• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 123
  • 65
  • 18
  • 10
  • 8
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 296
  • 296
  • 81
  • 72
  • 64
  • 62
  • 56
  • 46
  • 45
  • 43
  • 38
  • 38
  • 33
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Stochastic Demand-hydraulic Model of Water Distribution Systems

Chen, Jinduan 19 October 2015 (has links)
No description available.
182

Contributing to carbon neutrality within water distribution services / Bidrag till klimatneutralitet för vattendistributionstjänster

Dagher, Nassim January 2021 (has links)
Water production and distribution services, just like all human activity, have an impact on the environment. One indicator of that impact is its carbon footprint, which corresponds to the amount of greenhouse gas (GHG) emitted due to that activity. In order to counter global warming, mankind must reduce the GHG emissions of its activities.  Water services emit GHG at many steps, directly or indirectly: the production of the electricity used for pumping, the production and transport of chemical reagents used in water treatment, the maintenance works on the network and facilities, the daily commuting and travels of the technicians to operate the service, and more.  This diversity of sources calls for an even greater diversity of possible actions to reduce the carbon footprint. Maximizing the environmental benefits of such measures while ensuring their feasibility and limiting the costs of all sorts (financial, social, organizational) is most likely to be achieved when an action plan is designed.  This Master’s Thesis suggests a framework for the assessment of the possible actions through various criteria, and their arrangement into an effective action plan. The assessment criteria aim at a better understanding of each action and their consequences, so that the action is more likely to be effective. Moreover, some elements of context can have a huge influence on the effectiveness of some actions, which highlights the need for a methodological framework that will help take these elements into account. / Vattenproduktion och distributionstjänster, har likt andra mänskliga aktiviteter, en påverkan på miljön. En indikator på denna påverkan är koldioxidavtrycket, vilket motsvarar den mängd växthusgas som släpps ut till följd av aktiviteten. För att motverka den globala uppvärmningen, måste växthusgasutsläppen minskas från dessa aktiviteter.  Vattentjänster avger växthusgaser i många steg, direkt eller indirekt: Detta innefattar bland annat produktionen av el som används för pumpning, produktionen och transport av kemiska reagens som används vid vattenbehandling, underhållsarbeten på nätverk och anläggningar, teknikernas dagliga pendling och resor för att driva tjänsten.  Denna mångfald av källor kräver en ännu större mångfald av möjliga åtgärder för att minska koldioxidavtrycket. Maximeringen av miljöfördelarna av sådana åtgärder där samtidigt genomförbarheten kan säkerställas och att samtliga typer av kostnader (ekonomiska, sociala, organisatoriska) begränsas kommer sannolikt att uppnås när en handlingsplan utformas.  Denna masteruppsats föreslår ett ramverk för en bedömning av möjliga åtgärder genom olika kriterier och dess uppbyggnad för att skapa en effektiv handlingsplan. Bedömningskriterierna eftersträvar en bättre förståelse av varje åtgärd och dess konsekvenser, så att åtgärden kan uppnå ett effektivare resultat. Dessutom kan sammanhanget ha en stor inverkan på effektiviteten av ett antal av dessa åtgärder, vilket understryker behovet av ett metodiskt ramverk som kan bidra till att dessa aspekter beaktas.
183

Strategic valve locations in a water distribution system

Jun, Hwandon 22 June 2005 (has links)
Valves play a critical role in a water distribution system for subsystem isolation and flow or pressure control. Among them, subsystem isolation is required to repair or to rehabilitate a broken component and can be done by closing adjacent valves. To evaluate the role of valves, the concept of "Segment" is necessary. A segment consists of a set of pipes and nodes isolated together by closing adjacent valves when a pipe fails. An efficient algorithm to identify segments in a water distribution system is proposed. In addition, when a segment is isolated, an additional subsystem may be disconnected from water sources by the segment isolation. It is a topological unintended isolation. In addition, a hydraulic failure, in terms of pressure types of failures at demand nodes should be considered. These three account for the failure impact of a pipe. Placing valves efficiently improves the reliability of a water distribution system. However, the valve reliability itself is not 100%. Therefore, valve failure consequence should be explored in determining the locations of valves. For this purpose, three methodologies, namely segment-valve matrix algorithm, decision tree approach and simulation are proposed. Another consideration for placing valves is a strategic valving rule, namely N and (N-1) valving rules. Using a formulation for node reliability in terms of failing valves, the reliability difference between the two valving rules is evaluated. We also employ a mixed N and (N-1) valving rule. Another strategic valving rule, a segment size reducing approach minimizing the number of affected customers is proposed. The developed algorithms are utilized to build software, the Strategic Valve Management Model, to solve practical problems. The methodology is applied to three real water distribution systems. / Ph. D.
184

