• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 8
  • 6
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 79
  • 79
  • 79
  • 30
  • 22
  • 22
  • 17
  • 16
  • 14
  • 14
  • 12
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Study of Organic Rankine Cycles for Waste Heat Recovery in Transportation Vehicles

Royo Pascual, Lucía 29 June 2017 (has links)
Regulations for ICE-based transportation in the EU seek carbon dioxide emissions lower than 95 g CO2/km by 2020. In order to fulfill these limits, improvements in vehicle fuel consumption have to be achieved. One of the main losses of ICEs happens in the exhaust line. Internal combustion engines transform chemical energy into mechanical energy through combustion; however, only about 15-32% of this energy is effectively used to produce work, while most of the fuel energy is wasted through exhaust gases and coolant. Therefore, these sources can be exploited to improve the overall efficiency of the engine. Between these sources, exhaust gases show the largest potential of Waste Heat Recovery (WHR) due to its high level of exergy. Regarding WHR technologies, Rankine cycles are considered as the most promising candidates for improving Internal Combustion Engines. However, the implementation of this technology in modern passenger cars requires additional features to achieve a compact integration and controllability in the engine. While industrial applications typically operates in steady state operating points, there is a huge challenge taking into account its impact in the engine during typical daily driving profiles. This thesis contributes to the knowledge and characterization of an Organic Rankine Cycle coupled with an Internal Combustion Engine using ethanol as working fluid and a swash-plate expander as expansion machine. The main objective of this research work is to obtain and quantify the potential of Organic Rankine Cycles for the use of residual energy in automotive engines. To do this, an experimental ORC test bench was designed and built at CMT (Polytechnic University of Valencia), which can be coupled to different types of automotive combustion engines. Using these results, an estimation of the main variables of the cycle was obtained both in stationary and transient operating points. A potential of increasing ICE mechanical efficiency up to 3.7% could be reached at points of high load installing an ORC in a conventional turbocharged gasoline engine. Regarding transient conditions, a slightly simple and robust control based on adaptive PIDs, allows the control of the ORC in realistic driving profiles. High loads and hot conditions should be the starting ideal conditions to test and validate the control of the ORC in order to achieve high exhaust temperatures that justify the feasibility of the system. In order to deepen in the viability and characteristics of this particular application, some theoretical studies were done. A 1D model was developed using LMS Imagine.Lab Amesim platform. A potential improvement of 2.5% in fuel conversion efficiency was obtained at the high operating points as a direct consequence of the 23.5 g/kWh reduction in bsfc. To conclude, a thermo-economic study was developed taking into account the main elements of the installation costs and a minimum Specific Investment Cost value of 2030 €/kW was obtained. Moreover, an exergetic study showed that a total amount of 3.75 kW, 36.5% of exergy destruction rate, could be lowered in the forthcoming years, taking account the maximum efficiencies considering technical restrictions of the cycle components. / Las normativas anticontaminantes para el transporte propulsado por motores de combustión interna alternativos en la Unión Europea muestran límites de emisión menores a 95 g CO2/km para el año 2020. Con el fin de cumplir estos límites, deberán ser realizadas