11 |
Work-life balance möjlighet att predicera Intention to quit hos skiftarbetareKjellberg, Teodor, Lundin, Sara January 2023 (has links)
Syftet med denna studie var att undersöka relationen mellan Work-life balance (WLB) och intentionen att säga upp sig (ITQ) hos skiftarbetare. För att undersöka Work-life balance relation till intentionen att säga upp sig delades work-life balance upp i sina underkategorier Work-family conflict (WFC) och Family-work conflict (FWC). En kvantitativ studie genomfördes via en digital enkät som distribuerades ut till 866 trafikoperatörer som arbetar skift inom en statlig myndighet för trafikledning. Av de 886 tillfrågade svarade 235 på enkäten och 188 av dem kom sedan att användas i analysen då 47 av svaren inte var fullständiga. De 188 svaren analyserades genom en hierarkisk multipel regressionsanalys. Resultatet visade att Work-life balance kan predicera en individs intention att säga upp sig och att Work-family conflikt var den konflikt som förklarade störst del av variansen i ITQ då FWC inte var en signifikant prediktor. Sambandet mellan Work-family conflict och intentionen att säga upp sig var att desto mer Work-family conflict desto högre intention att säga upp sig. / The purpose of this study was to examine the relationship between Work-life balance and Intention to quit among shift workers. To examine the relationship between Work- Life balance and Intention to quit, Work-life balance was split up into its two subcategories Work-family conflict and Family-work conflict. A quantitative study was carried out through a digital survey that was distributed to 866 traffic-operators within a state department that operates in the field of traffic. Of the 866 respondents 235 answered the survey, 47 of the answers were not completed in full and were therefore ejected from the study, total answers used in the study was 188. The 188 answers were analyzed through a hierarchical regression analysis. The results showed that Work-life balance can predict an individual's intention to quit and that Work-family conflict was the conflict that to most extent explained the variance of intention to quit. The result also showed that Family-work conflict were not a significant predictor for intention to quit. The relation between Work-family conflict and intention to quit were displayed in the following way, more work-family conflict resulted in a higher intention to quit.
|
12 |
Pandemin som (kanske) förändrade livet : En studie i pandemins inverkan på svenska arbetares liv / The pandemic that (maybe) changed our lives : A study of the pandemic’s effect on Swedish workers’ livesCarlsson, Robin January 2023 (has links)
Syftet med undersökningen var att undersöka hur svenska arbetares liv har påverkats avcoronapandemin. Eftersom en undersökning som omfattar alla livets aspekter skulle bli allt föromfattande avgränsades studien till att undersöka utvalda områden. De olika aspekter som valdesvar stress, work life balance (livspusslet), arbetsförhållande och känsla av sammanhang (KASAM)för att på detta sätt försöka få en uppfattning av om, och i så fall hur, Covid-19 påverkade arbetarnasliv. Undersökningen genomfördes med hjälp av en enkät som distribuerades via sociala medier.Enkäten baserades på teori om begreppen stress, work life balance och KASAM och kompletteradesmed bakgrundsfrågor till de som svarade. I den teoretiska referensramen redogörs det för de begrepp som låg till grund för enkäten samtresultat av undersökningar från andra instanser och myndigheter som har genomförts vid andratillfällen än min egen. Den teoretiska referensramen operationaliserades i en enkät somdistribuerades genom sociala medier (Facebook) genom en form av bekvämlighets- ochsnöbollsurval på så vis att inlägget som länkade till undersökningen innehöll en uppmaning attsprida enkäten. Undersökningen riktade sig till alla arbetare i Sverige och totalt inkom 108 svarvarav 102 var från personer med arbete. Resultatet visar att vissa effekter av pandemin tycksförekomma men att underlaget analysen bygger på är tunnare än önskvärt.
|
13 |
Comparing burnout and work-life balance among specialists in internal medicine: the role of inpatient vs. outpatient workplaceHussenoeder, Felix S., Bodendieck, Erik, Jung, Franziska, Conrad, Ines, Riedel-Heller, Steffi Gerlinde 08 March 2022 (has links)
Background: Compared to the general population, physicians are more likely to experience increased burnout and lowered work-life balance. In our article, we want to analyze whether the workplace of a physician is associated with these outcomes.