Impact of Premise Plumbing Conditions, Materials, Corrosion Control, Temperature, and Water Heater System Design on the Growth of Opportunistic Pathogens in Drinking Water

Martin, Rebekah Leighann 16 September 2020 (has links)
As waterborne disease originating in potable water plumbing systems (such as Legionnaires' Disease and Nontuberculous Mycobacterial (NTM) infections) continue to increase, it is important to better understand the cause(s), responsible parties and interventions to prevent disease. This dissertation begins with a literature review characterizing the propensity of building (premise) plumbing to enhance or diminish opportunistic pathogen growth, including Legionella. It then holistically examines the problem at the field, bench and pilot scale by first discovering problems with lead and Legionella in Flint, MI, during an event popularly referred to as the Flint Water Crisis in 2014-2016. Four years were then spent simulating critical factors hypothesized to have triggered the Legionella outbreak in residences and in a large hospital in Flint. In parallel with that work, pilot scale rigs were operated for several years, to examine the important role of water heater system design and operation on energy efficiency, hot water delivery, and Legionella. The first chapter literature review is entitled "Critical Review of the Propensity of Premise Plumbing Pipe Materials to Enhance or Diminish the Growth of Legionella and Other Opportunistic Pathogens." It examines the complex environments found in premise systems, focusing primarily on the role of pipe materials. The effects of metallic (copper, iron) and plastic pipe materials on opportunistic pathogens and Legionella include their effect on nutrient availability, disinfectant levels, and the composition of the broader microbiome. Design, configuration, and operation are also examined in terms of their potential for influencing opportunistic pathogens. This chapter demonstrates that pipe materials have the potential to stimulate or inhibit pathogen growth, dependent on circumstance and water chemistry. This chapter will be submitted to the journal Pathogens. The field study in this work first predicted, discovered and then exposed problems with lead and Legionella in Flint, Michigan. A citizen science project that sampled Flint water in August 2015, demonstrated a city-wide problem with water lead exceeding the EPA limit of 15 µg/L after corrosion control was interrupted. Follow-up sampling events between August 2015 and August 2017 demonstrated that the switch back to the original water source and addition of enhanced corrosion control in October 2015, dramatically reduced lead, copper and iron levels flowing into consumer homes. Entitled "Evaluating Water Lead Levels During the Flint Water Crisis," this work was published in Environmental Science and Technology in 2018. After our Virginia Tech team's work helped expose a Legionnaires' disease outbreak that killed twelve people and sickened nearly one hundred individuals, the started to explore possible links between corrosion control, plumbing materials and disinfection that could help explain the trajectory of disease in Flint and elsewhere. Three separate experiments were performed using bench-scale simulated glass water heaters. Two of the studies attempted to simulate what occurred in Flint homes before, during and after the water crisis in relation to factors that either encouraged or discouraged Legionella growth, while the third examined the more benign Blacksburg tap water and a broader range of influential plumbing conditions. The first study entitled "Copper Pipe, Lack of Corrosion Control, and Uncontrolled pH Influenced the Trajectory of the Flint Legionnaires' Disease Outbreak," determined that the very low pH levels in summer 2015 and interruption of phosphate corrosion control, could cause explosive growth of Legionella in PEX plumbing held at warm temperature, without disinfectant and with constant mixing. Under the same conditions copper pipe had antimicrobial properties that markedly reduced Legionella in our experiments. This work has been submitted for review to Environmental Science and Technology. The second companion study conducted at a higher pH, without mixing and with trace chlorine, found 2.5 log10 lower levels of Legionella compared to the worst-case conditions in the aforementioned study, demonstrating the importance of mixing and traces of chlorine. Higher levels of disinfectant and the presence of copper pipe also enhanced control of Legionella. This manuscript is titled "Interactive Effects of Copper Pipe, Stagnation, Corrosion Control, and Disinfectant Residual Influenced Reduction of Legionella pneumophila during Simulations of the Flint Water Crisis," and it has been published in Pathogens. The third simulated glass water heater study examined the disinfection of opportunistic pathogens in the presence of six different premise plumbing materials or conditions in Blacksburg tap water. Generally speaking, all of the premise plumbing materials reduced disinfection of opportunistic pathogens compared to a control condition with glass surfaces. Chlorine decay was catalyzed by iron pipe, warmer temperature and the presence of organic matter, increasing the persistence of Legionella. Magnesium anodes in particular, encouraged much higher Legionella growth compared to all other materials. This work titled "Chlorine and Chloramine Disinfection of Legionella spp., L. pneumophila, and Acanthamoeba Under Warm Water Premise Plumbing Conditions," has been submitted to Microorganisms. Results of a six-year pilot study titled "Elucidating the Role of Water Heater System Configuration in Energy Efficiency, Consumer Comfort and Legionella Proliferation," examined different types of residential-sized water heater systems with plastic pipes including: a standard tank system with water stagnant between uses, a recirculating tank system with flowing water between uses, and an on-demand system which only heated water and had flow during use. Considering the