• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 189
  • 62
  • 34
  • 26
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 420
  • 93
  • 71
  • 67
  • 64
  • 63
  • 59
  • 55
  • 47
  • 46
  • 43
  • 41
  • 37
  • 36
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The Truce, the Old Truce, and Nattonbuff the Truce: A Creative Reading of James Joyce's Finnegans Wake

Eriksson, Robert January 2013 (has links)
James Joyce's Finnegans Wake is known as one of the most difficult texts in all of literature. A one-to-one relationship, however, between a decoding reader and a presenting author is something Finnegans Wake does not incorporate in any traditional sense. Because of the ways in which Joyce manipulates language through assonance and multilingual references, his words are essentially freed from their dictionary definitions and rely instead on connotations. This essay looks at the text from the perspective of a first reading, a look that is then compared to a more 'authoritative' stance found in various glossaries, to see if the information found there takes precedence over the reader's imagination, and if self-made meanings remain 'appropriate' in the face of the explanations. The text is shown to become more of a device with which we produce meaning, rather than a story to which we are only passively listening or otherwise trying to understand. Instead, it celebrates obscure, often contradicting sense relations, which correspond to the dream-like nature of its nocturnal theme. Despite the sheer amount of historical references contained within, the first-time reader can proceed without the many glossaries that have been written on the work, and instead rely on a more creative and less disciplined method of examination. This essay is thus tainted with an inherent contradiction—it questions the transcriptive act epitomized by eager textual scholars set on elucidating the text's difficulties while simultaneously committing that act, but only in order to encourage readers that Finnegans Wake otherwise scares away and to suggest an alternate method of reading. Readers are thereby asked to relieve themselves of their domesticated behavior, and get involved. The difficulty of Finnegans Wake only appears when we read it in terms of conventional understanding, and should instead encourage us into becoming creative users.
62

Fundamental studies of the wake structure for surface-mounted finite-height cylinders and prisms

2012 September 1900 (has links)
Surface-mounted finite-height circular cylinders and square prisms can be found in many industrial and engineering applications. The local flow fields around these bluff bodies are not yet well understood due to lack of experimental and numerical data close to the cylinder and prism. The aim of this thesis was therefore to gain an improved physical description of the flow field above the free end surface and around the cylinders and prisms. In the present experimental study, the particle image velocimetry (PIV) technique was used to measure the flow field very close to these bluff bodies in the test section of a low-speed wind tunnel. Four finite circular cylinders and square prisms of aspect ratios AR = 9, 7, 5 and 3 were tested at a Reynolds number of ReD = 4.2×104. At the location of the cylinder or prism, the boundary layer thickness relative to the cylinder diameter or prism width (D) was δ/D = 1.6. PIV velocity field measurements in the near-wake region were made in a vertical plane parallel to the mean flow direction on the flow centreline (the symmetry plane), within 2D upstream and 5D downstream of the cylinder or prism. Additional PIV measurements were carried out in three orthogonal x-z, x-y, and y-z planes above the free end surface of the models. In the near-wake region of the finite circular cylinders, the large recirculation zone contained a vortex immediately behind and below the free end; this vortex was found for all four aspect ratios. A second vortex was found behind the cylinder near the cylinder-wall junction; this vortex was not observed for the cylinder of AR = 3, indicating a distinct wake structure for this cylinder. Similar to the circular cylinder case, in the near-wake region of the square prisms, a vortex was observed immediately behind and below the free end in the recirculation zone. The size and strength of this vortex increased as the aspect ratio of the prism decreased. Also, a second vortex was found near the prism-wall junction downstream of the prisms of AR = 9 and 7, while this vortex was not observed for the prisms of AR = 5 and 3. The PIV results in the near-wake regions of the circular cylinders and square prisms show that the effect of the bluff body shape (circular or square cross-section) is evident in the maximum length of the mean recirculation zone. A considerable difference was seen between the maximum length of the mean recirculation zones of the circular cylinder and square prism of AR = 9, while the shape of the bluff body does not considerably affect the length of the recirculation zones for the bodies of AR = 7, 5, and 3. The present PIV results also provided insight into the separated flow above the free ends, including the effects of AR and body shape. Above the free end of the cylinders, flow separation from the leading edge led to the formation of a mean recirculation zone on the free-end surface. The point of reattachment of the flow onto the free-end surface moved towards the trailing edge as the cylinder aspect ratio was decreased. Large regions of elevated turbulence intensity and Reynolds shear stress were found above the free end. For the finite circular cylinders, the flow pattern above the free end was similar in all three x-z planes for all aspect ratios, consisting of a cross-stream vortex at approximately x/D = 0. According to the PIV results in the x-y planes, one of the main characteristics of the flow over the free end surface of the circular cylinders was a pair of focal points at x/D ≈ 0 and near the edge of the free end. As the cylinder aspect ratio increased, the size and strength of these vortices decreased. Also, the centers of the vortices moved downstream as the aspect ratio increased. For the finite square prism, the large, separated, recirculating flow region extended into the near wake. For the square prism of AR = 3, considerable difference was seen in the free-end flow pattern compared to the more slender prisms of AR = 9, 7 and 5. In particular, a cross-stream vortex formed due to interaction between the separated flow from the leading edge of the prism and the reverse flow over the trailing edge of the free end. This vortex was seen in all three planes at different cross-stream locations for AR = 3 but only in the symmetry plane for AR = 9. Hence, the present PIV results in the x-z planes revealed the effect of the near-wake flow on the flow above the prism free end. The results also showed a considerable effect of the aspect ratio on the mean velocity field as well as the Reynolds stress fields. The results in the x-y planes showed different flow patterns for the prism of AR = 3 including wall-normal vortices close to the free end at the sides of the prism as well as two saddle points close to the corners of the trailing edge and one node downstream of the trailing edge, while for AR = 9, no vortices and node were observed. Two streamwise vortices with opposite sign of rotation were seen in the y-z plane at x/D = 0.2 for all aspect ratios. The present results illustrate in-plane vorticities originating from the vertices of the leading edge of the prism for all aspect ratios.
63