Methods: In September 2019, physicians from various specialties answered a comprehensive questionnaire. We analyzed a subsample of 183 internists that were working full time, 51.4% were female.
Results: Multivariate analysis showed that internists working in an outpatient setting exhibit significantly higher WLB and more favorable scores on all three burnout dimensions. In the regression analysis, hospital-based physicians exhibited higher exhaustion, cynicism and total burnout score as well as lower WLB.
Conclusions: Physician working at hospitals exhibit less favorable outcomes compared to their colleagues in outpatient settings. This could be a consequence of workplace-specific factors that could be targeted by interventions to improve physician mental health and subsequent patient care.
|
14 |
Mellan idealitet och professionalitet : Gränssättningens balansakt för chefer i ideell sektor / Between ideality and professionalism : The balancing act of demarcation for managers in the non-profit sectorTernefors, Linn, Kagelind, Josefine January 2023 (has links)
The main purpose of this study was to examine managers' capabilities to support the boundaries between work-life and private-life in the non-profit sector. The theoretical framework of the study is centered on work/family border theory where we focused on managers' dual role of border-crosser and border-keeper and explained this using new institutional theory as an analytical lens together with previous research on the special nature of the nonprofits, as well as policies for border control and the balance between autonomy and control. To understand the boundaries between the two domains, four focus groups were interviewed, consisting of three to four individuals. The participants were managers of various organizations within the nonprofit sector. According to boundary theory, employees become central participants when the organization helps them internalize the culture of the domain, develop knowledge in their jobs, when they connect with those who already have central membership, and when they are given responsibilities with which they can personally identify. The central membership is then assumed to provide tools for them to be able to increase the balance between work and private life on their own. The result of the study has shown that there are two factors that the managers believe affect the boundary between work and private life in addition to the actual time, namely performance boundaries and role boundaries. Based on what the focus groups convey, there is a notion of an ideal in the nonprofit sector where the job is to some extent expected to be seen as something more than a job that reinforces the boundless tendencies between working life and private life.
|
15 |
3D-Wafer Level Packaging approaches for MEMS by using Cu-based High Aspect Ratio Through Silicon Vias / Ansätze zum 3D-Wafer Level Packaging für MEMS unter Nutzung von Cu-basierten Si-Durchkontaktierungen mit hohem AspektverhältnisHofmann, Lutz 06 December 2017 (has links) (PDF)
For mobile electronics such as Smartphones, Smartcards or wearable devices there is a trend towards an increasing functionality as well as miniaturisation. In this development Micro Electro- Mechanical Systems (MEMS) are an important key element for the realisation of functions such as motion detection. The specifications given by such devices together with the limited available space demand advanced packaging technologies. The 3D-Wafer Level Packaging (3D-WLP) enables one solution for a miniaturised MEMS package by using techniques such as Wafer Level Bonding (WLB) and Through Silicon Vias (TSV). This technology increases the effective area of the MEMS device by elimination dead space, which is typically required for other approaches based on wire bond assembly. Within this thesis, different TSV technology concepts with respect to a 3D-WLP for MEMS have been developed. Thereby, the focus was on a copper based technology as well as on two major TSV