volume of water in each tank between 38 and 47 ° C as a measure of Legionella growth risk, with a heater setpoint at 48 °C (118 °F) the recirculating system had 90% of its volume at risk daily compared to only 24% of the standard system volume. The on-demand system used a minimum of 10% less energy than the standard tank, and 50% less energy than the recirculating tank, and had one tenth of the volume at risk of growing Legionella than either tank system. In fact, it was only by contriving a system to keep distal lines artificially warmed to above room temperature, that Legionella growth could occur in the on-demand system, whereas it rose to 107 L. pneumophila MPN per liter in a normally operating recirculating system. On the other hand, the on-demand heaters were repeatedly subject to mechanical malfunction during the study, and had difficulty delivering water at the desired temperature and flow rates versus traditional tank systems. This manuscript will be submitted to Water Research. / Doctor of Philosophy / Recent water crises in Flint, Michigan and Legionnaires' Disease outbreaks in Flint, New York City, and Quincy, Illinois have demonstrated the need to better understand the cause(s), responsible parties, and interventions required to prevent waterborne diseases. As waterborne disease originating in building plumbing systems (premise plumbing), such as Legionnaires' Disease and Nontuberculous Mycobacterial infections, continue to increase each year, the burden on healthcare systems and impact on public health also grows. In this dissertation, a literature review, a field study of water in Flint, small-scale laboratory studies, and residential-sized water heater systems were examined to study interactions between water chemistry, premise plumbing, and disease-causing opportunistic pathogens (OPs) with a focus on Legionella, the OP which causes Legionnaires' Disease. The first chapter literature review is entitled "Critical Review of the Propensity of Premise Plumbing Pipe Materials to Enhance or Diminish the Growth of Legionella and Other Opportunistic Pathogens." It examines the complex environments found in premise systems, and the important role of pipe material selection. The effects of metallic (copper, iron) and plastic pipe materials on opportunistic pathogens and Legionella include their impact on nutrient availability, disinfectant levels, and the composition of the broader microbiome. Design, configuration, and operation of plumbing systems are also examined in terms of their potential for influencing growth of opportunistic pathogens. This chapter demonstrates that pipe materials have the potential to stimulate or inhibit pathogen growth, dependent on circumstance and water chemistry. The field study in this work exposed problems with lead and Legionella in Flint, Michigan, during an event known in the popular press as the Flint Water Crisis 2014-2016. In August 2015, a citizen science sampling campaign demonstrated a citywide lead in water problem. After a federal emergency was declared, follow-up sampling events between August 2015 and August 2017 demonstrated that the switch back to the original water source, enhanced disinfection, and corrosion control under federal direction had reduced lead levels to half of the EPA limit. Additionally, the pipe material installed between each home and the water main (service lines) affected levels of lead and copper in water, with the lowest lead concentrations measured in homes with copper service lines. After our teams' work in Flint helped expose a Legionnaires' disease outbreak that killed twelve people and sickened nearly one hundred other individuals, we started to explore possible links between corrosion control, plumbing materials, and disinfection that could affect the trajectory of disease in Flint and elsewhere. Three follow-up studies, using small glass bottles to simulate water heaters, provided more specific comparisons between water conditions in premise plumbing and OP occurrence. Two studies expanded on phosphate corrosion control, chlorine (disinfectant) decay, and pH-related research questions, which arose during the Flint water crisis field study. The first determined that properly treated drinking water and some mixing could inhibit Legionella growth in copper pipes. The second study found that without mixing, copper could be antimicrobial and reduce Legionella growth even if the water chemistry was slightly altered with higher pH. The third simulated water heater study examined the reduction of OPs using a chlorine or chlorine plus ammonia disinfectant to reduce Legionella in the presence of six different plumbing conditions. The reduction of Legionella with chlorine was inhibited when carbon was increased and in the presence of a magnesium anode rod, a necessary water heater component. A six-year study using a residential-sized water heater system holistically examined three different types of water heater systems with plastic pipes: one using a standard water heater tank with water stagnant between uses, one using a water heater tank connected to a recirculating pump to provide constantly flowing water, and one tankless (on-demand) heater which only heated water and provided flow during use. Using temperature as an indicator of risk for Legionella growth, the recirculating system at a temperature setpoint of 48 °C (118 °F) would be at high risk for Legionella growth (water volume at 38-47 °C or 100-117 °F) in 90% of the tank volume each day, whereas the standard system would only be at high risk in 24% of the tank each day. The on-demand system provided the safest alternative for hot water distribution with virtually undetectable levels of Legionella risk when the pipes were kept at room temperature as per normal operation. The on-demand system also used at least 50% less energy than the recirculating system and 10% less energy than the standard system; however, we were not successful in finding a reliable on-demand system that could also provide hot water at the desired temperature and flow rate.
185