The relationships between pain and sleep in spinal cord injury patients

Pillay, Diana Subramony January 2016 (has links)
Dissertation submitted to the Faculty of Health Sciences, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master of Science in Medicine 2015 / Spinal cord injury (SCI) is a devastating injury affecting many South Africans. The purpose of the study was to investigate the relationship between SCI pain and sleep issues during acute inpatient rehabilitation. Seventeen participants were recruited. There were 2 interviews in the study; the 1st interview was done on the day participants were recruited. The 2nd interview was conducted a day before participants were discharged. The time elapsed between the first and second interview was 7.9±2.4. The patients were discharged from the Auckland Rehabilitation hospital (Hope ward). In the 2nd interview the questionnaires for pain, sleep and mood measures were repeated, and two additional questions were asked and the answers recorded for analysis of content. The key findings were; majority of the participants were Black, male (82%). The main cause of traumatic SCI was motor vehicle accident (59%). The common sites of injury were in the legs and neck/shoulder areas in both assessment (admission and discharge). The verbal descriptors that were commonly chosen in both assessments were, “sharp, shooting and tight.” Below level neuropathic pain, followed by musculoskeletal pain were the common types of pain reported. Pain interference was reported greatest in sleep and on average pain intensity was moderate (4-6 on 11-point Numerical Rating Scale). Strong correlations and positive relationships between Pain Catastrophizing Scale and subscales, and with the Pittsburgh Insomnia Rating total scale and subscales were reported in this study. Environmental factors were reported to affect sleep. A high incidence of Restless Leg Syndrome was reported in this study (24%). Depression was commonly reported by participants in both assessments. No significant association was found for the measures of sleep, Restless Leg Syndrome, depression and quality of life and the injury characteristics that were assessed. Significant associations were found at the 95% confidence levels for pain scores and injury characteristics (completeness of injury, level of injury and pain sites). Further studies in this area of pain and sleep management is warranted. It is important that clinicians and researchers in this area find appropriate management for secondary issues which have a severe impact on the daily activities of SCI people, decreasing their quality of life. Key words: SCI pain, sleep disturbances, mood / MT2016
64

Impacto da altura de aerogeradores sobre a velocidade do vento, energia, efeito de esteira e intensidade de turbulência : estudos de caso em três projetos eólicos localizados no Brasil