mejoras en el consumo de combustible en los vehículos. Una de las principales pérdidas en los Motores de Combustión Interna Alternativos (MCIA) ocurre en la línea de escape. Los MCIA transforman la energía química en energía mecánica a través de la combustión; sin embargo, únicamente el 15-32% de esta energía es eficazmente usada para producir trabajo, mientras que la mayor parte es desperdiciada a través de los gases de escape y el agua de refrigeración del motor. Por ello, estas fuentes de energía pueden ser utilizadas para mejorar la eficiencia global del vehículo. De estas fuentes, los gases de escape muestran un potencial mayor de recuperación de energía residual debido a su mayor contenido exergético. De todos los tipos de Sistemas de Recuperación de Energía Residual, los Ciclos Rankine son considerados como los candidatos más prometedores para mejorar la eficiencia de los MCIA. Sin embargo, la implementación de esta tecnología en los vehículos de pasajeros modernos requiere nuevas características para conseguir una integración compacta y una buena controlabilidad del motor. Mientras que las aplicaciones industriales normalmente operan en puntos de operación estacionarios, en el caso de los vehículos con MCIA existen importantes retos teniendo en cuenta su impacto en el modo de conducción cotidianos. Esta Tesis contribuye al conocimiento y caracterización de un Ciclo Rankine Orgánico acoplado con un Motor de Combustión Interna Alternativo utilizando etanol como fluido de trabajo y un expansor tipo Swash-plate como máquina expansora. El principal objetivo de este trabajo de investigación es obtener y cuantificar el potencial de los Ciclos Rankine Orgánicos (ORC) para la recuperación de la energía residual en motores de automoción. Para ello, una instalación experimental con un Ciclo Rankine Orgánico fue diseñada y construida en el Instituto Universitario "CMT - Motores Térmicos" (Universidad Politécnica de Valencia), que puede ser acoplada a diferentes tipos de motores de combustión interna alternativos. Usando esta instalación, una estimación de las principales variables del ciclo fue obtenida tanto en puntos estacionarios como en transitorios. Un potencial de mejora en torno a un 3.7 % puede ser alcanzada en puntos de alta carga instalando un ORC en un motor gasolina turboalimentado. Respecto a las condiciones transitorias, un control sencillo y robusto basado en PIDs adaptativos permite el control del ORC en perfiles de conducción reales. Las condiciones ideales para testear y validar el control del ORC son alta carga en el motor comenzando con el motor en caliente para conseguir altas temperaturas en el escape que justifiquen la viabilidad de estos ciclos. Para tratar de profundizar en la viabilidad y características de esta aplicación particular, diversos estudios teóricos fueron realizados. Un modelo 1D fue desarrollado usando el software LMS Imagine.Lab Amesim. Un potencial de mejora en torno a un 2.5% en el rendimiento efectivo del motor fue obtenido en condiciones transitorias en los puntos de alta carga como una consecuencia directa de la reducción de 23.5 g/kWh del consumo específico. Para concluir, un estudio termo-económico fue desarrollado teniendo en cuenta los costes de los principales elementos de la instalación y un valor mínimo de 2030 €/kW fue obtenido en el parámetro de Coste Específico de inversión. Además, el estudio exergético muestra que un total de 3.75 kW, 36.5 % de la tasa de destrucción total de exergía, podría ser reducida en los años futuros, teniendo en cuenta las máximas eficiencias considerando restricciones técnicas en los componentes del ciclo. / Les normatives anticontaminants per al transport propulsat per motors de combustió interna alternatius a la Unió Europea mostren límits d'emissió menors a 95 g·CO2/km per a l'any 2020. Per tal d'acomplir aquests