• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 640
  • 145
  • 128
  • 104
  • 40
  • 17
  • 14
  • 10
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 1386
  • 267
  • 266
  • 255
  • 248
  • 205
  • 120
  • 105
  • 102
  • 100
  • 97
  • 96
  • 81
  • 78
  • 78
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Instabilities in a swirling rotor wake / Instabilités d'un sillage tourbillonnaire de rotor

Quaranta, Hugo 08 March 2017 (has links)
Cette thèse est consacrée à l'étude des instabilités du sillage tourbillonnaire des rotors, largement utilisés dans l'industrie pour la conversion d'énergie mécanique. Leur sillage peut être modélisé par un ensemble de vortex hélicoïdaux entrelacés, au sein duquel de nombreuses instabilités peuvent émerger. Ces mécanismes ont un impact significatif sur l'évolution intermédiaire du sillage et peuvent influencer les performances du rotor. Ce travail, plus particulièrement dédié aux hélicoptères, s'est tout d'abord attaché à caractériser expérimentalement l'écoulement derrière trois rotors conçus pour des régimes de vols différents. Ces conditions de bases ont ensuite servi à étudier les différents modes instables de grande longueur d'onde pouvant apparaître dans le sillage. Une bonne correspondance est trouvée entre les prédictions théoriques et les mesures expérimentales des taux de croissance associés. Une rapide analyse de l'évolution spatio-temporelle de ces perturbations a permis d'étudier la propagation d'une perturbation localisée dans le plan rotor. Il est en effet envisagé que dans certaines configurations de vol de descente, les instabilités provoquent la transition du sillage vers un état spécifique connu sous le nom d'état d'anneau tourbillonnaire, potentiellement dangereux pour l'appareil. Il se caractérise par une stagnation du sillage au voisinage du plan rotor qui en dégrade les performances. / This work studies the instabilities associated with the wake of a rotor. These devices are used in many applications such as energy harvesting or propulsion,and their optimisation is crucial for both industry and the environment. The wakebehind a rotor is broadly defined as a system of interlaced helical vortices, whose dynamics governs the transition from the near-wake to the far-wake regime. In our first study, we investigate the wake behind different small-scale rotors in their design operating condition. We use the resulting flows in a subsequent linear stability analysis, aiming at predicting long-wavelength instability modes in the helical vortex. We find that the theoretical prediction of the modes growth-rates matches our experimental measurements. We also show that the dynamics of helical vortex filaments can be predicted from simple two-dimensional theory. In more critical flow configurations, instabilities are suspected to promote the transition to hazardous regimes such as the so called Vortex-Ring State, characterised by large-scale recirculating structures.The second part of this work is thus dedicated to the spatio-temporal evolution of localised perturbations in the rotor plane, and their potential tendency to propagate upstream in the flow.
322