Chlorine dioxide and by-products in water distribution systems

Ferreira, Francisco Cardoso 24 November 2009 (has links)
Chlorine dioxide is used as both a pre-oxidant and/or a post-disinfectant in several water treatment plants in the United States. Chlorine dioxide is associated with its byproducts chlorite and chlorate. Chlorine dioxide, chlorine, chlorite and chlorate were sampled in four distribution systems where chlorine dioxide is used for disinfection purposes: Charleston, WV, Columbus, GA, New Castle, PA, and Skagit, WA. The fate of chlorine dioxide and its by-products in distribution systems is discussed. A constituent transport model (TRAK) was applied to New Castle, PA distribution systems to assess times of travel. No relationship was found between the concentrations of chlorine, chlorine dioxide, chlorite and chlorate and the computed travel times. Water treatment plant and distribution system data received from Galveston, TX where the use chlorine dioxide has being tested is analyzed and discussed. Median chlorine dioxide concentrations are relatively constant in distribution systems with a value of approximately 0.2 mg/L; however, chlorine dioxide dosages applied at the treatment plant can induce different concentrations in the distribution system. Median chlorite concentrations in distribution systems range from 0.5 to 0.8 mg/L while median chlorate concentrations are generally lower in a range between 0.1 to 0.3 mg/L. The effects of distribution systems skeletonization in constituent transport modeling are also presented. Skeletonization does not affect significantly computed times of travel when the median percentage of constituent has to be detected. However, depending on the layout of each distribution system, small variations can be observed. / Master of Science
186

Development of a Resilience Assessment Methodology for Networked Infrastructure Systems using Stochastic Simulation, with application to Water Distribution Systems

Gay Alanis, Leon F. 01 May 2013 (has links)
Water distribution systems are critical infrastructure systems enabling the social and economic welfare of a community. While normal failures are expected and repaired quickly, low-probability and high consequence disruptive events have potential to cause severe damage to the infrastructure and significantly reduce their performance or even stop their function altogether. Resilient infrastructure is a necessary component towards achieving resilient and sustainable communities. Resilience concepts allow improved decision making in relation with risk assessment and management in water utilities. However, in order to operationalize infrastructure resilience concepts, it is fundamental to develop practical resilience assessment methods such as the methodology and tool proposed in this research, named Effective Resilience Assessment Methodology for Utilities (ERASMUS). ERASMUS utilizes a stochastic simulation model to evaluate the probability of resilient response from a water distribution system in case of disruption. This methodology utilizes a parametric concept of resilience, in which a resilient infrastructure system is defined in terms of a set of performance parameters compared with their socially acceptable values under a variety of disruptive events. The methodology is applied to two actual water distribution networks in the East and West coasts of the US. / Ph. D.
187

Long-Term Lab Scale Studies of Simulated Reclaimed Water Distribution: Effects of Disinfectants, Biofiltration, Temperature and Rig Design