límits, s'hauran de realitzar millores al consum de combustible dels vehicles. Una de les principals pèrdues als Motors de combustió interna alternatius (MCIA) ocorre a la línia d'escapament. Els MCIA transformen l'energia química en energia mecànica a través de la combustió; però, únicament el 15-32% d'aquesta energia és usada per produir treball, mentre que la major part és desaprofitada a través dels gasos d'escapament i l'aigua de refrigeració del motor. Per això, aquestes fonts d'energia poden ser utilitzades per millorar l'eficiència global del vehicle. Considerant aquestes dues fonts d'energia, els gasos d'escapament mostren un potencial major de recuperació d'energia residual debut al seu major contingut exergètic. De tots els tipus de Sistemes de Recuperació d'Energia Residual, els Cicles Rankine són considerats com els candidats més prometedors per millorar l'eficiència dels MCIA. No obstant, la implementació d'aquesta tecnologia en els vehicles de passatgers moderns requereix un desenvolupament addicional per aconseguir una integració compacta i una bona controlabilitat del motor. Mentre que les aplicacions industrials normalment operen en punts d'operació estacionaris, en el cas dels vehicles amb MCIA hi han importants reptes a solucionar tenint en compte el funcionament en condicions variables del motor i el seu impacte en la manera de conducció quotidiana del usuari. Aquesta Tesi contribueix al coneixement i caracterització d'un Cicle Rankine Orgànic (ORC) acoblat amb un motor de combustió interna alternatiu (MCIA) utilitzant etanol com a fluid de treball i un expansor tipus Swash-plate com a màquina expansora. El principal objectiu d'aquest treball de recerca és obtenir i quantificar el potencial dels ORCs per a la recuperació de l'energia residual en motors d'automoció. Per aconseguir-ho, una instal·lació experimental amb un ORC va ser dissenyada i construïda a l'Institut "CMT- Motores Térmicos" (Universitat Politècnica de València). Esta installació pot ser acoblada a diferents tipus de MCIAs. Mitjançant assajos experimentals en aquesta installació, una estimació de les principals variables del cicle va ser obtinguda tant en punts estacionaris com en punts transitoris. Un potencial de millora al voltant d'un 3.7% pot ser aconseguida en punts d'alta càrrega instal·lant un ORC acoblat a un motor gasolina turboalimentat. Pel que fa a les condicions transitòries, un control senzill i robust basat en PIDs adaptatius permet el control del ORC en perfils de conducció reals. Les condicions ideals per a testejar i validar el control de l'ORC són alta càrrega al motor començant amb el motor en calent per aconseguir altes temperatures d'escapament que justifiquen la viabilitat d'aquests cicles. Per tractar d'aprofundir en la viabilitat i característiques d'aquesta aplicació particular, diversos estudis teòrics van ser realitzats. Un model 1D va ser desenvolupat usant el programari LMS Imagine.Lab Amesim. Un potencial de millora al voltant d'un 2.5% en el rendiment efectiu del motor va ser obtingut en condicions transitòries en els punts d'alta càrrega com una conseqüència directa de la reducció de 23.5 g/kWh al consum específic. Per concloure, un estudi termo-econòmic va ser desenvolupat tenint en compte els costos dels principals elements de la installació i un valor mínim de 2030 €/kW va ser obtingut en el paràmetre del Cost Específic d'Inversió. A més, l'estudi exergètic mostra que un total de 3.75 kW, 36.5% de la taxa de destrucció total d'exergia, podria ser recuperat en un pròxim, considerant restriccions tècniques en els components del cicle i tenint en compte les màximes eficiències que es poden aconseguir. / Royo Pascual, L. (2017). Study of Organic Rankine Cycles for Waste Heat Recovery in Transportation Vehicles [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/84013 / TESIS
22