Pereira, Maurício Vieira da Rocha January 2016 (has links)
O setor eólico está em processo de consolidação no Brasil desde o início dos anos 2000, e oportunidades de pesquisas e desenvolvimento estão presentes em todas as etapas do processo. Este trabalho apresenta uma relação entre os parâmetros de velocidade do vento, energia, efeito de esteira e intensidade de turbulência com diferentes alturas de turbinas existentes no mercado brasileiro, em três regiões distintas, Triunfo/PE, São João do Cariri/PB e São Martinho da Serra/RS. A finalidade do trabalho é auxiliar os desenvolvedores e os investidores de parques eólicos na tomada de decisão sobre as alturas de aerogeradores a serem consideradas em seus projetos eólicos, antecipando a avaliação criteriosa do recurso eólico local. Para tal, primeiramente são citadas referências de trabalhos similares disponíveis na literatura bem como é realizada a fundamentação teórica do estudo com as principais equações e modelos utilizados na área. A metodologia do cálculo é teórica e aplicada às ferramentas computacionais do WAsP para a modelagem do vento e do WindFarmer para avaliar a produção de energia elétrica, com adaptações específicas para cada projeto. Procedimentos estatísticos são efetuados a fim de se garantir que as análises contenham o menor nível possível de incerteza na identificação do recurso eólico de cada região. Os resultados do trabalho são apresentados comparativamente entre os sete modelos de aerogerador testados e também entre as três áreas estudadas. O comportamento das turbinas é consideravelmente diferente em todas as opções estudadas. Os modelos de aerogerador A e D são os que apresentam o maior ganho energético percentual com o incremento da altura da turbina com valores médios de 0,42% e 0,44% a cada metro. Já os modelos C e D apresentam as melhorias mais consideráveis em termos de redução de intensidade de turbulência e diminuição de perdas por efeito de esteira, conforme se aumenta a altura das turbinas. As áreas apresentam, também, recursos eólicos distintos entre elas. O projeto eólico de Triunfo é o que apresenta a maior geração de energia dentre os estudados, sendo 24,2% maior que em São Martinho da Serra e 45,0% maior que em São João do Cariri. Verifica-se, também, que caso a velocidade média do vento de longo prazo fosse dobrada em Triunfo, a energia líquida teria um acréscimo de 88%. Já em São Martinho da Serra este valor chegaria em 170% e em São João do Cariri em 220%. / The wind energy sector has been under consolidation in Brazil since the early 2000s. Opportunities for researches and developments are present at all stages of the process. This paper presents a link among wind speed, energy, wake effect and turbulence intensity parameters and the height of existing wind turbine models in Brazil, considering three distinct regions as Triunfo/PE, São João do Cariri/PB and São Martinho da Serra/RS. This paper also aims to support developers and investors in the decision making process in the wind turbines height that should be considered in its wind farms. To this end, the references of similar studies as well as the theoretical basis for the study, including the main equations and models, are presented. The calculation methodology is theoretical and it has been applied to the computational tools WAsP (wind modeling) and WindFarmer (evaluate the energy production), considering specific adaptations for each project. Statistical procedures are performed in order to ensure that the analyses contain the lowest possible level of uncertainty in the characterization of the wind resources in each region. The results are presented comparatively among the seven tested turbine models and also among the three studied areas. The turbine models behavior is considerably different for all options. The wind turbine models A and D are those with the highest percentage energy increase with increasing the turbine height. Their average values are 0.42% and 0.44% per meter height. The models C and D present the most considerable improvements in terms of turbulence intensity and wake effect reductions with increasing the turbine height. The different locations also present distinguished wind resources among them. Triunfo wind farm is the one with the highest energy generation, 24.2% higher than in São Martinho da Serra and 45.0% higher than in São João do Cariri. It is also noted that if the long term mean wind speed was doubled in the project locations, the energy would have an increase of 88% in Triunfo, 170% in São Martinho da Serra and 220% in São João do Cariri.
65

When I Wake

Pierce, Summer 23 May 2019 (has links)
This paper sets out to detail the making of When I Wake with specific attention being paid to the mental processes of, the author, Summer Pierce throughout the undertaking. The paper, much like the filmmaking process, will discuss in succession the inspirations for the film, pre-production formulations, production of the film, post-production procedures, and analysis thereof.
66