implementation methods. This comprises a Via Middle approach based on the separated TSV fabrication in the cap wafer as well as a Via Last approach with a TSV implementation in either the MEMS or cap wafer, respectively. For each option with its particular challenges, corresponding process modules have been developed. In the Via Middle approach, the wafer-related etch rate homogeneity determines the TSV reveal from the wafer backside Here, a reduction of the TSV depth down to 80 μm is favourable as long as the desired Cu-thermo-compression bonding (Cu-TCB) is performed before the thinning. For the TSV metallisation, a Cu electrochemical deposition method was developed, which allows the deposition of one redistribution layer as well as the bonding patterns for Cu-TCB at the same time. In the Via Last approach, the TSV isolation represents one challenge. Chemical Vapour Deposition processes have been investigated, for which a combination of PE-TEOS and SA-TEOS as well as a Parylene deposition yield the most promising results. Moreover, a method for the realisation of a suitable bonding surface for the Silicon Direct Bonding method has been developed, which does not require any wet pre treatment of the fabricated MEMS patterns. A functional MEMS acceleration sensor as well as Dummy devices serve as demonstrators for the overall integration technology as well as for the characterisation of electrical parameters. / Im Bereich mobiler Elektronik, wie z.B. bei Smartphones, Smartcards oder in Kleidung integrierten Geräten ist ein Trend zu erkennen hinsichtlich steigender Funktionalität und Miniaturisierung. Bei dieser Entwicklung spielen Mikroelektromechanische Systeme (MEMS) eine entscheidende Rolle zur Realisierung neuer Funktionen, wie z.B. der Bewegungsdetektion. Die Anforderungen derartiger Bauteile zusammen mit dem begrenzten zur Verfügung stehenden Platz erfordern neuartige Technologien für die Aufbau- und Verbindungstechnick (engl. Packaging) der Bauteile. Das 3D-Wafer Level Packaging (3D-WLP) ermöglicht eine Lösung für eine miniaturisierte MEMS-Bauform unter Nutzung von Techniken wie dem Waferlevelbonden (WLB) und den Siliziumdurchkontaktierungen (TSV von engl. Through Silicon Via). Diese Technologie erhöht die effektive aktive Fläche des MEMS Bauteils durch die Reduzierung von Toträumen, welche für andere Ansätze wie der Drahtbond-Montage üblich sind. In der vorliegenden Arbeit wurden verschiedene Technologiekonzepte für den Aufbau von 3D-WLP für MEMS erarbeitet. Dabei lag der Fokus auf einer Kupfer-basierten Technologie sowie auf zwei prinzipiellen Varianten für die TSV-Implementierung. Dies umfasst den Via Middle Ansatz, welcher auf der TSV Herstellung auf einem separaten Kappenwafer beruht, sowie den Via Last Ansatz mit einer TSV Herstellung entweder im MEMS-Wafer oder im Kappenwafer. Für beide Varianten mit individuellen Herausforderungen wurden entsprechende Prozessmodule entwickelt. Beim Via Middle Ansatz ist die Wafer-bezogene Ätzratenhomogenität des Siliziumtiefenätzen entscheidend für das spätere Freilegen der TSVs von der Rückseite. Hier hat sich eine Reduzierung der TSV-Tiefe auf bis zu 80 μm vorteilhaft erwiesen insofern, das Kupfer-Thermokompressionsbonden (Cu-TKB) vor dem Abdünnen erfolgt. Zur Metallisierung der TSVs wurde ein Cu Galvanikprozess erarbeitet, welcher es ermöglicht gleichzeitig eine Umverdrahtungsebene sowie die Bondstrukturen für das Cu-TKB zu erzeugen. Beim Via Last Ansatz ist die TSV Isolation eine Herausforderung. Es wurden CVD (Chemische Dampfphasenabscheidung) Prozesse untersucht, wobei eine Kombination aus PE-TEOS und SA-TEOS sowie eine Parylene Beschichtung erfolgversprechende Ergebnisse liefern. Des Weiteren wurde eine Methode zur Erzeugung bondfähiger Oberflächen für das Siliziumdirektbonden erarbeitet, welche eine Nass-Vorbehandlung des MEMS umgeht. Ein realer MEMS-Beschleunigungssensor sowie Testaufbauten dienen zur Demonstration der Gesamtintegrationstechnologie sowie zur Charakterisierung elektrischer Parameter.