Spillvärmens potential som resurs i verkstadsföretag samt dess investeringsbarriärer : The potential of waste heat as a resource in engineering companies and its investment barriers

Dimasi, Rezgar, Daniel Lantz, Philip January 2019 (has links)
Industrial waste heat has been around for hundreds of years and has long been assumed to be only a by-product of industrial activities. The purpose of the study was to contribute knowledge about the potential of waste heat energy as a resource from an economic and environmental perspective and to identify what important problems can be found in decision-making regarding the implementation of waste heat recovery systems. The study was conducted in the form of a case study with the engineering company Epiroc Drilling Tools AB in Fagersta as a study object. The waste heat survey showed that optimal recovery potential existed in the heat treatment furnaces' flares in the form of flue gases. The total waste heat energy available to be recycled in all 24 industrial furnaces of the workshop was estimated at between 1.63 to 1.92 GWh per year. The engineering company had a district heating demand of about 2.3 GWh in 2018. Investment in the waste heat recovery system would mean that the company can cover up to 83% of the plant's district heating needs. The engineering company aimed to, over a three-year period, among other things, reduce its total energy use by 20% and a recovery of the available waste heat energy could contribute 4.2 to 5.0% of the company's energy efficiency projects. A recovery of the waste heat was estimated to result in capital savings between SEK 900,000 to SEK 1,100,000 excluding VAT annually. The basic investment cost of the recycling system was estimated SEK 3,500,000 with an operating cost of SEK 220,000. The payback time was estimated to be about 4 years for the engineering company to fully repay the investment cost of the recycling system. Primary and secondary data collection resulted in answering what problems and obstacles could arise in decision making regarding investment and implementation of waste heat recovery systems. / Industriell spillvärme har funnits sedan flera hundra år tillbaka och har länge bara antagits vara en biprodukt från industriella aktiviteter. Syftet med studien var att bidra med kunskap om spillvärmeenergins potential som resurs ur ett ekonomiskt och miljömässigt perspektiv samt identifiera vilken betydelsefull problematik som kan finnas vid beslutsfattande om implementering av spillvärmeåtervinningssystem. Studien genomfördes i form av en fallstudie med verkstadsföretaget Epiroc Drilling Tools AB i Fagersta som studieobjekt. Spillvärmekartläggningen visade att optimal återvinningspotential fanns vid värmebehandlingsugnarnas avfacklingar i form av rökgaser. Den totala spillvärmeenergin som fanns tillgänglig att återvinna i verkstadens alla 24 industriella ugnar, uppskattades till mellan 1,63 till 1,92 GWh per år. Verkstadsföretaget hade 2018 ett fjärrvärmebehov på ca 2,3 GWh. Investering i spillvärmeåtervinningssystemet skulle innebära att företaget kan täcka upp till 83% anläggningens fjärrvärmebehov. Verkstadsföretaget hade som mål att under en treårsperiod, bland annat sänka sin totala energianvändning med 20% och en återvinning av den tillgängliga spillvärmeenergin skulle kunna bidra med 4,2 till 5,0% av företagets energieffektiveringsprojekt. En återvinning av spillvärmen uppskattades resultera i kapitala besparingar mellan 900 000 till 1 100 000 SEK exklusive moms årligen. Grundinvesteringskostnaden för återvinningssystemet uppskattades till 3 500 000 SEK med en driftkostnad på 220 000 SEK. Payback-tiden uppskattades till ca 4 år för verkstadsföretaget att helt återbetala investeringskostnaden för återvinningssystemet. Primär- och sekundärdatainsamling resulterade i att besvara vilken problematik och vilka hinder som kunde uppstå vid beslutsfattande gällande investering och implementering av spillvärmeåtervinningssystem.
23

Feasibility study on the implementation of a boiling condenser in a South African fossil fuel power plant

Grove, Elmi January 2016 (has links)
The South African electricity mix is highly dependent on subcritical coal-fired power stations. The average thermal efficiency of these power plants is low. Traditional methods to increase the thermal efficiency of the cycle have been widely studied and implemented. However, utilising the waste heat at the condenser, which accounts for the biggest heat loss in the cycle, presents a large potential to increase the thermal efficiency of the cycle. Several methods can be implemented for the recovery and utilisation of low-grade waste heat. This theoretical study focuses on replacing the traditional condenser in a fossil fuel power station with a boiling condenser (BC), which operates in a similar manner to the core of a boiling water reactor at a nuclear power plant (Sharifpur, 2007). The system was theoretically tested at the Komati Power Station, South Africa's oldest power station. The power station presented an average low-grade waste heat source. The BC cycle was theoretically tested with several working fluids and numerous different configurations. Several of the theoretical configurations indicated increased thermal efficiency of the cycle. The BC cycle configurations were also tested in two theoretical scenarios. Thirty configurations and 103 working fluids were tested in these configurations. The configuration that indicated the highest increase in thermal efficiency was the BC cycle with regeneration (three regenerative heat exchangers) from the BC turbine. A 2.4% increase in thermal efficiency was obtained for the mentioned theoretical implementation of this configuration. The working fluid tested in this configuration was ethanol. This configuration also indicated a 7.6 MW generating capacity. The increased thermal efficiency of the power station presents benefits not only in increasing the available capacity on South Africa's strained grid, but also environmental benefits. The mentioned reduction of 7.6 MW in heat released into the atmosphere also indicated a direct environmental benefit. The increase in thermal efficiency could also reduce CO2 emissions released annually in tons per MW by 5.74%. The high-level economic analysis conducted, based on the theoretically implemented BC cycle with the highest increase in thermal efficiency, resulted in a possible saving of R46 million per annum. This translated to a saving of R19.2 million per annum for each percentage increase in thermal efficiency brought about by the BC cycle. The theoretical implementation of the BC, with regeneration (three regenerative heat exchangers) from the BC turbine and ethanol as a working fluid, not only indicated an increase in thermal efficiency, but also significant economic and environmental benefits. / Dissertation (MEng)--University of Pretoria, 2016. / Mechanical and Aeronautical Engineering / MEng / Unrestricted
24