Zhu, Ni 03 February 2020 (has links)
As demand for alternative water sources intensifies, increased use of reclaimed water is important to help achieve water sustainability. In addition to treatment, the manner in which reclaimed water is distributed is a key consideration as it governs the water quality at the point of use. In this work, simulated reclaimed water distribution systems (SRWDSs) were operated for more than two years to examine the role of system design, biofiltration, residual disinfectant type (i.e., chlorine, chloramine, no residual) and temperature on important aspects of chemistry and microbial regrowth under laboratory-controlled conditions. Turbidity decreased to 0.78 NTU after biofiltration and chlorinated treatments from 10.0-12.6 NTU for conditions with chloramine and no residuals. SRWDSs were susceptible to sediment accumulation, which occupied 0.83-3.2% of the volume of the first pipe segment (1 day of hydraulic residence time), compared to 0.32-0.45% volume in the corresponding chlorinated SRWDSs. The mass of accumulated sediment positively correlated (R2 = 0.82) with influent turbidity. Contrary to experiences with potable water systems, chlorine was found to be more persistent and better at maintaining biological stability in the SRWDSs than chloramine, especially at the higher temperatures >22°C common to many water scarce regions. The severe nitrification at the warmer temperatures rapidly depleted chloramine residuals, decreased dissolved oxygen, and caused elevated levels of nitrifiers and heterotrophic cell counts. A metagenomic taxonomic survey revealed high levels of gene markers of nitrifiers in the biofilm samples at 22°C for the chloraminated system. Non-metric multidimensional scaling analysis confirmed distinct taxonomic and functional microbial profiles between the chlorine and chloramine SRWDSs. Reflecting on multiyear experiences operating two different SRWDSs reactor designs, including thin tubes (0.32-cm diameter) and pipe reactors (10.2-cm), illustrated strengths and weaknesses of both approaches in recreating key aspects of biochemical changes in reclaimed water distribution systems. It is clear that approaches deemed successful with drinking water distribution systems may not always directly transfer to simulating reclaimed distribution systems, or to proactively managing full-scale reclaimed systems that have long periods of stagnation and where minimally-treated wastewater with high levels of nutrients and turbidity are used. / Doctor of Philosophy / Increasing water scarcity is creating an impetus for creating more sustainable water supplies. Wastewater effluent is increasingly viewed as in important resource that can reduce both water and energy demand. Reclaiming moderately to minimally-treated secondary wastewater effluent for non-potable reuse (NPR) applications; such as agricultural irrigation, landscaping, and toilet flushing, helps reduce demand for higher quality potable water sources. NPR presently accounts for more than 50% of total reuse and is projected to become increasingly important. While NPR is attractive, important knowledge gaps remain in terms of managing water quality and safety as it is transported through distribution pipes to the point of use. A comprehensive literature review revealed that NPR distribution systems are distinct from conventional drinking water distribution systems (DWDSs) and that it is doubtful if our current understanding of DWDSs would directly transfer to NPR systems. Unlike drinking water systems, NPR systems are currently unregulated at the national level and corresponding state-to-state regulations vary widely. The levels of water treatment can vary from simply distributing untreated effluent from wastewater treatment plants to very high-level treatment with membranes that produces water of equal or even higher quality than many existing tap waters. A common treatment train for minimally-treated NPR involves biologically activated carbon (BAC) filtration and the use of disinfectants (e.g., chlorine or chloramine) to control microbial water quality to the point of use. Prior studies from DWDSs have demonstrated water quality degradation in terms of disinfectant loss, bacterial growth, and aesthetic problems, with the settling of trace particulate matter producing sediment within pipe distribution systems. In particular, accumulated sediment can become a hotspot for water quality deterioration. Considering that minimally-treated reclaimed water can have much higher levels of particulate matter and nutrients than drinking water, it was predicted that NPR distribution systems could suffer from faster water quality degradation than corresponding drinking water systems, especially at the warmer temperatures common in water-scarce regions. This work was the first multi-year attempt to examine the effects of disinfectant (i.e. free chlorine, chloramine, no residual), BAC filtration versus no filtration, water age (up to 5-d versus 28-min), and temperature (14°C, 22°C, 30°C) in different types of lab-scale reactors. Two simulated reclaimed water distribution systems (SRWDSs) including 4-in. diameter Pipe SRWDSs versus 1/8-in. diameter Tube SRWDSs, were designed to study key aspects of full-scale NPR systems and were operated for more than two years to study chemical and microbial changes as distributed water traveled through the two systems. The Pipe SRWDSs were designed to assess the impacts on final water quality after long-term operation that allowed sediment to slowly accumulate, whereas the complementary Tube SRWDS design did not allow sediment to accumulate and only held the water for 28 minutes. Water was sampled regularly to track the trends of key water quality parameters, including disinfectant residuals, dissolved oxygen, nitrogen compounds involved in nitrification reactions, and various types of bacteria of interest. Sequencing of the biological genetic materials on selected samples was conducted to understand the types of bacteria present and their functions under the different circumstances. High levels of sediment were found to accumulate near the beginning of the Pipe SRWDSs, which caused loss of oxygen and disinfectants at the bottom of the pipes. Chlorine was more persistent and better at preventing bacteria growth as water traveled through the distribution system. In contrast, a type of bacteria that used ammonia as a nutrient (i.e., nitrifying bacteria) were observed in the pipes with chloramine (i.e., ammonia plus chlorine) as the disinfectant. The nitrifying bacteria caused rapid depletion of chloramine residuals, especially at temperatures above 22°C. At 30°C both chlorine and chloramine were almost immediately consumed in the pipe reactors. Nitrification is known to trigger water quality problems in chloraminated DWDSs, and we expect that chloraminated RWDSs would be even more susceptible to nitrification and associated water quality degradation issues in Compare the Tube SRWDSs to the Pipe SRWDSs, aside from heavy accumulations of sediment in the pipes versus no sediment in the thin tubes, the tubes clogged repeatedly from formation of thick biofoulants in the systems treated with no disinfectant and chloramine, whereas they remained relatively free of biofoulants and clogging in the tubes with chlorine. Even in just 28 minutes, it took water to move from the start to the end of the tube, both chlorine and chloramine were almost completely consumed in the tubes, due to the unrealistically high pipe surface area to the small flow volume inherent to this reactor design. As NPR becomes increasingly common to help achieve water sustainability, it will be important to deploy laboratory simulations, that are capable of testing and revealing key chemical and microbial processes that affect the operation of these systems and water safety at the point of use. The insights from this first long-term effort of simulating RWDSs highlight some unique characteristics and challenges of RWDSs, and reveals key concepts to help guide future research.
188

