• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 303
  • 44
  • 41
  • 34
  • 34
  • 32
  • 18
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 624
  • 126
  • 111
  • 106
  • 77
  • 73
  • 69
  • 64
  • 57
  • 56
  • 56
  • 54
  • 49
  • 47
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Application of Effective Medium Modeling to Plasmonic Nanosphere Waveguides

January 2013 (has links)
abstract: A proposed visible spectrum nanoscale imaging method requires material with permittivity values much larger than those available in real world materials to shrink the visible wavelength to attain the desired resolution. It has been proposed that the extraordinarily slow propagation experienced by light guided along plasmon resonant structures is a viable approach to obtaining these short wavelengths. To assess the feasibility of such a system, an effective medium model of a chain of Noble metal plasmonic nanospheres is developed, leading to a straightforward calculation of the waveguiding properties. Evaluation of other models for such structures that have appeared in the literature, including an eigenvalue problem nearest neighbor approximation, a multi- neighbor approximation with retardation, and a method-of-moments method for a finite chain, show conflicting expectations of such a structure. In particular, recent publications suggest the possibility of regions of invalidity for eigenvalue problem solutions that are considered far below the onset of guidance, and for solutions that assume the loss is low enough to justify perturbation approximations. Even the published method-of-moments approach suffers from an unjustified assumption in the original interpretation, leading to overly optimistic estimations of the attenuation of the plasmon guided wave. In this work it is shown that the method of moments approach solution was dominated by the radiation from the source dipole, and not the waveguiding behavior claimed. If this dipolar radiation is removed the remaining fields ought to contain the desired guided wave information. Using a Prony's-method-based algorithm the dispersion properties of the chain of spheres are assessed at two frequencies, and shown to be dramatically different from the optimistic expectations in much of the literature. A reliable alternative to these models is to replace the chain of spheres with an effective medium model, thus mapping the chain problem into the well-known problem of the dielectric rod. The solution of the Green function problem for excitation of the symmetric longitudinal mode (TM01) is performed by numerical integration. Using this method the frequency ranges over which the rod guides and the associated attenuation are clearly seen. The effective medium model readily allows for variation of the sphere size and separation, and can be taken to the limit where instead of a chain of spheres we have a solid Noble metal rod. This latter case turns out to be the optimal for minimizing the attenuation of the guided wave. Future work is proposed to simulate the chain of photonic nanospheres and the nanowire using finite-difference time-domain to verify observed guided behavior in the Green's function method devised in this thesis and to simulate the proposed nanosensing devices. / Dissertation/Thesis / M.S. Electrical Engineering 2013
42

A numerical model of the propagation characteristics of multi-layer ridged substrate integrated waveguide

Ainsworth, Joseph January 2012 (has links)
A transmission line format is presented which takes the form of a Multilayer Ridged Substrate Integrated Waveguide, for which signal energy is transmitted within standard PCB substrates, within a wave-guiding structure formed from conducting tracks in the horizontal plane and arrays of through-plated vias in the vertical plane. The Substrate Integrated Waveguide (SIW) is a recent development into which research is so far concentrated on single-layer rectangular variants which, like traditional rectangular waveguide, are amenable to analytic computation of the cutoff eigenvalues. Recent publications have offered empirically-derived relationships with which a Substrate Integrated Waveguide can be analysed by equivalence of the horizontal dimensions with a conventional waveguide, allowing such structures to be designed with minimal effort. We propose a ridged form of this structure, in which multiple PCB layers are stacked to obtain the desired height and the published equivalent width is used to obtain the horizontal dimensions. The proposed structure combines the increased bandwidth of ridged waveguide with SIW’s greatly reduced cost of manufacture and integration, relative to conventional waveguide, and improved power handling capacity and loss susceptibility relative to microstrip. Ridged variants have not yet been studied in the literature, however, in part because the eigenspectrum can not be obtained analytically. We thus present a semi-analytical software model with which to synthesise and analyse the cutoff spectrum in ridged Substrate Integrated Waveguide, verified by comparison with analytical solutions, where they exist, simulation in finite-element software and a physical prototype. Agreement with simulated and measured results is within 1 % in certain subsets of the parameter space and 11 % generally, and individual results are returned in times of the order of seconds. We use the model to analyse the relationship between geometry and frequency response, constructing an approximating function for the early modes which is significantly faster, such that think it can be used for first-pass optimisation. A range of optimal parameters are presented which maximise bandwidth within anticipated planar geometric constraints, and typical design scenarios are explored.
43