Technical and Financial Viability of Utilizing Waste Heat for Chilled Water Production and Biomass for Heating Applications in Hospitality Industry

Godawitharana, Sampath, Rajaratne, Rohitha January 2012 (has links)
The purpose of the thesis is to determine the potential of lessening the high energy cost in the hospitality industry so that the industry could stay alive after a three decades of civil war in Sri Lanka. The hospitality industry is a significant contributor to the country’s economic growth. Tourism industry has much hope of recovering in the year 2010. Improved tourism would also benefit larger part of Sri Lankan population as they are directly and indirectly employed to serve the tourism industry. Sri Lanka has a high electricity production cost as it depends heavily on the imported fossil fuel. Survival of hospitality industry would depend on the manner in which the energy cost - the second highest overhead in hotels is managed. If the industry survives, Sri Lanka would receive more foreign exchange and thereby improve country’s foreign currency reserve which could contribute to high growth rate. As electricity production is mainly depending on thermal, the volatility of world crude oil prices is directly affecting the country’s electricity prices. However, low dependence on the grid would help the hospitality industry to mitigate the energy cost. As the electricity and diesel costs -the highest and the next - are considerable portions in energy cost in hospitality industry, the study aims to discuss the possible ways of mitigating such costs. Measurements done by the presenters found that the usage of electricity for air conditioning system does constitute most of the electricity consumption for a hotel whilst most of the diesel consumption is for thermal applications. If Air Conditioning (AC) can be operated without electricity and thermal applications could be operated using abundantly available alternative energy sources then the overall energy costs of hospitality industry could be reduced thereby making higher profits. This would ensure industry survives and country gets more foreign exchange.  Study and calculations done by the presenters proved that operating of generators only for electricity production is not viable, due to high fossil fuel cost, however if its high exhaust temperature which is wasted otherwise, could be utilized for operation of absorption chillier then the dependence of grid electricity for air conditioning could be minimized. Further studies also revealed that if water cooled generator is used for such purpose instead of air cooled, and then the hot water requirement of hotel also could be fulfilled, thus mitigating the dependence of fossil fuel which is used otherwise for hot water production. Study also revealed that if thermal energy could be fed with biomass- Sri Lanka being a tropical country is blessed with abundantly available biomass - then the dependency on the fossil fuel for thermal applications could be avoided. This would not only mitigate the second highest energy cost for hotels but also create less carbon foot print, more environmental friendly and produce less noxious exhaust gases thereby creating an advertisement to attract tourists who longing to support green hotels
25

Power Usage Effectiveness Improvement of High-Performance Computing by Use ofOrganic Rankine Cycle Waste Heat Recovery

Tipton, Russell C. 05 June 2023 (has links)
No description available.
26

An Experimental Investigation of Crank-Resolved Exhaust Pressure Profiles in a Single Cylinder Research Engine with Emphasis on the Potential of Harvesting Exhaust Energy

Bohach, Taylor C 11 December 2015 (has links)
The experiments detailed in this thesis give necessary preliminary information for analyzing the theoretical potential of direct exhaust pulse energy harvesting through expander devices. A detailed review of pertinent literature determined that there has been little specific focus on directly converting exhaust pulse energy into useful power. Crank position resolved exhaust pressure was measured as engine load and speed were varied to quantify their influences. Potential theoretical improvements average a 15.6% increase in overall fuel conversion efficiencies while indicated power can potentially be increased by an average of 14.3% for the operating conditions tested. A potential increase of up to 20% in indicated specific fuel consumption was shown. With increasing regulations on combustion engine efficiencies, emissions, and fuel requirements, the ability to reduce waste energy through improving existing waste energy recovery (WER) technologies and proposing novel WER strategies that maximize WER have the potential to be extremely valuable.
27