The wake of an exhaust stack in a crossflow

Adaramola, Muyiwa S 23 April 2008
Relatively few studies have been carried out on the turbulent wake structure of a finite circular cylinder and a stack partially immersed in a flat-plate turbulent boundary layer. There is a need to develop a better understanding of the wakes of these structures, since they have many important engineering applications. This thesis investigates the influence of the aspect ratio on the wake of a finite circular cylinder and the effects of the ratio of jet flow velocity to crossflow velocity (velocity ratio, R) on the wake of a stack in a cross-flow. <p>The wake characteristics of flows over a finite circular cylinder at four different aspect ratios (AR = 3, 5, 7 and 9) were investigated experimentally at a Reynolds number of ReD = 6104 using two-component thermal anemometry. Each cylinder was mounted normal to a ground plane and was either completely or partially immersed in a flat-plate turbulent boundary layer. The ratio of boundary layer thickness to the cylinder diameter was 3. <p>A similar turbulent wake structure (time-averaged velocity, turbulence intensity, and Reynolds shear stress distributions) was found for the cylinders with AR = 5, 7, and 9, while a distinctly different turbulent wake structure was found for the cylinder with AR = 3. This was consistent with the results of a previous study that focused on the time-averaged streamwise vortex structures in the wake. In addition, irrespective of the value of AR, high values were observed for the skewness and flatness factors around the free end of the cylinders, which may be attributed to the interaction of the tip vortex structures and downwash flow that dominates this region of the cylinder.<p>The wake characteristics of a stack of aspect ratio AR = 9 were investigated using both the seven-hole pressure probe and thermal anemometry. The seven-hole probe was used to measure the three components of the time-averaged velocity field, while the thermal anemometry was used to measure two components of the turbulent velocity field at various downstream locations from the stack. The stack was mounted normal to the ground plane and was partially immersed in a flat-plate turbulent boundary layer, for which the ratio of boundary layer thickness to the stack diameter was 4.5. In addition, measurements of the vortex shedding frequency were made with a single-component hot-wire probe. The cross-flow Reynolds number was ReD = 2.3 x 104, the jet Reynolds number ranged from Red = 7.6 x 103 to 4.7 x 104, and R was varied from 0 to 3. <p>In the stack study, three flow regimes were identified depending on the value of R: the downwash (R < 0.7), cross-wind-dominated (0.7 < R < 1.5), and jet-dominated (R ≥ 1.5) flow regimes. Each flow regime had a distinct structure for the time-averaged velocity and streamwise vorticity fields, and turbulence characteristics, as well as the variation of the Strouhal number and the power spectrum of the streamwise velocity fluctuations along the stack height. The turbulence structure is complex and changes in the streamwise and wall-normal directions within the near and intermediate stack and jet wakes. In the downwash and crosswind-dominated flow regimes, two pairs of counter-rotating streamwise vortex structures were identified within the stack wake. The tip-vortex pair and base-vortex pair were similar to those found in the wake of a finite circular cylinder, located close to the free end and the base of the stack (ground plane), respectively. In the jet-dominated flow regime, a third pair of streamwise vortex structures was observed, referred to as the jet-wake vortex pair, which occurred within the jet-wake region above the free end of the stack. The jet-wake vortex pair has the same orientation as the base vortex pair and is associated with the jet rise.
323

Effect Of Hydraulic Parameters On The Formation Of Vortices At Intake Structures

Baykara, Ali 01 January 2013 (has links) (PDF)
The aim of this experimental study was to investigate the hydraulic conditions at which air-entraining vortices would form in front of horizontal intakes and to determine the ways of eliminating the formation of these vortices by testing anti-vortex devices. For these reasons, a series of experiments were conducted in an experimental setup composed of a reservoir having the dimensions of 3.10 m x 3.10 m x 2.20 m and a pump connected to the intake pipe. Within the reservoir, between the concrete side walls adjustable plexiglass side walls were placed to provide the desired wall clearance for the intake pipes. Six pipes of different diameters / 5 cm, 10 cm, 14.4 cm, 19.4 cm, 25 cm and 30 cm were horizontally mounted on the front side of the reservoir one by one, and for each case, a wide range of discharges was provided from the reservoir by the pump. Under symmetrical approach flow conditions and zero bottom wall clearance, the experiments were repeated for each intake pipe and the &ldquo / critical submergence depths&rdquo / for the tested discharges were determined. At some of the discharges, the effect of horizontal plates located on the top of the pipe entrance as anti-vortex devices on the elimination of the vortices was investigated. The measured critical submergence depths were related in dimensionless form to the relevant dimensionless parameters and empirical equations were derived. These equations were compared with similar ones available in the literature and it was shown that the agreement between them was quite good.
324

