• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 53
  • 53
  • 53
  • 23
  • 14
  • 14
  • 12
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

A Detailed Analysis of Guard-Heated Wall Shear Stress Sensors for Turbulent Flows

Ale Etrati Khosroshahi, Seyed Ali 30 July 2013 (has links)
This thesis presents a detailed, two-dimensional analysis of the performance of multi-element guard-heated hot-film wall shear stress microsensors for turbulent flows. Previous studies of conventional, single-element sensors show that a significant portion of heat generated in the hot-film travels through the substrate before reaching the fluid, causing spectral and phase errors in the wall shear stress signal and drastically reducing the spatial resolution of the sensor. Earlier attempts to reduce these errors have focused on reducing the effective thermal conductivity of the substrate. New guard-heated microsensor designs proposed to overcome the severe deficiencies of the conventional design are investigated in this thesis. Guard-heaters remove the errors associated with substrate heat conduction, by forcing zero temperature gradient at the edges and bottom face of the hot-film, and hence, block the indirect heat transfer to the flow. Air and water flow over the sensors are studied numerically to investigate design, performance and signal strength of the guard-heated sensors. Our results show, particularly for measurements in low-conductivity fluids such as air, that edge guard-heating needs to be supplemented by a sub-surface guard-heater, to make substrate conduction errors negligible. With this two-plane guard-heating, a strong non-linearity in the standard single-element designs can be corrected, and spectral and phase errors arising from substrate conduction can be eliminated. / Graduate / 0548 / etrati@uvic.ca
42

Řešení vývoje nestabilit kapalného filmu s následným odtržením kapek / Modeling of Liquid Film Instabilities with Subsequent Entrainment of Droplets

Knotek, Stanislav January 2013 (has links)
This dissertation deals with instabilities of thin liquid films up to entrainment of drops. Four types of instabilities have been classified depending on the type of structure and process on the liquid film surface: two-dimensional slow waves, two-dimensional fast waves, three-dimensional waves, solitary waves and entrainment of drops from the film surface. This thesis analyzes the physical principles of instabilities and deals with the mathematical formulation of the problem. Shear and pressure forces acting on the surface of the liquid film are identified as the cause of instabilities. Mathematical models for predicting instabilities are demonstrated using approaches based on solving the Orr-Sommerfeld equation and the equations of motion in integral form. Models of shear and pressure forces acting on the surface of the film and selected models of film thickness are presented. The work is focused on the prediction of the initiation of two-dimensional waves using the integral approach. Shear stress and pressure forces acting on the liquid film surface have been modeled using the simulation of air flow over a solid surface. Finally, criteria for drop entrainment are presented with their dependence on air velocity and film thickness.
43

APPLICATION OF MULTISCALE HEMODYNAMIC MODELS TO EXPLORE THE ACTION OF NITRITE AS A VASODILATOR DURING ACUTE CARDIOVASCULAR STRESS

Joseph C Muskat (14226884), Elsje Pienaar (658131), Craig Goergen (9040283), Vitaliy L. Rayz (8825411), Charles F. Babbs (430220) 08 December 2022 (has links)
<p>The fluid dynamics of blood in the systemic circulation modulates production of nitric oxide (NO), a potent vasodilator. Non-invasive techniques such as the flow-mediated dilation (FMD) test and physiologic phenomena associated with autonomic stress induce hyperemia and subsequently higher levels of wall shear stress (WSS), stimulating endothelial nitric oxide synthase (eNOS) expression. In the current clinical practice, WSS–a key regulator of endothelial function–is commonly estimated assuming a parabolic velocity distribution, despite the evidence that the temporal changes of pulsatile blood flow over the cardiac cycle modulate vasodilation in mammals. This work investigates the effect of cardiovascular stress on local WSS distributions and the potential for near-wall accumulation of nitrite, the vasoactive storage form of NO in the bloodstream. The specific aims of the project are therefore as follows: 1) develop a reduced-order model of the major systemic vasculature at rest, during a flight-or-flight response, and under moderate levels of aerobic exercise; 2) derive a velocity-driven Womersley solution for pulsatile flow to support accurate estimation of pulsatile WSS in the clinical setting; and 3) quantify cumulative transport of nitrite in a multiscale model of bifurcating vasculature utilizing computational fluid dynamics (CFD). Development of these open-source, translatable methods enable accurate quantification of hemodynamics and species transport during cardiovascular stress. Results detailed herein extend our knowledge about regulation of regional blood flow during autonomic stress, suggest a convergent evolutionary theory for having a complete circle of Willis, and potentially clarify reproducibility concerns associated with the FMD test. </p>
44