On the theory of planar and cylindrical dielectric waveguides with photorefractive nonlinearity

Geisler, Andreas 01 November 2004 (has links)
Planar and cylindrical waveguides with linear cladding and a core with real, field dependent permittivity are considered, in particular even and odd modes are investigated.Assuming a plane wave with TE-polarization, Maxwell´s equations for the electric field lead to a nonlinear differential equation whose solution is approximated by means of a Green s function and an iteration method. Referring to a photorefractive permittivity with external field, the approximate solution is compared with the numerical solution; furthermore, the amplitude of even modes in the planar waveguide is compared with the analytically determined amplitude. In both cases, the agreement is satisfactory.The conditions of convergence of the iteration are investigated for a photorefractive permittivity with external field. It is shown that they are fulfilled for suitable choice of the width of the waveguide and the propagation constant. By means of the iteration method, the change of the linear dispersion relation due to the field dependent permittivity is described.The ratio of the power flow in the core to the total power flow is linearized in order to investigate the influence of weak nonlinearity.
44

The Study of the Characteristics and the Applications of Nonlinear Optical Waveguide Structures

Chu, Chin-Hsuan 12 July 2000 (has links)
none
45

The Analysis and Simulation of the Structure of the Nonlinear Optical Waveguide

Tasy, Huey- Jiuan 28 June 2001 (has links)
In this paper¡Awe use both beam propagation method and BPM_CAD to analysis the characteristics of nonlinear optical waveguide structures. The refractive index of optical waveguide medium changes with field intensity called nonlinear optical waveguide. We use Mode Theory to solve three layers optical waveguide. There are nonlinear cladding, substrate layers and linear film. Not only find the disperson relation curve, but also observe the affections of the input power to field distribution. With the help of this, we propose a general math method to analysis symmetric muti-layer optical waveguide with periodic index that both cladding and substrate are nonlinear. According to the nonlinear dispersion relation we consider both the affections of the input power to refractive index in the film and space soliton at nonlinear interface. We propose a optical coupler and feed-back optical switch. And also, we analysis 2¡Ñ3 branches optical waveguides by changing their media to nonlinear media. According to the result, we find that they have both logic function and optical switch.
46