Development of Oscillating Heat Pipe for Waste Heat Recovery

Mahajan, Govinda 09 December 2016 (has links)
The development and implementation of technologies that improves Heating Ventilation & Air Conditioning (HVAC) system efficiency, including unique waste heat recovery methods, are sought while considering financial constraints and benefits. Recent studies have found that through the use of advanced waste heat recovery systems, it is possible to reduce building’s energy consumption by 30%. Oscillating heat pipes (OHP) exists as a serpentine-arranged capillary tube, possesses a desirable aerodynamic form factor, and provides for relatively high heat transfer rates via cyclic evaporation and condensation of an encapsulated working fluid with no internal wicking structure required. In last two decade, it has been extensively investigated for its potential application in thermal management of electronic devices. This dissertation focuses on the application of OHP in waste heat recovery systems. To achieve the goal, first a feasibility study is conducted by experimentally assessing a nine turn copper-made bare tube OHP in a typical HVAC ducting system with adjacent air streams at different temperatures. Second, for a prescribed temperature difference and volumetric flow rate of air, a multi-row finned OHP based Heat Recovery Ventilator (OHP-HRV) is designed and analyzed for the task of pre-conditioning the intake air. Additionally, the energy and cost savings analysis is performed specifically for the designed OHP-HRV system and potential cost benefits are demonstrated for various geographical regions within the United States. Finally, an atypically long finned OHP is experimentally investigated (F-OHP) under above prescribed operating condition. Helical fins are added to capillary size OHP tubes at a rate of 12 fins per inch (12 FPI), thereby increasing the heat transfer area by 433%. The coupled effect of fins and oscillation on the thermal performance of F-OHP is examined. Also, F-OHP’s thermal performance is compared with that of bare tube OHP of similar dimension and operating under similar condition. It was determined that OHP can be an effective waste heat recovery device in terms of operational cost, manufacturability, thermal and aerodynamic performance. Moreover, it was also determined that OHP-HRV can significantly reduce energy consumption of a commercial building, especially in the winter operation.
28

Thermodynamic and Workload Optimization of Data Center Cooling Infrastructures

Gupta, Rohit January 2021 (has links)
The ever-growing demand for cyber-physical infrastructures has significantly affected worldwide energy consumption and environmental sustainability over the past two decades. Although the average heat load of the computing infrastructures has increased, the supportive capacity of cooling infrastructures requires further improvement. Consequently, energy-efficient cooling architectures, real-time load management, and waste heat utilization strategies have gained attention in the data center (DC) industry. In this dissertation, essential aspects of cooling system modularization, workload management, and waste-heat utilization were addressed. At first, benefits of several legacy and modular DCs were assessed from the viewpoint of the first and second laws of thermodynamics. A computational fluid dynamics simulation-informed thermodynamic energy-exergy formulation captured equipment-level inefficiencies for various cooling architectures and scenarios. Furthermore, underlying reasons and possible strategies to reduce dominant exergy loss components were suggested. Subsequently, strategies to manage cooling parameters and IT workload were developed for the DCs with rack-based and row-based cooling systems. The goal of these management schemes was to fulfill either single or multiple objectives such as energy, exergy, and computing efficiencies. Thermal models coupled to optimization problems revealed the non-trivial tradeoffs across various objective functions and operation parameters. Furthermore, the scalability of the proposed approach for a larger DC was demonstrated. Finally, a waste heat management strategy was developed for new-age infrastructures containing both air- and liquid-cooled servers, one of the critical issues in the DC industry. Exhaust hot water from liquid-cooled servers was used to drive an adsorption chiller, which in turn produced chilled water required for the air-handler units of the air-cooled system. This strategy significantly reduced the energy consumption of existing compression chillers. Furthermore, economic and environmental assessments were performed to discuss the feasibility of this solution for the DC community. The work also investigated the potential tradeoffs between waste heat recovery and computing efficiencies. / Thesis / Doctor of Philosophy (PhD)
29

Concentrating Solar Thermoelectric Generator Tool

Dao, Tien January 2022 (has links)
No description available.
30

Development and Evaluation of Brazed Joints for a Plate Microchnanel Heat Exchanger

Craymer, Kenneth L. 31 March 2011 (has links)
No description available.

Page generated in 0.0983 seconds