The wake of an exhaust stack in a crossflow

Adaramola, Muyiwa S 23 April 2008 (has links)
Relatively few studies have been carried out on the turbulent wake structure of a finite circular cylinder and a stack partially immersed in a flat-plate turbulent boundary layer. There is a need to develop a better understanding of the wakes of these structures, since they have many important engineering applications. This thesis investigates the influence of the aspect ratio on the wake of a finite circular cylinder and the effects of the ratio of jet flow velocity to crossflow velocity (velocity ratio, R) on the wake of a stack in a cross-flow. <p>The wake characteristics of flows over a finite circular cylinder at four different aspect ratios (AR = 3, 5, 7 and 9) were investigated experimentally at a Reynolds number of ReD = 6104 using two-component thermal anemometry. Each cylinder was mounted normal to a ground plane and was either completely or partially immersed in a flat-plate turbulent boundary layer. The ratio of boundary layer thickness to the cylinder diameter was 3. <p>A similar turbulent wake structure (time-averaged velocity, turbulence intensity, and Reynolds shear stress distributions) was found for the cylinders with AR = 5, 7, and 9, while a distinctly different turbulent wake structure was found for the cylinder with AR = 3. This was consistent with the results of a previous study that focused on the time-averaged streamwise vortex structures in the wake. In addition, irrespective of the value of AR, high values were observed for the skewness and flatness factors around the free end of the cylinders, which may be attributed to the interaction of the tip vortex structures and downwash flow that dominates this region of the cylinder.<p>The wake characteristics of a stack of aspect ratio AR = 9 were investigated using both the seven-hole pressure probe and thermal anemometry. The seven-hole probe was used to measure the three components of the time-averaged velocity field, while the thermal anemometry was used to measure two components of the turbulent velocity field at various downstream locations from the stack. The stack was mounted normal to the ground plane and was partially immersed in a flat-plate turbulent boundary layer, for which the ratio of boundary layer thickness to the stack diameter was 4.5. In addition, measurements of the vortex shedding frequency were made with a single-component hot-wire probe. The cross-flow Reynolds number was ReD = 2.3 x 104, the jet Reynolds number ranged from Red = 7.6 x 103 to 4.7 x 104, and R was varied from 0 to 3. <p>In the stack study, three flow regimes were identified depending on the value of R: the downwash (R < 0.7), cross-wind-dominated (0.7 < R < 1.5), and jet-dominated (R ≥ 1.5) flow regimes. Each flow regime had a distinct structure for the time-averaged velocity and streamwise vorticity fields, and turbulence characteristics, as well as the variation of the Strouhal number and the power spectrum of the streamwise velocity fluctuations along the stack height. The turbulence structure is complex and changes in the streamwise and wall-normal directions within the near and intermediate stack and jet wakes. In the downwash and crosswind-dominated flow regimes, two pairs of counter-rotating streamwise vortex structures were identified within the stack wake. The tip-vortex pair and base-vortex pair were similar to those found in the wake of a finite circular cylinder, located close to the free end and the base of the stack (ground plane), respectively. In the jet-dominated flow regime, a third pair of streamwise vortex structures was observed, referred to as the jet-wake vortex pair, which occurred within the jet-wake region above the free end of the stack. The jet-wake vortex pair has the same orientation as the base vortex pair and is associated with the jet rise.
325

Numerical Simulation of Flame-Vortex Interactions in Natural and Synthetic Gas Mixtures

Weiler, Justin D. 17 August 2004 (has links)
The interactions between laminar premixed flames and counter-rotating vortex pairs in natural and synthetic gas mixtures have been computationally investigated through the use of Direct Numerical Simulations and parallel processing. Using a computational model for premixed combustion, laminar flames are simulated for single- and two-component fuel mixtures of methane, carbon monoxide, and hydrogen. These laminar flames are forced to interact with superimposed laminar vortex pairs, which mimic the effects of a pulsed, two-dimensional slot-injection. The premixed flames are parameterized by their unstretched laminar flame speed, heat release, and flame thickness. The simulated vortices are of a fixed size (relative to the flame thickness) and are parameterized, solely, by their rotational velocity (relative to the flame speed). Strain rate and surface curvature measurements are made along the stretched flame surfaces to study the effects of additive syngas species (CO and H2) on lean methane-air flames. For flames that share the same unstretched laminar flame speed, heat release, and flame thickness, it is observed that the effects of carbon monoxide on methane-air mixtures are essentially negigible while the effects of hydrogen are quite substantial. The dynamics of stretched CH4/Air and CH4/CO/Air flames are nearly identical to one another for interactions with both strong and weak vortices. However, the CH4/H2/Air flames demonstrate a remarkable tendency toward surface area growth. Over comparable interaction periods, the flame surface area produced during interactions with CH4/H2/Air flames was found to be more than double that of the pure CH4/Air flames. Despite several obvious differences, all of the interactions revealed the same basic phenomena, including vortex breakdown and flame pinch-off (i.e. pocket formation). In general, the strain rate and surface curvature magnitudes were found to be lower for the CH4/H2/Air flames, and comparable between CH4/Air and CH4/CO/Air flames. Rates of flame stretching are not explicitely determined, but are, instead, addressed through observation of their individual components. Two different models are used to determine local displacement speed values. A discrepancy between practical and theoretical definitions of the displacement speed is evident based on the instantaneous results for CH4/Air and CH4/H2/Air flames interacting with weak and strong vortices.
326