|
16 |
3D-Wafer Level Packaging approaches for MEMS by using Cu-based High Aspect Ratio Through Silicon ViasHofmann, Lutz 29 November 2017 (has links)
For mobile electronics such as Smartphones, Smartcards or wearable devices there is a trend towards an increasing functionality as well as miniaturisation. In this development Micro Electro- Mechanical Systems (MEMS) are an important key element for the realisation of functions such as motion detection. The specifications given by such devices together with the limited available space demand advanced packaging technologies. The 3D-Wafer Level Packaging (3D-WLP) enables one solution for a miniaturised MEMS package by using techniques such as Wafer Level Bonding (WLB) and Through Silicon Vias (TSV). This technology increases the effective area of the MEMS device by elimination dead space, which is typically required for other approaches based on wire bond assembly. Within this thesis, different TSV technology concepts with respect to a 3D-WLP for MEMS have been developed. Thereby, the focus was on a copper based technology as well as on two major TSV implementation methods. This comprises a Via Middle approach based on the separated TSV fabrication in the cap wafer as well as a Via Last approach with a TSV implementation in either the MEMS or cap wafer, respectively. For each option with its particular challenges, corresponding process modules have been developed. In the Via Middle approach, the wafer-related etch rate homogeneity determines the TSV reveal from the wafer backside Here, a reduction of the TSV depth down to 80 μm is favourable as long as the desired Cu-thermo-compression bonding (Cu-TCB) is performed before the thinning. For the TSV metallisation, a Cu electrochemical deposition method was developed, which allows the deposition of one redistribution layer as well as the bonding patterns for Cu-TCB at the same time. In the Via Last approach, the TSV isolation represents one challenge. Chemical Vapour Deposition processes have been investigated, for which a combination of PE-TEOS and SA-TEOS as well as a Parylene deposition yield the most promising results. Moreover, a method for the realisation of a suitable bonding surface for the Silicon Direct Bonding method has been developed, which does not require any wet pre treatment of the fabricated MEMS patterns. A functional MEMS acceleration sensor as well as Dummy devices serve as demonstrators for the overall integration technology as well as for the characterisation of electrical parameters.:Bibliographische Beschreibung 3
Vorwort 13
List of symbols and abbreviations 15
1 Introduction 23
2 Fundamentals on MEMS and TSV based 3D integration 25
2.1 Micro Electro-Mechanical systems 25
2.1.1 Basic Definition 25
2.1.2 Silicon technologies for MEMS 26
2.1.3 MEMS packaging 29
2.2 3D integration based on TSVs 33
2.2.1 Overview 33
2.2.2 Basic processes for TSVs 34
2.2.3 Stacking and Bonding 47
2.2.4 Wafer thinning 48
2.3 TSV based MEMS packaging 50
2.3.1 MEMS-TSVs 50
2.3.2 3D-WLP for MEMS 52
3 Technology development for a 3D-WLP based MEMS 57
3.1 Target integration approach for 3D-WLP based MEMS 57
3.1.1 MEMS modules using 3D-WLP based MEMS 57
3.1.2 Integration concepts 58
3.2 Objective and requirements for the proposed 3D-WLP of MEMS 60
3.2.1 Boundary conditions 60
3.2.2 Technology concepts 63
3.3 Selected approaches for TSV implementation in MEMS 64
3.3.1 Via Last Technology 64
3.3.2 Via Middle technology 69
4 Development of process modules 75
4.1 Characterisation 75
4.2 TSV related etch processes 77
4.2.1 Equipment 77
4.2.2 Deep silicon etching 78
4.2.3 Etching of the buried dielectric layer 84
4.2.4 Patterning of TSV isolation liner – spacer etching 90