Design of a Novel Tissue Culture System to Subject Aortic Tissue to Multidirectional Bicuspid Aortic Valve Wall Shear Stress

Liu, Janet 07 June 2018 (has links)
No description available.
45

Studies of Stented Arteries and Left Ventricular Diastolic Dysfunction Using Experimental and Clinical Analysis with Data Augmentation

Charonko, John James 04 May 2009 (has links)
Cardiovascular diseases are among the leading causes of deaths worldwide, but the fluid mechanics of many of these conditions and the devices used to treat them are only partially understood. This goal of this dissertation was to develop new experimental techniques that would enable translational research into two of these conditions. The first set of experiments examined <i>in-vitro</i> the changes in Wall Shear Stress (WSS) and Oscillatory Shear Index (OSI) caused by the implantation of coronary stents into the arteries of the heart using Particle Image Velocimetry. These experiments featured one-to-one scaling, commercial stents, and realistic flow and pressure waveforms, and are believed to be the most physiologically accurate stent experiments to date. This work revealed distinct differences in WSS and OSI between the different stent designs tested, and showed that changes in implantation configuration also affected these hemodynamic parameters. Also, the production of vortices near the stent struts during flow reversal was noted, and an inverse correlation between WSS and OSI was described. The second set of experiments investigated Left Ventricular Diastolic Dysfunction (LVDD) using phase contrast magnetic resonance imaging (pcMRI). Using this technique, ten patients with and without LVDD were scanned and a 2D portrait of blood flow through their heart was obtained. To augment this data, pressure fields were calculated from the velocity data using an omni-directional pressure integration scheme coupled with a proper-orthogonal decomposition-based smoothing. This technique was selected from a variety of methods from the literature based on an extensive error analysis and comparison. With this coupled information, it was observed that healthy patients exhibited different flow patterns than diseased patients, and had stronger pressure differences during early filling. In particular, the ratio of early filling pressure to late filling pressure was a statistically significant predictor of diastolic dysfunction. Based on these observations, a novel hypothesis was presented that related the motion of the heart walls to the observed flow patterns and pressure gradients, which may explain the differences observed clinically between healthy and diseased patients. / Ph. D.
46