Enhanced lower bounds and an algorithm for a water distribution network design model

Totlani, Rajiv 29 August 2008 (has links)
The design of water distribution systems has received a great deal of attention in the last three decades because of its importance to industrial growth and its crucial role in society for community health, firefighting capability, and quality of life. The cost of installing a water distribution system is typically in the tens of millions of dollars. These systems also account for the largest costs in the municipal maintenance budgets. Furthermore, existing systems are being burdened by increasing urban development and water use. All these factors cause the pipe sizing decisions to be a critical task in designing a cost effective water distribution system that is capable of handling the demand and satisfying the minimum pressure head and hydraulic redundancy requirements. A number of research efforts have focused on the least cost pipe sizing decision, each of them generating improved solutions for several standard test problems from literature, but so far, very little work has been done to test the quality of these solutions. In this thesis, two lower bounding schemes are proposed to evaluate the quality of these solutions. These lower bounding schemes make use of the special concave-convex nature of the nonlinear frictional loss terms. We show that the first is a dual to <i>Eiger et al.’s</i> [1994] bounding procedure while the second method produces far tighter lower bounds with comparable ease. Results on applying these lower bounding schemes to some standard test problems from literature are presented. The second lower bounding scheme is then embedded in a branch-and-bound procedure along with an upper bounding scheme by suitably restricting the flows at each node of the search tree. By branching successively, we attempt to narrow the gap from optimality to generate near optimal solutions to the least cost pipe sizing problem. This results in a comprehensive reduced cost network design that satisfies all pressure and flow requirements for realistically sized problems. The proposed method is applied to standard test problems from the literature. It is hoped that this method will provide a useful tool for city engineers to design a cost effective water distribution system that meets specified hydraulic requirements. / Master of Science
189

Mikrobiologisk vattenkvalitet i samfällighetsägda dricksvattennät : En undersökning av mikrobiologisk vattenkvalitet i sex samfällighetsägda dricksvattennät i Vaxholms kommun som får sitt vatten från Görvälnverket / Microbiological water quality in community-owned water distribution systems : A survey of microbiological water quality in six community-owned drinking water distribution systems in the municipality of Vaxholm, Sweden