Development of a Simplified Inflow Model for a Helicopter Rotor in Descent Flight

Chen, Chang 29 June 2006 (has links)
A helicopter rotor in descent flight encounters its own wake, resulting in a doughnut-shaped ring around the rotor disk, known as the Vortex Ring State (VRS). Flight in VRS condition can be dangerous as it may cause uncommanded drop in descent rate, loss of control effectiveness, power settling, excessive thrust and torque fluctuations, and vibration. As simple momentum theory is no longer valid for a rotor in VRS, modeling of rotor inflow in VRS continues to challenge researchers, especially for flight simulation applications. In this dissertation, a simplified inflow model, called the ring vortex model, is developed for a helicopter rotor operating in descent condition. By creating a series of vortex rings near the rotor disk, the ring vortex model addresses the strong flow interaction between the rotor wake and the surrounding airflow in descent flight. In addition, the total mass flow parameter in the existing inflow models is augmented to create a steady state transition between the helicopter and the windmill branches. With the ring vortex model, rotor inflow can now be adequately predicted over a wide range of descent rates. Validations of the ring vortex model for helicopter rotors are conducted extensively in axial and inclined descent. Effects from blade taper, blade twist, and rotor thrust are also investigated with further application of the finite-state inflow model. The ring vortex model is applied to a single main-rotor helicopter. The main effort is to establish VRS boundary based on heave stability criterion. In addition, two important phenomena observed in the descent flight tests are addressed in the dynamic simulation, including uncommanded drop in descent rate and loss of collective control effectiveness. The ring vortex model is further applied to a side-by-side rotor configuration. Lateral thrust asymmetry on the side-by-side rotor configuration can be reproduced through uneven distribution of vortex rings at the two rotors. Two important issues are investigated, including the impact of vortex rings on lateral thrust deficit and on lateral AFCS limit.
327

Computational Modelling Of Free Surface Flow In Intake Structures Using Flow 3d Software

Aybar, Akin 01 June 2012 (has links) (PDF)
Intakes are inlet structures where fluid is accelerated to a certain flow velocity to provide required amount of water into a hydraulic system. Intake size and geometry affects the formation of flow patterns, which can be influential for hydraulic performance of the whole system. An experimental study is conducted by measuring velocity field in the hydraulic model of the head pond of a hydropower plant to investigate vortex formation. Vortex strength based on potential flow theory is calculated from the measured velocity field. It was shown that vortex strength increases with the submergence Froude number. The free surface flow in the head pond is simulated using Flow-3D software. Vortex strength calculations are repeated using the computational velocity distributions and compared to experimentally obtained values. Similar computations were carried on with some idealized pond geometries such as rectangular and circular.
328

Enhanced vertical mixing within mesoscale eddies due to high frequency winds in the south China sea

Cardona Orozco, Yuley Mildrey 08 July 2011 (has links)
The South China Sea is a marginal basin with a complex circulation influenced by the East Asian Monsoon, river discharge and intricate bathymetry. As a result, both the mesoscale eddy field and the near-inertial energy distribution display large spatial variability and they strongly influence the oceanic transport and mixing. With an ensemble of numerical integrations using a regional ocean model, this work investigates how the temporal resolution of the atmospheric forcing fields modifies the horizontal and vertical velocity patterns and impacts the transport properties in the basin. The response of the mesoscale circulation in the South China Sea is investigated under three different forcing conditions: monthly, daily and six-hourly momentum and heat fluxes. While the horizontal circulation does not display significant differences, the representation of the vertical velocity field displays high sensitivity to the frequency of the wind forcing. If the wind field contains energy at the inertial frequency or higher (daily and six-hourly cases), then Vortex Rossby waves and near inertial waves are excited as ageostrophic expression of the vigorous eddy field. Those waves dominate the vertical velocity field in the mixed layer (vortex Rossby waves) and below the first hundred meters (near inertial waves) and they are responsible for the differences in the vertical transport properties under the various forcing fields as quantified by frequency spectra, vertical velocity profiles and vertical dispersion of Lagrangian tracers.
329