Abdominal aortic aneurysm inception and evolution - A computational model

Grytsan, Andrii January 2016 (has links)
Abdominal aortic aneurysm (AAA) is characterized by a bulge in the abdominal aorta. AAA development is mostly asymptomatic, but such a bulge may suddenly rupture, which is associated with a high mortality rate. Unfortunately, there is no medication that can prevent AAA from expanding or rupturing. Therefore, patients with detected AAA are monitored until treatment indication, such as maximum AAA diameter of 55 mm or expansion rate of 1 cm/year. Models of AAA development may help to understand the disease progression and to inform decision-making on a patient-specific basis. AAA growth and remodeling (G&amp;R) models are rather complex, and before the challenge is undertaken, sound clinical validation is required. In Paper A, an existing thick-walled model of growth and remodeling of one layer of an AAA slice has been extended to a two-layered model, which better reflects the layered structure of the vessel wall. A parameter study was performed to investigate the influence of mechanical properties and G&amp;R parameters of such a model on the aneurysm growth. In Paper B, the model from Paper A was extended to an organ level model of AAA growth. Furthermore, the model was incorporated into a Fluid-Solid-Growth (FSG) framework. A patient-specific geometry of the abdominal aorta is used to illustrate the model capabilities. In Paper C, the evolution of the patient-specific biomechanical characteristics of the AAA was investigated. Four patients with five to eight Computed Tomography-Angiography (CT-A) scans at different time points were analyzed. Several non-trivial statistical correlations were found between the analyzed parameters. In Paper D, the effect of different growth kinematics on AAA growth was investigated. The transverse isotropic in-thickness growth was the most suitable AAA growth assumption, while fully isotropic growth and transverse isotropic in-plane growth produced unrealistic results. In addition, modeling of the tissue volume change improved the wall thickness prediction, but still overestimated thinning of the wall during aneurysm expansion. / Bukaortaaneurysm (AAA) kännetecknas av en utbuktning hos aortaväggen i buken. Tillväxt av en AAA är oftast asymtomatisk, men en sådan utbuktning kan plö̈tsligt brista, vilket har hög dödlighet. Tyvärr finns det inga mediciner som kan förhindra AAA från att expandera eller brista. Patienter med upptä̈ckt AAA hålls därför under uppsikt tills operationskrav är uppnådda, såsom maximal AAA-diameter på 55 mm eller expansionstakt på 1 cm/år. Modeller för AAA-tillväxt kan bidra till att öka förståelsen för sjukdomsförloppet och till att förbättra beslutsunderlaget på en patientspecifik basis. AAA modeller för tillväxt och strukturförändring (G&amp;R) är ganska komplicerade och innan man tar sig an denna utmaning krävs de god klinisk validering. I Artikel A har en befintlig tjockväggig modell för tillväxt av ett skikt av en AAA-skiva utö̈kats till en två-skiktsmodell. Denna modell återspeglar bättre den skiktade strukturen hos kärlväggen. Genom en parameterstudie undersö̈ktes påverkan av mekaniska egenskaper och G&amp;R-parametrar hos en sådan modell för AAA-tillväxt. I Artikel B utvidgades modellen från Artikel A till en organnivå-modell för AAA-tillväxt. Vidare inkorporerades modellen i ett “Fluid–Solid–Growth” (FSG) ramverk. En patientspecifik geometri hos bukaortan användes för att illustrera möjligheterna med modellen. I Artikel C undersöktes utvecklingen av patientspecifika biomekaniska egenskaper hos AAA. Fyra patienter som skannats fem till åtta gånger med “Computed Tomography-Angiography” (CT-A) vid olika tillfällen analyserades. Flera icke triviala statistiska samband konstaterades mellan de analyserade parametrarna. I Artikel D undersöktes effekten av olika tillväxt-kinematik för AAA tillväxt. En modell med transversellt-isotrop-i-tjockleken-tillväxt var den bäst lämpade för AAA tillväxt, medans antagandet om fullt-isotrop-tillväxt och transversellt-isotrop-i-planet-tillväxt producerade orimliga resultat. Dessutom gav modellering av vävnadsvolymsförändring ett förbättrat väggtjockleks resultat men en fortsatt överskattning av väggförtunningen under AAA-expansionen. / <p>QC 20161201</p>
47

Towards small scale sensors for turbulent flows and for rarefied gas damping

Ebrahiminejad Rafsanjani, Amin 02 January 2018 (has links)
This thesis makes contributions towards the development of two different small-scale sensing systems which show promise for measurements in fluid mechanics. Well-resolved turbulent Wall Shear Stress (WSS) measurements could provide a basis for realistic computational models of near-wall turbulent flow in aerodynamic design. In aerodynamics field applications, they could provide indication of flow direction and regions of separation, enabling inputs for flight control or active control of wind-turbine blades to reduce shock and fatigue loading due to separated flow regions. Traditional thermal WSS sensors consist of a single microscale hot-film, flush-mounted with the surface and maintained at constant temperature. Their potential for fast response to small fluctuations may not be realized, as heat transfer through the substrate creates heat-exchange with fluid, leading to loss of spatial and temporal resolution. The guard-heated thermal WSS sensor is a design introduced to block this loss of resolution. A numerical flow-field with a range of length and time and scales was generated to study the response of both guard-heated and conventional single-element thermal WSS sensors. A conjugate heat transfer solution including substrate heat conduction and flow convection, provides spatiotemporal data on both the actual and the “measured” WSS fluctuations calculated from the heat transfer rates experienced due to the WSS field. For a single-element sensor in air, we found that the heat transfer through the substrate was up to six times larger than direct heat transfer from the hot-film to the fluid. The resulting loss of resolution in the single-element sensor can be largely recovered by using the guard-heated design. Spectra for calculated WSS from heat transfer response show that high frequencies are considerably better resolved in guard-heated sensors than in the single element sensor. Nanoresonators are nanowires (NWs) excited into mechanical vibration at a resonance frequency, with a change in spectral width created by gas damping from the environment, or a shift in the resonance peak frequency created by added mass. They enable a wide range of applications, from sensors to study rarefied gas flow friction to the detection of early-stage cancer. The extraordinary sensitivity of nanoresonators for disease molecule detection has been demonstrated with a few NWs, but the high cost of traditional electron-beam lithography patterning, have inhibited practical applications requiring large arrays of sensors. Field-directed assembly techniques under development in our laboratory enable a large number of devices at low cost. Electro-deposition of metals in templates yields high-quality single nanowires, but undesired clumps must be removed. This calls for separation (extraction) of single nanowires. In this work, single nanowires are extracted by using the sedimentation behavior of particles. Based on numerical and experimental analyses, the optimum time and region for extracting samples with the highest fraction of single nanowires ratio was found. We show that it is possible to take samples free of large clumps of nanowires and decrease the ratio of undesired particles to single nanowires by over one order of magnitude. / Graduate
48