Estudio experimental de un sistema tipo Wake Galloping para distintas geometrías generadoras de vórtices

Bellei Pardo, Andrés January 2017 (has links)
Ingeniero Civil Mecánico / El cosechamiento de energía, proveniente del inglés energy harvesting, es el proceso a través del cual se captura pequeñas cantidades de energía que de otro modo se perderían como calor, luz, sonido, vibración o movimiento. Esta energía puede ser utilizada en distintas aplicaciones, por ejemplo reinyectándose en sistemas que la estén perdiendo o reemplazando baterías en pequeños equipos electrónicos de baja potencia, tales como sensores de monitoreo remoto. En la presente memoria se estudia un sistema vibratorio del tipo wake galloping, con el objetivo de investigar experimentalmente el efecto de la geometría del generador de vórtices de sección cuadrada y tipo placa plana en la potencia obtenida. Para llevar a cabo dicho objetivo se plantean los siguientes objetivos específicos: implementar modificaciones al montaje experimental existente y validar el procedimiento experimental reproduciendo curva de aceleración y frecuencia versus velocidad del viento para el generador de vórtices cilíndrico de sección circular, estimar la potencia obtenida usando como generador de vórtices un cilindro de sección cuadrada y estimar la potencia obtenida usando como generador de vórtices una placa plana. Este sistema, a escala pequeña, puede aprovecharse por ejemplo en túneles de trenes subterráneos, alimentando sensores de monitoreo remotos, pudiendo clasificarse como un sistema de cosechamiento de energía. Las variables en estudio para cada geometría fueron: la velocidad del viento, y la razón de aspecto en distancia X=L⁄D, donde D es el diámetro del cilindro móvil y L es la distancia entre dicho cilindro y el generador de vórtices. Para el cilindro de sección cuadrada además se varía el ángulo de inclinación del mismo con respecto al flujo incidente. Se midió experimentalmente la aceleración del cuerpo vibratorio por medio de acelerómetros instalados al centro del mismo. A partir de los resultados obtenidos, se encuentra que la potencia máxima alcanzada es de ≈312 [mW], utilizando como generador de vórtices un cilindro cuadrado rotado en 12°, a una razón de distancia X=3 y a una velocidad de viento de 7 [m/s]. Para todos los generadores de vórtices estudiados, la máxima potencia se alcanza a la mayor velocidad de viento utilizada: 7 [m/s]. Aunque no es posible establecer un patrón que determine qué distancia X maximiza las potencias obtenidas, se observa sin embargo una tendencia en que los mayores valores de potencia se agrupan en el rango 5≤X≤7 para todos los generadores de vórtices.
67

Circadian disruption and adaptation associated with night work and transmeridian flight