Johansson, Jerker January 2014 (has links)
Att ha ständig tillgång till ett hälsosamt, rent och gärna gott dricksvatten tas idag ofta som självklart av många människor i Sverige. Sveriges sammanlagda nybildning av vatten innebär idag inga problem för dricksvattenförsörjningen om man bortser från ojämn fördelning av vattentillgångar samt lokala kvalitetsproblem. Många områden förses med dricksvatten från något av landets omkring 2000 vattenverk. En del får sitt vatten från enskilda brunnar, medan vissa har löst vattenfrågan tillsammans med andra i samfälligheter. Vissa samfälligheter som inte har någon egen vattentäkt kan ibland förses med vatten från ett allmänt distributionsnät. I Vaxholms kommun finns nära ett 30-tal samfälligheter som får sitt vatten från Görvälnverket i Järfälla kommun vilket ägs och drivs av kommunalförbundet Norrvatten AB. Behandlat dricksvatten distribueras vidare av Norrvatten AB. I Vaxholms kommun är Vaxholmsvatten AB/ Roslagsvatten AB VA-huvudman och förvaltar kommunens allmänna VA-anläggning. Roslagsvatten AB levererar vatten till vattenkonsumenter som är anslutna till det allmänna VA-nätet i Vaxholms kommun, men bolaget levererar även dricksvatten till nämnda samfälligheter. Vattenverket behandlar (renar) det så kallade råvattnet från vattentäkten (i detta fall Mälaren) för att åstadkomma ett kvalitetsmässigt bra dricksvatten sett ur såväl kemisk som ur mikrobiologisk synvinkel. Kan då dricksvattensamfälligheterna slå sig till ro med att de har ett dricksvatten av god kvalitet? SRMH bedriver kontroll och tillsyn av dricksvattensamfälligheterna och deras distributionsanläggningar. SRMH har gjort sina första pilotinspektioner hos samfälligheterna och uppmärksammat ett antal förmodade brister med vissa rutiner och installationer. I forskningsfältet kring distributionsanläggningar för dricksvatten studeras bland annat faktorer som påverkar mikrobiologisk förekomst och tillväxt i distributionsanläggningar. Mot bakgrund av utvalda delar ur detta forskningsfält har jag skapat ett analytiskt ramverk för att söka värdera mikrobiologiska risker i samfälligheternas distributionsanläggningar. Förutom detta görs några typer av mikrobiologiska analyser för att jämföra med uppskattad risk. Förutom protokoll från SRMH:s inspektioner av samfälligheterna görs små intervjuer av vattenkonsumenter och samfällighetsansvariga. För att se var eventuella kvalitetsproblem uppstår används sekundärdata från Norrvatten som beskriver kvalitet efter vattenverkets behandling och kvalitet vid ett vattentorn på ”halva vägen” samt vid en referenspunkt i Vaxholm. Relevant dricksvattenjuridik studeras också för att ta reda på vem som ansvarar för vad samt för att se vilka kvalitetskrav som är relevanta avseende samfälligheterna. Resultatet antyder försiktigt att riskerna men även vattentemperaturen samt den mikrobiologiska vattenkvaliteten (odlingsbara mikroorganismer) i undersökningen till viss del skiljer mellan olika typer av samfälligheter. För samfälligheter med året-runt-vatten verkar problemen vara mindre, medan för samfälligheter som endast har sommarvatten verkar det finnas fler risker. Det senare verkar även gälla för samfälligheter där fritidsbostäder ingår. Skillnader i antal långsamväxande mikroorganismer mellan olika samfällighetstyper är dock mer osäkra. Kvalitetsreglerna avseende mikrobiologi i samfällighetsnätet och i det allmänna nätet styrs av livsmedelsverkets föreskrifter och EU:s dricksvattendirektiv och alla parter måste försäkra sig om att kvalitetskraven uppfylls inom respektive distributionsnät. Återströmning av vatten från samfälligheter till den allmänna distributionsanläggningen verkar inte kunna regleras av lagen om allmänna vattentjänster och därmed ej heller av det lokala regelverket ABVA för Vaxholm. Enligt min tolkning av regelverket är respektive ägare av distributionsnäten ansvariga för om kvaliteten påverkas i det egna nätet när/om återströmning sker från mottagande part. I diskussionsdelen görs även jämförelser avseende temperatur och mikrobiologiska parametrar mellan de olika typerna av studerade samfälligheter och Norrvattens perifera kommuner för att se om det finns några skillnader. / Continuous access to healthy, clean and good-tasting drinking-water is perceived as obvious for many people in Sweden. The total regeneration of water is currently not a problem in Sweden if uneven distribution and local quality problems are not accounted for. Many regions are supplied with drinking water from one of Sweden’s around 2000 water treatment plants. Other water consumers get their water from private wells, while others get water access via community-owned distribution systems. Sometimes communities that do not have their own water supply can get water supply through a public distribution system. In the municipality of Vaxholm almost 30 small communities get their water from the water treatment plant (WTP) Görvälnverket, which is owned and operated by a municipal association called Norrvatten AB. Norrvatten AB redistributes the treated drinking water. In Vaxholm, Roslagsvatten AB is the legal principal of water and sewage. Roslagsvatten AB distributes water to water consumers in the municipality of Vaxholm. The WTP treats (purifies) the surface water from the water source (in this case Mälaren) in order to provide a good quality drinking water seen from both a chemical and microbiological point of view. Under these circumstances, could the water communities be complacent that they have a good quality drinking water? Södra Roslagens Miljö- och hälsoskyddskontor (SRMH) is the local health protection agency responsible for control and enforcement of drinking water communities in Vaxholm. After having performed pilot inspections at the water communities, SRMH drew attention to some assumed risks and deficiencies with routines and water pipe installations. In the drinking water distribution systems research field, factors influencing microbiological presence and growth are investigated. In the view of selected portions from this research field, I have created an analytical framework to be able to evaluate some kind of microbiological risks in the communities’ water distribution systems. Besides this, some microbiological analyzes are made to compare with assessed risk. In addition to studied protocols from inspections of the communities, some minor interviews are made with water consumers and persons responsible for plumbing in the communities. To assess whether potential quality problems occur, secondary historical quality analysis data from Norrvatten AB is used. Quality data from directly after treatment at the WTP, from a water tower “halfway” to Vaxholm, and from a reference location in Vaxholm is used. Swedish and European Union legal framework of relevance regarding drinking water is studied to find out relevant legal quality requirements with regards to the communities. The result gently suggests that identified risks but also water temperature and investigated microbiological quality (culturable microorganisms; HPC counts, 22 °C, 3 days) in the study to some extent differ between different types of communities. For communities with full-year water supply, the problems seem to be less. On the contrary, for communities with supply only during summer, problems seem to be greater. Problems also seem to exist for communities where holiday residences exist. Differences in the number of slower growing microorganisms (HPC counts, 22 °C, 7 days) between community types is more uncertain. The microbiological quality of drinking water is regulated by Swedish national regulations and by European Union’s drinking water directive. All parties must ensure that quality standards are met in each distribution network. Backflow of water from communities’ distribution networks does not seem to be regulated by the Swedish law on public water services and thus neither by the local regulatory called “ABVA” for Vaxholm. According to my interpretation of the regulations, the respective owners of the distribution networks are responsible for if quality is adversely affected in its own network if backflow occurs from the receiving party. In the discussions chapter, temperature and HPC counts are compared between studied communities and Norrvatten’s peripheral municipalities to assess if differences exist.
190