Measurement uncertainty budget of an interferometric flow velocity sensor

Bermuske, Mike, Büttner, Lars, Czarske, Jürgen 06 September 2019 (has links)
Flow rate measurements are a common topic for process monitoring in chemical engineering and food industry. To achieve the requested low uncertainties of 0:1% for flow rate measurements, a precise measurement of the shear layers of such flows is necessary. The Laser Doppler Velocimeter (LDV) is an established method for measuring local flow velocities. For exact estimation of the flow rate, the flow profile in the shear layer is of importance. For standard LDV the axial resolution and therefore the number of measurement points in the shear layer is defined by the length of the measurement volume. A decrease of this length is accompanied by a larger fringe distance variation along the measurement axis which results in a rise of the measurement uncertainty for the flow velocity (uncertainty relation between spatial resolution and velocity uncertainty). As a unique advantage, the laser Doppler profile sensor (LDV-PS) overcomes this problem by using two fan-like fringe systems to obtain the position of the measured particles along the measurement axis and therefore achieve a high spatial resolution while it still offers a low velocity uncertainty. With this technique, the flow rate can be estimated with one order of magnitude lower uncertainty, down to 0:05% statistical uncertainty.1 And flow profiles especially in film flows can be measured more accurately. The problem for this technique is, in contrast to laboratory setups where the system is quite stable, that for industrial applications the sensor needs a reliable and robust traceability to the SI units, meter and second. Small deviations in the calibration can, because of the highly position depending calibration function, cause large systematic errors in the measurement result. Therefore, a simple, stable and accurate tool is needed, that can easily be used in industrial surroundings to check or recalibrate the sensor. In this work, different calibration methods are presented and their in uences to the measurement uncertainty budget of the sensor is discussed. Finally, generated measurement results for the film flow of an impinging jet cleaning experiment are presented.
49

Design of a Bioreactor to Mimic Hemodynamic Shear Stresses on Endothelial Cells in Microfluidic Systems

Lightstone, Noam S. 26 June 2014 (has links)
The mechanisms behind cardiovascular disease (CVD) initiation and progression are not fully elucidated. It is hypothesized that blood flow patterns regulate endothelial cell (EC) function to affect the progression of CVDs. A system that subjects ECs to physiologically-relevant shear stress waveforms within microfluidic devices has not yet been demonstrated, despite the advantages associated with the use of these devices. In this work, a bioreactor was designed to fulfill this need. Waveforms from regions commonly affected by CVDs including were derived. Pump motion and fluid flow profiles were validated by actuator motion tracking, particle image velocimetry, and flowmeters. While several relevant waveforms were successfully replicated, physiological waveforms could not be produced at physiological frequencies owing to actuator velocity and accuracy limitations, as well as dampening effects in the system. Overall, this work lays the foundation for designing a system that provides insight into the role of shear stress in CVD pathogenesis.
50

Design of a Bioreactor to Mimic Hemodynamic Shear Stresses on Endothelial Cells in Microfluidic Systems

Lightstone, Noam S. 26 June 2014 (has links)
The mechanisms behind cardiovascular disease (CVD) initiation and progression are not fully elucidated. It is hypothesized that blood flow patterns regulate endothelial cell (EC) function to affect the progression of CVDs. A system that subjects ECs to physiologically-relevant shear stress waveforms within microfluidic devices has not yet been demonstrated, despite the advantages associated with the use of these devices. In this work, a bioreactor was designed to fulfill this need. Waveforms from regions commonly affected by CVDs including were derived. Pump motion and fluid flow profiles were validated by actuator motion tracking, particle image velocimetry, and flowmeters. While several relevant waveforms were successfully replicated, physiological waveforms could not be produced at physiological frequencies owing to actuator velocity and accuracy limitations, as well as dampening effects in the system. Overall, this work lays the foundation for designing a system that provides insight into the role of shear stress in CVD pathogenesis.

Page generated in 0.0869 seconds