Roach, Gregory D January 2001 (has links)
Shiftwork, particularly that involving night work and/or transmeridian flight, forces a mismatch between the sleep/wake cycle and the endogenous circadian timing system. Specifically, shiftworkers are often required to sleep at a phase in the circadian cycle when they would usually be active, and to work at a phase in the circadian cycle when they would usually be asleep. The current thesis describes a series of five studies designed to examine the disruption and adaptation associated with shiftwork, with an emphasis on night work and, to a lesser extent, transmeridian flight. The first study (Chapter 3), conducted in the field, was designed to examine the effects of break duration and time of break onset on the amount of sleep that shiftworkers obtain between consecutive work periods, and to consider the role that pineal production of melatonin may play in this process, through its regulation of sleep. Not surprisingly, total sleep time (TST) increased with break duration for breaks that began at similar times of day. Importantly though, TST was greater for breaks that occurred during the night-time than for breaks that occurred during the daytime. These results indicated that the minimum-length break requirements contained in prescriptive duty hours regulations might not necessarily protect shiftworkers from being exposed to unacceptable levels of fatigue. In addition, there was a temporal relationship between the circadian rhythms of sleep duration, sleep quality, and 6-sulphatoxymelatonin excretion, such that sleep was longer and of better quality when melatonin production was relatively high. This data did not prove a causal link, but it did provide further indication that melatonin may be involved in the regulation of sleep. The aim of the second study (Chapter 4) was to examine the effects of time of day, shift duration, and prior sleep length on self-assessed alertness and neurobehavioural performance of shiftworkers in a real work setting. Cosinor regression models fitted to the data indicated that time of day had a significant effect on alertness and performance, with both reaching nadirs in the early morning. Indeed, the cosinor regression lines of best fit explained more than 90% of the within-subjects variability in both the alertness and performance measures. In addition, alertness declined as shift duration increased and rose as prior sleep length increased, and there was a decline in performance across work periods that was greater for extended shifts. However, the results indicated that time of day was the most important determinant of subjective alertness and neurobehavioural performance. Consequently, the fatigue associated with night work can never be eliminated, only minimised through the application of risk management strategies. The aim of the third study (Chapter 5) was to quantify the effects of fatigue on performance in a simulated work environment, i.e. a rail simulator, and to compare them with the effects of alcohol intoxication. Reaction time (RT) performance on a visual psychomotor vigilance task (PVT) was also assessed. Rather than cause a general decline in performance as was hypothesised, fatigue impaired some safety and efficiency measures (i.e. number and duration of extreme speed violations increased, average speed reduced, brake use increased), but not others (i.e. fuel use, inter-train forces, and minor and moderate speed violations were unaffected). The reduction in safety and consequent increase in risk due to fatigue reached levels equivalent to those associated with moderate levels of alcohol intoxication (i.e. -05?-10%). The results indicated that fatigue caused participants to disengage from operating the simulator such that safety was traded off, not necessarily deliberately, against some aspects of efficiency. RT performance on the PVT was also significantly impaired by fatigue, similar to the magnitude of impairment associated with moderate levels of alcohol intoxication (i.e. -05?-10%). However, the PVT results could not predict the complex relationship between simulator safety and efficiency measures. This indicated that the effects of fatigue on performance in the workplace cannot necessarily be derived on the basis of simple performance measures such as RT. The fourth study (Chapter 6), conducted in the laboratory, was designed to assess adaptation to a simulated night work schedule using salivary dim light melatonin onset (DLMO) as the circadian phase marker. Participants worked seven consecutive simulated 8-hour night shifts (i.e. 23:00?07:00h). This resulted in a mean total phase delay in DLMO of 5.5 hours, equivalent to an average delay of 0.8 hours per day. In addition, baseline DLMO was significantly correlated with mean wake time over the previous seven days. These results indicated that partial circadian adaptation occurred in response to the simulated night work schedule, and that baseline DLMO was reliably predicted by the mean wake up time for the preceding week. The radioimmunoassay used proved to be a sensitive measure of melatonin concentration in saliva for the determination of DLMO, and thus provides an alternative phase marker to core body temperature. The last study (Chapter 7) was designed to examine the adaptation of a RAAF aircrew to several small time zone transitions using salivary melatonin onset as the marker of circadian phase. In addition, the effects of the aircrew?s work schedule on their sleep/wake patterns and subjective alertness were assessed. During the first six days of a routine surveillance patrol (SURPAT), the aircrew travelled eastward and melatonin onset occurred progressively earlier (i.e. phase advanced). During the second six days of the SURPAT, the aircrew travelled westward but melatonin onset did not significantly shift. Night-time sleep duration was shorter prior to work days than prior to rest days, and subjective alertness was not significantly affected by either the duration of night-time sleep prior to work, or the duration of flight. The melatonin onset results indicated that participants? body clocks adapted well to several small time zone transitions when initially travelling eastward, but did not adapt to a similar pattern of time zone transitions when subsequently travelling westward. This was contrary to expectations based on studies of single acute time zone transitions, which indicate that adaptation to westward flight is more rapid than adaptation to eastward flight. Taken together, the results of these five studies confirm that shiftwork provides a considerable source of disruption to shiftworkers? sleep/wake patterns. Whilst this disruption to shiftworkers? sleep may impair subjective alertness, the greatest influence on alertness and performance is exerted by time of day. Furthermore, the combined effects of sleep disruption and time of day may result in a level of performance impairment in a simulated work environment similar to that associated with moderate levels of alcohol intoxication. Finally, night work and transmeridian flight provide a source of circadian disruption, the adaptation to which can be assessed in both laboratory and field settings by examining changes in the timing of nocturnal melatonin onset. / thesis (PhD)--University of South Australia, 2001.
68