4.2.5 Summary 92
4.3 TSV isolation 93
4.3.1 Principle considerations 93
4.3.2 Experiment 95
4.3.3 Results 97
4.3.4 Summary 102
4.4 Metallisation of TSV and RDL 103
4.4.1 Plating base and experimental setup 103
4.4.2 Investigations related to the ECD process 106
4.4.3 Pattern plating 117
4.4.4 Summary 123
4.5 Wafer Level Bonding 124
4.5.1 Silicon direct bonding 124
4.5.2 Thermo-compression bonding by using ECD copper 128
4.5.3 Summary 134
4.6 Wafer thinning and TSV back side reveal 134
4.6.1 Thinning processes 134
4.6.2 TSV reveal processes 136
4.6.3 Summary 145
4.7 Under bump metallisation and solder bumps 146
5 Demonstrator design, fabrication and characterisation 149
5.1 Single wafer demonstrator for electrical test 149
5.1.1 Demonstrator design and test structure layout 149
5.1.2 Demonstrator fabrication 150
5.1.3 Electrical measurement 151
5.1.4 Summary 153
5.2 Via Last based TSV fabrication in the MEMS device wafer 153
5.2.1 Layout of the MEMS device with TSVs 153
5.2.2 Fabrication of TSVs and wafer thinning 154
5.2.3 Characterisation of the fabricated device 155
5.2.4 Summary 156
5.3 Via Last based cap-TSV for very thin MEMS devices 157
5.3.1 Design 157
5.3.2 Fabrication 158
5.3.3 Characterisation 161
5.3.4 Summary 162
5.4 Via Middle approach based on thinning after bonding 163
5.4.1 Design 163
5.4.2 Results and characterisation 164
5.4.3 Summary 166
6 Conclusion and outlook 167
Appendix A: Typical requirements on a MEMS package and its functions 171
Appendix B: Classification of packaging and system integration techniques 173
B.1 Packaging of electronic devices in general 173
B.2 Single Chip Packages 174
B.3 System integration 175
B.4 3D integration based on TSVs 180
Bibliography 183
List of figures 193
List of tables 199
Versicherung 201
Theses 203
Curriculum vitae 205
Own publications 207 / Im Bereich mobiler Elektronik, wie z.B. bei Smartphones, Smartcards oder in Kleidung integrierten Geräten ist ein Trend zu erkennen hinsichtlich steigender Funktionalität und Miniaturisierung. Bei dieser Entwicklung spielen Mikroelektromechanische Systeme (MEMS) eine entscheidende Rolle zur Realisierung neuer Funktionen, wie z.B. der Bewegungsdetektion. Die Anforderungen derartiger Bauteile zusammen mit dem begrenzten zur Verfügung stehenden Platz erfordern neuartige Technologien für die Aufbau- und Verbindungstechnick (engl. Packaging) der Bauteile. Das 3D-Wafer Level Packaging (3D-WLP) ermöglicht eine Lösung für eine miniaturisierte MEMS-Bauform unter Nutzung von Techniken wie dem Waferlevelbonden (WLB) und den Siliziumdurchkontaktierungen (TSV von engl. Through Silicon Via). Diese Technologie erhöht die effektive aktive Fläche des MEMS Bauteils durch die Reduzierung von Toträumen, welche für andere Ansätze wie der Drahtbond-Montage üblich sind. In der vorliegenden Arbeit wurden verschiedene Technologiekonzepte für den Aufbau von 3D-WLP für MEMS erarbeitet. Dabei lag der Fokus auf einer Kupfer-basierten Technologie sowie auf zwei prinzipiellen Varianten für die TSV-Implementierung. Dies umfasst den Via Middle Ansatz, welcher auf der TSV Herstellung auf einem separaten Kappenwafer beruht, sowie den Via Last Ansatz mit einer TSV Herstellung entweder im MEMS-Wafer oder im Kappenwafer. Für beide Varianten mit individuellen Herausforderungen wurden entsprechende Prozessmodule entwickelt. Beim Via Middle Ansatz ist die Wafer-bezogene Ätzratenhomogenität des Siliziumtiefenätzen entscheidend für das spätere Freilegen der TSVs von der Rückseite. Hier hat sich eine Reduzierung der TSV-Tiefe auf bis zu 80 μm vorteilhaft erwiesen insofern, das Kupfer-Thermokompressionsbonden (Cu-TKB) vor dem Abdünnen erfolgt. Zur Metallisierung der TSVs wurde ein Cu Galvanikprozess erarbeitet, welcher