Adaptive Mesh Refinement and Simulations of Unsteady Delta-Wing Aerodynamics

Le Moigne, Yann January 2004 (has links)
<p>This thesis deals with Computational Fluid Dynamics (CFD)simulations of the flow around delta wings at high angles ofattack. These triangular wings, mainly used in militaryaircraft designs, experience the formation of two vortices ontheir lee-side at large angles of attack. The simulation ofthis vortical flow by solving the Navier-Stokes equations isthe subject of this thesis. The purpose of the work is toimprove the understanding of this flow and contribute to thedesign of such a wing by developing methods that enable moreaccurate and efficient CFD simulations.</p><p>Simulations of the formation, burst and disappearance of thevortices while the angle of attack is changing are presented.The structured flow solver NSMB has been used to get thetime-dependent solutions of the flow. Both viscous and inviscidresults of a 70°-swept delta wing pitching in anoscillatory motion are reported. The creation of the dynamiclift and the hysteresis observed in the history of theaerodynamic forces are well reproduced.</p><p>The second part of the thesis is focusing on automatic meshrefinement and its influence on simulations of the delta wingleading-edge vortices. All the simulations to assess the gridquality are inviscid computations performed with theunstructured flow solver EDGE. A first study reports on theeffects of refining thewake of the delta wing. A70°-swept delta wing at a Mach number of 0.2 and an angleof attack of 27° where vortex breakdown is present abovethe wing, is used as testcase. The results show a strongdependence on the refinement, particularly the vortex breakdownposition, which leads to the conclusion that the wake should berefined at least partly. Using this information, a grid for thewing in the wind tunnel is created in order to assess theinfluence of the tunnel walls. Three sensors for automatic meshrefinement of vortical flows are presented. Two are based onflow variables (production of entropy and ratio of totalpressures) while the third one requires an eigenvalue analysisof the tensor of the velocity gradients in order to capture theposition of the vortices in the flow. These three vortexsensors are successfully used for the simulation of the same70° delta wing at an angle of attack of 20°. Acomparison of the sensors reveals the more local property ofthe third one based on the eigenvalue analysis. This lattertechnique is applied to the simulation of the wake of a deltawing at an angle of attack of 20°. The simulations on ahighly refined mesh show that the vortex sheet shed from thetrailing-edge rolls up into a vortex that interacts with theleading-edge vortex. Finally the vortex-detection technique isused to refine the grid around a Saab Aerosystems UnmannedCombat Air Vehicle (UCAV) configuration and its flight dynamicscharacteristics are investigated.</p><p><b>Key words:</b>delta wing, high angle of attack, vortex,pitching, mesh refinement, UCAV, vortex sensor, tensor ofvelocity gradients.</p>
330

Stability and turbulence characteristics of a spiraling vortex filament using proper orthogonal decomposition

Mula, Swathi Mahalaxmi 03 August 2015 (has links)
The stability and turbulence characteristics of a vortex filament emanating from a single-bladed rotor in hover are investigated using proper orthogonal decomposition. The rotor is operated at a tip chord Reynolds number and a tip Mach number of 218,000 and 0.22, respectively, and with a blade loading of CT /σ = 0.066. In-plane components of the velocity field (normal to the axis of the vortex filament) are captured by way of 2D particle image velocimetry with corrections for vortex wander being performed using the Γ1 method. Using the classical form of POD, the first POD mode alone is found to encompass nearly 75% of the energy for all vortex ages studied and is determined using a grid of sufficient resolution as to avoid numerical integration errors in the decomposition. The findings reveal an equal balance between the axisymmetric and helical modes during vortex roll-up which immediately transitions to helical mode dominance at all other vortex ages. This helical mode is one of the modes of the elliptic instability. While the snapshot POD is shown to reveal similar features of the first few energetic modes, the classical POD is employed here owing to the easier interpretation of the Fourier-azimuthal modes. The spatial eigenfunctions of the first few Fourier-azimuthal modes associated with the most energetic POD mode are shown to be sensitive to the choice of the wander correction technique used. Higher Fourier-azimuthal modes are observed in the outer portions of the vortex and appeared not to be affected by the choice of the wander correction technique used. / text

Page generated in 0.035 seconds