Wake survey behind a rotating ventilator

Rashid, Dewan Md. Harunur, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2002 (has links)
With environmental concern growing in both affluent and developing countries, roof top ventilators, a form of natural ventilation requiring only wind energy to ensure quality air circulation and comfort is becoming a considered choice of many households and industries. Unfortunately, however, many of these ventilators have evolved through trial and error and the flow physics associated with these ventilators is barely understood. The present experimental project was, therefore, undertaken as part of UNSW- Industry collaboration program funded under an Australian Research Council Grant to explore whether the aerodynamics forces acting on these ventilators during their operation could be obtained. A commercial roof top ventilator supplied by industry was, therefore, tested in an open jet wind tunnel of the University of New South Wales and the results are presented in this thesis. A novel feature of this project is the examination of the suitability of ???the three dimensional wake traverse??? technique to the wake of rotating ventilator. This technique has so far been applied with limited success to the wake of lifting bodies of fixed wing configuration only. In the absence of adequate data in the literature on rotating ventilator, the aerodynamics force components obtained by this technique have been compared against force balance measurements. The results show that the wake traverse technique is capable of determining lift and total drag forces associated with the ventilator flow during its operation from the pressure and velocity information gathered downstream of a ventilator in its wake. Generally, from these data, the technique also allows isolation of the profile and induced components of the drag force. However, from the induced drag value, while it is possible to determine the lift force, it is however, found that a more accurate value of lift force can be evaluated using axial vorticity formulation. The availability of the above technique which does not require measurements on the test specimen itself, will aid in providing a cost efficient investigation of the aerodynamic forces and consequently the performance of a roof top ventilator.
69

Development and validation of a LES methodology for complex wall-bounded flows : application to high-order structured and industrial unstructured solvers

Georges, Laurent 12 June 2007 (has links)
Turbulent flows present structures with a wide range of scales. The computation of the complete physics of a turbulent flow (termed DNS) is very expensive and is, for the time being, limited to low and medium Reynolds number flows. As a way to capture high Reynolds number flows, a part of the physics complexity has to be modeled. Large eddy simulation (LES) is a simulation strategy where the large turbulent eddies present on a given mesh are captured and the influence of the non-resolved scales onto the resolved ones is modeled. The present thesis reports on the development and validation of a methodology in order to apply LES for complex wall-bounded flows. Discretization methods and LES models, termed subgrid scale models (SGS), compatible with such a geometrical complexity are discussed. It is proved that discrete a kinetic energy conserving discretization of the convective term is an attractive solution to perform stable simulations without the use of an artificial dissipation, as upwinding. The dissipative effect of the SGS model is thus unaffected by any additional dissipation process. The methodology is first applied to a developed parallel fourth-order incompressible flow solver for cartesian non-uniform meshes. In order to solve the resulting Poisson equation, an efficient multigrid solver is also developed. The code is first validated using DNS (Taylor-Green vortex, channel flow, four-vortex system) and LES (channel flow), and finally applied to the investigation of an aircraft two-vortex system in ground effect. The methodology is then applied to improve a RANS-based industrial unstructured compressible flow solver, developed at CENAERO, to perform well for LES applications. The proposed modifications are tested successfully on the unsteady flow past a sphere at Reynolds of 300 and 10000, corresponding to the subcritical regime.
70

Laser acceleration of MeV to GeV electrons

Vafaei-Najafabadi, Navid 11 1900 (has links)
In this thesis electron generation is studied via laser plasma interaction known as laser wakefield acceleration in two regimes of weakly relativistic and highly relativistic laser intensity regimes. The plasma targets consisted of gas jets photonionized by rising edge of the laser pulse to densities as high as 10^20cm3. In the weakly relativistic regime, 210 mJ at 33 fs were focused to intensities of up to 310^18 Wcm2 on the gas targets of 2.4 mm length. In the highly relativistic regime, 3 J of energy compressed in 30 fs were delivered at intensity as high as 6.5 10^18 Wcm2 on targets of 2.4, 5, and 10 mm. Monoenergetic electrons in tens of MeV were observed in weakly relativistic regime, while electron energies as high as 300 MeV were observed in highly relativistic regime. Higher input laser intensity and prepulse levels were found to enhance electron production. Scaling of energy and stability of electron generation were also studied. / Photonics and Plasmas

Page generated in 0.0517 seconds