es ermöglicht gleichzeitig eine Umverdrahtungsebene sowie die Bondstrukturen für das Cu-TKB zu erzeugen. Beim Via Last Ansatz ist die TSV Isolation eine Herausforderung. Es wurden CVD (Chemische Dampfphasenabscheidung) Prozesse untersucht, wobei eine Kombination aus PE-TEOS und SA-TEOS sowie eine Parylene Beschichtung erfolgversprechende Ergebnisse liefern. Des Weiteren wurde eine Methode zur Erzeugung bondfähiger Oberflächen für das Siliziumdirektbonden erarbeitet, welche eine Nass-Vorbehandlung des MEMS umgeht. Ein realer MEMS-Beschleunigungssensor sowie Testaufbauten dienen zur Demonstration der Gesamtintegrationstechnologie sowie zur Charakterisierung elektrischer Parameter.:Bibliographische Beschreibung 3
Vorwort 13
List of symbols and abbreviations 15
1 Introduction 23
2 Fundamentals on MEMS and TSV based 3D integration 25
2.1 Micro Electro-Mechanical systems 25
2.1.1 Basic Definition 25
2.1.2 Silicon technologies for MEMS 26
2.1.3 MEMS packaging 29
2.2 3D integration based on TSVs 33
2.2.1 Overview 33
2.2.2 Basic processes for TSVs 34
2.2.3 Stacking and Bonding 47
2.2.4 Wafer thinning 48
2.3 TSV based MEMS packaging 50
2.3.1 MEMS-TSVs 50
2.3.2 3D-WLP for MEMS 52
3 Technology development for a 3D-WLP based MEMS 57
3.1 Target integration approach for 3D-WLP based MEMS 57
3.1.1 MEMS modules using 3D-WLP based MEMS 57
3.1.2 Integration concepts 58
3.2 Objective and requirements for the proposed 3D-WLP of MEMS 60
3.2.1 Boundary conditions 60
3.2.2 Technology concepts 63
3.3 Selected approaches for TSV implementation in MEMS 64
3.3.1 Via Last Technology 64
3.3.2 Via Middle technology 69
4 Development of process modules 75
4.1 Characterisation 75
4.2 TSV related etch processes 77
4.2.1 Equipment 77
4.2.2 Deep silicon etching 78
4.2.3 Etching of the buried dielectric layer 84
4.2.4 Patterning of TSV isolation liner – spacer etching 90
4.2.5 Summary 92
4.3 TSV isolation 93
4.3.1 Principle considerations 93
4.3.2 Experiment 95
4.3.3 Results 97
4.3.4 Summary 102
4.4 Metallisation of TSV and RDL 103
4.4.1 Plating base and experimental setup 103
4.4.2 Investigations related to the ECD process 106
4.4.3 Pattern plating 117
4.4.4 Summary 123
4.5 Wafer Level Bonding 124
4.5.1 Silicon direct bonding 124
4.5.2 Thermo-compression bonding by using ECD copper 128
4.5.3 Summary 134
4.6 Wafer thinning and TSV back side reveal 134
4.6.1 Thinning processes 134
4.6.2 TSV reveal processes 136
4.6.3 Summary 145
4.7 Under bump metallisation and solder bumps 146
5 Demonstrator design, fabrication and characterisation 149
5.1 Single wafer demonstrator for electrical test 149
5.1.1 Demonstrator design and test structure layout 149
5.1.2 Demonstrator fabrication 150
5.1.3 Electrical measurement 151
5.1.4 Summary 153
5.2 Via Last based TSV fabrication in the MEMS device wafer 153
5.2.1 Layout of the MEMS device with TSVs 153
5.2.2 Fabrication of TSVs and wafer thinning 154
5.2.3 Characterisation of the fabricated device 155
5.2.4 Summary 156
5.3 Via Last based cap-TSV for very thin MEMS devices 157
5.3.1 Design 157
5.3.2 Fabrication 158
5.3.3 Characterisation 161
5.3.4 Summary 162
5.4 Via Middle approach based on thinning after bonding 163
5.4.1 Design 163
5.4.2 Results and characterisation 164
5.4.3 Summary 166
6 Conclusion and outlook 167
Appendix A: Typical requirements on a MEMS package and its functions 171
Appendix B: Classification of packaging and system integration techniques 173
B.1 Packaging of electronic devices in general 173
B.2 Single Chip Packages 174
B.3 System integration 175
B.4 3D integration based on TSVs 180
Bibliography 183
List of figures 193
List of tables 199
Versicherung 201
Theses 203
Curriculum vitae 205
Own publications 207
|
Page generated in 0.0256 seconds