factor mode of operation. Based on these models, a comparative analysis is carried out to assess the impact of wind generation on distribution and transmission systems. 27-bus equivalent distribution test system, 93-bus equivalent test system and SR 297-bus equivalent grid connected wind system are considered for the studies. Lastly, reactive power coordination for voltage stability improvement in grid connected wind farms with different types of wind turbine generating units based on fuzzy logic approach is presented. In the proposed approach, the load bus voltage deviation is minimized by changing the reactive power controllers according to their sensitivity using fuzzy set theory. The fixed/semi-variable speed wind turbine generating units are also considered in the studies because of its impact on overall system voltage performance even though they do not support the system for voltage unlike variable speed wind generators. 297-bus equivalent and 417-bus equivalent grid connected wind systems are considered to present the simulation results. A comparative analysis is also carried out with the conventional linear programming based reactive power optimization technique to highlight the features of the proposed approach.
7

Intelligent Techniques for Monitoring of Integrated Power Systems

Agrawal, Rimjhim January 2013 (has links) (PDF)
Continued increase in system load leading to a reduction in operating margins, as well as the tendency to move towards a deregulated grid with renewable energy sources has increased the vulnerability of the grid to blackouts. Advanced intelligent techniques are therefore required to design new monitoring schemes that enable smart grid operation in a secure and robust manner. As the grid is highly interconnected, monitoring of transmission and distribution systems is increasingly relying on digital communication. Conventional security assessment techniques are slow, hampering real-time decision making. Hence, there is a need to develop fast and accurate security monitoring techniques. Intelligent techniques that are capable of processing large amounts of captured data are finding increasing scope as essential enablers for the smart grid. The research work presented in this thesis has evolved from the need for enhanced monitoring in transmission and distribution grids. The potential of intelligent techniques for enhanced system monitoring has been demonstrated for disturbed scenarios in an integrated power system. In transmission grids, one of the challenging problems is network partitioning, also known as network area-decomposition. In this thesis, an approach based on relative electrical distance (RED) has been devised to construct zonal dynamic equivalents such that the dynamic characteristics of the original system are retained in the equivalent system within the desired accuracy. Identification of coherent generators is another key aspect in power system dynamics. In this thesis, a support vector clustering-based coherency identification technique is proposed for large interconnected multi-machine power systems. The clustering technique is based on coherency measure which is formulated using the generator rotor measurements. These rotor measurements can be obtained with the help of Phasor Measurement Units (PMUs). In distribution grids, accurate and fast fault identification of faults is a key challenge. Hence, an automated fault diagnosis technique based on multi class support vector machines (SVMs) has been developed in this thesis. The proposed fault location scheme is capable of accurately identify the fault type, location of faulted line section and the fault impedance in the distributed generation (DG) systems. The proposed approach is based on the three phase voltage and current measurements available at all the sources i.e. substation and at the connection points of DGs. An approach for voltage instability monitoring in 3-phase distribution systems has also been proposed in this thesis. The conventional single phase L-index measure has been extended to a 3-phase system to incorporate information pertaining to unbalance in the distribution system. All the approaches proposed in this thesis have been validated using standard IEEE test systems and also on practical Indian systems.
8

Voltage Stability Analysis of Unbalanced Power Systems

Santosh Kumar, A January 2016 (has links) (PDF)
The modern day power system is witnessing a tremendous change. There has been a rapid rise in the distributed generation, along with this the deregulation has resulted in a more complex system. The power demand is on a rise, the generation and trans-mission infrastructure hasn't yet adapted to this growing demand. The economic and operational constraints have forced the system to be operated close to its design limits, making the system vulnerable to disturbances and possible grid failure. This makes the study of voltage stability of the system important more than ever. Generally, voltage stability studies are carried on a single phase equivalent system assuming that the system is perfectly balanced. However, the three phase power system is not always in balanced state. There are a number of untransposed lines, single phase and double phase lines. This thesis deals with three phase voltage stability analysis, in particular the voltage stability index known as L-Index. The equivalent single phase analysis for voltage stability fails to work in case of any unbalance in the system or in presence of asymmetrical contingency. Moreover, as the system operators are giving importance to synchrophasor measurements, PMUs are being installed throughout the system. Hence, the three phase voltages can be obtained, making three phase analysis easier. To study the effect of unbalanced system on voltage stability a three phase L-Index based on traditional L-Index has been proposed. The proposed index takes into consideration the unbalance resulting due to untransposed transmission lines and unbalanced loads in the system. This index can handle any unbalance in the system and is much more realistic. To obtain bus voltages during unbalanced operation of the system a three phase decoupled Newton Raphson load ow was used. Reactive power distribution in a system can be altered using generators voltage set-ting, transformers OLTC settings and SVC settings. All these settings are usually in balanced mode i.e. all the phases have the same setting. Based on this reactive power optimization using LP technique on an equivalent single phase system is proposed. This method takes into account generator voltage settings, OLTC settings of transformers and SVC settings. The optimal settings so obtained are applied to corresponding three phase system. The effectiveness of the optimal settings during unbalanced scenario is studied. This method ensures better voltage pro les and decrease in power loss. Case studies of the proposed methods are carried on 12 bus and 24 bus EHV systems of southern Indian grid and a modified IEEE 30 bus system. Both balanced and unbalanced systems are studied and the results are compared.

Page generated in 0.1155 seconds