Effect of water maldistribution on cooling tower fill performance evaluation

Bertrand, Timothy Paul 03 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2011. / ENGLISH ABSTRACT: A 1.5 x 1.5 m2 counter-flow fill performance test facility is described in detail. Instrumentation was selected and installed in the cooling tower fill test facility and calibrated to ensure measurement accuracy. A facility control program was written to simplify the operation of the test facility via a user interface. The program calculates automatically the Merkel number and loss coefficients as measures of fill thermal and flow performance respectively. A spray frame was designed and manufactured to ensure uniform water distribution to the fill. The water distribution through different fills with varying fill heights and different water flow rates was measured. The water attached to the walls of the test facility was examined. Film, trickle and splash fills are tested in the upgraded test facility. The film and trickle fill performance determined during testing is deemed acceptable as these fills have minimal migration effects. Fills with poor distribution effects and large migration of water towards the walls of the test facility, like the splash fill tested, cannot to be tested accurately in a 1.5 x 1.5 m2 test section as the results do not represent the performance of the fill in a relatively large cooling tower. Other aspects examined were: • air flow uniformity • air fill bypass effects • location of water inlet and outlet temperature measurement points • location of pressure measurement probes. It was determined that, in the current test facility: • air uniformity is suitable for performance testing • air bypass effects can be ignored for open fills and can be minimised for dense fills by packing sponge between the fill and walls • water inlet and outlet temperatures should be measured in the pipe-work, resulting in a measurement method that is not influenced by the relative weightings of each thermocouple • pressure difference over the fill height measured by the pressure measurement tap is independent of its location on the fill outlet plane provided the pressure measurement points are perpendicular to the air stream and are not against the walls. / AFRIKAANSE OPSOMMING: 'n 1.5 x 1.5 m² Teenvloei pakking werkverrigting toetsfasiliteit word in detail beskryf. Instrumentasie is gekies en geïnstalleer in die koeltoring pakking toetsfasiliteit en gekalibreer om akkuraatheid te verseker. 'n Fasiliteit beheer program is geskryf om die gebruik van die toetsfasiliteit te vereenvoudig. Die program het ‘n vriendelike gebruikers intervalk. Die program bereken outomaties die Merkel-getal en verlies koëffisiënte as mate van pakking termiese- en vloeiwerksverrigting. 'n Sproeiraam is ontwerp en vervaardig om uniforme water verspreiding aan die pakking te verseker. Die water verspreiding deur verskillende pakkings met verskillende pakking hoogtes en water vloei snelhede is gemeet. Die water aangeheg aan die mure van die toetsfasiliteit is ook ondersoek. Film, druppel en spat pakkings word in die opgegradeerde toetsfasiliteit getoets. Die film- en druppelpakking werksverrigting bepaal tydens die toetse is aanvaarbaar, aangesien hierdie pakkings minimale migrasie effekte het. Pakking met swak verspreiding effekte en 'n groot migrasie van water na die wande van die toetsfasiliteit, soos gevind met die spatpakking toetse, kan nie met akkuraatheid in 'n 1.5 x 1.5 m² toets seksie getoets word nie omdat die resultate nie die werkverrigting van die pakking verteenwoordig in 'n relatief groot koeltoring. Ander aspekte wat ondersoek was: • lugvloei uniformiteit • lug omleiding effeckte • die posisie van water in- en uitlaat temperatuur meetpunte • posisie van die drukmeetapparaat. Dit is vasgestel dat, in die huidige toetsfasiliteit • lugvloei eenvormigheid geskik is vir prestasietoetsing • lug omleiding effekte kan geïgnoreer word vir oop pakkings en kan verklein word vir digte pakkings deur spons tussen die pakking en mure te pak • water inlaat- en uitlaattemperature behoort gemeet te word in die pypwerk en lei tot 'n metings metode wat nie beïnvloed word deur die relatiewe gewigte van elke thermokoppel nie • die druk verskil gemeet deur die drupmeetpunte oor die pakkinghoogte is onafhanklik van hul posisie op die pakkinguitlaatvlak op voorwaarde dat die drukmeetpunte loodreg is teen die lugstroom en nie teen die mure nie.

Page generated in 0.1194 seconds