Électrodynamique quantique en guide d'onde

Lalumière, Kevin January 2015 (has links)
L'électrodynamique quantique en guide d'onde étudie le comportement de circuits électriques supraconducteurs composés entre autres de jonctions Josephson et de lignes à transmission. Ces circuits présentent peu de pertes puisqu'ils sont supraconducteurs. De plus, grâce à la non-linéarité des jonctions Josephson, ils peuvent présenter des comportements typiquement quantiques. Dans cette thèse, nous élaborons un cadre théorique qui permet de traiter la connexion entre les lignes à transmission et les éléments de circuits localisés (lumped element). Nous présentons ensuite la théorie d'entrée-sortie dans le contexte de ce cadre théorique. Comme son nom l'indique, celle-ci lie les observables à la sortie du circuit à celles à son entrée et elle permet de faire des prédictions expérimentales. Nous obtenons aussi une équation maîtresse qui décrit le circuit lorsque l'information contenue dans les lignes à transmission est perdue ou ignorée. Nous utilisons le cadre théorique développé pour étudier la situation où deux circuits qui se comportent chacun comme un atome sont connectés à une ligne à transmission. Nous montrons que la physique dans ce type de système dépend de la distance entre les deux atomes artificiels. Lorsque la distance est telle que la phase [phi] acquise par le champ électromagnétique entre les deux atomes artificiels est un multiple entier de [pi], on observe qu'une superposition d'états particulière des atomes est couplée à la ligne à transmission. On dit que cet état est brillant tandis que l'autre état est dit sombre. Lorsque la phase [phi] acquise par le champ électromagnétique est un multiple impair de [pi]/2, on observe plutôt une interaction cohérente entre les deux atomes artificiels. Nous suggérerons des protocoles pour observer des signatures expérimentales de cette physique. Nous présentons des résultats expérimentaux obtenus suite à ces prédictions par nos collègues du groupe d'Andreas Wallraff à Zurich. Ces résultats confirment la théorie. Parmi ces données, on retrouve la première mesure d'une signature claire de l'interaction cohérente entre deux atomes. Nous utilisons aussi le cadre théorique développé pour étudier des circuits dans lesquels les inductances dépendent du temps. Nous nous intéressons à ces circuits puisqu'ils sont généralement non réciproque, ce qui en fait des candidats idéaux pour implémenter des circulateurs. Ces dispositifs qui permettent d'obtenir un couplage unidirectionnel entre deux circuits sont généralement réalisés à l'aide d'aimants. Ainsi, un défi important du domaine est de concevoir un circulateur qui peut s'intégrer à un circuit supraconducteur. On utilise notre cadre théorique pour décrire les circuits avec des inductances variables à l'aide d'un opérateur de transfert qui relient les entrées du circuit à ses sorties. Cet objet permet d'extraire les conditions sous lesquelles ce type de circuit se comporte comme un circulateur. On utilise aussi l'opérateur de transfert pour étudier un modèle de circuit qui sera testé sous peu par nos collaborateurs de JILA dans le but d'implémenter un des premiers circulateurs sans conversion de fréquence nette, sans pertes et sans ferrite. On montre que ce modèle de circuit se comporte bien comme un circulateur, avec une largeur de bande de l'ordre de 200 MHz et un niveau d'imperfections de -20 dB.
47

Electro-Optic Polymers: Materials and Devices

DeRose, Christopher Todd January 2009 (has links)
Electro-optic (EO) polymers are an attractive alternative to inorganic nonlinear materials. EO polymers with a Pockel's coefficient, r33, greater than 320 pm/V have been recently demonstrated. In addition to their high EO activity, EO polymers have the additional benefit that their dielectric constants at optical and millimeter wave frequencies are closely matched which allow for bandwidths which are limited only by the resistive losses of traveling wave electrodes. The amorphous nature of the host polymer makes heterogeneous integration of the materials on any substrate possible. The devices which will have the most immediate impact based on these recent materials developments are EO waveguide modulators. Performance benchmarks of less than 6 dB insertion loss, sub-volt Vpi and greater than 100 GHz bandwidth have been achieved separately however, the challenge of achieving all of these benchmarks in a single device has not yet been met.The aim of this dissertation is to optimize passive materials to achieve efficient in device poling of EO polymers, optimize the chromophore loading of the active polymers and to optimize waveguide modulators for device performance within a particular system, analog RF photonic links. These optimizations were done by defining figures of merit for the materials and modulators. This research strategy has led to significant improvements in poling efficiency as well as modulators with record low insertion losses which maintain a low half-wave voltage; on the order of 1 - 2 Volts. Using this optimization strategy and state of the art EO polymers, devices which meet or surpass the benchmark performance values in all categories are expected in the near future.
48

The analysis of microwave reflector antennas

Parkinson, Joseph R. January 1988 (has links)
No description available.
49

Waveguide properties of thin polymer films

Ren, Yitao January 1999 (has links)
Some basic concepts and principles of optical dielectric slab waveguiding and experimental methodology involving characterisation of waveguide films are introduced, Results from the characterisation of thin polymeric waveguide films and measurements of refractive indices of the films are presented. The birefringence of some polymer films is analysed and discussed. The photostabilities of several dopants (DEMI, Ultra-DEMI, Dicyclohexyl-DEMI, Mor2, Morpip and DCM) are investigated in a polymer matrix (PMMA), and their measured photostabilities are presented. These organic chromophores change their properties in the course of photodegradation. Degradation experiments are carried out by exposing the doped waveguide films to light in air, vacuum and nitrogen environments. The degradation mechanisms of these chromophores are discussed. It is found that the degradation of the DEMI, Ultra-DEMI, Dicyclohexyl-DEMI and DCM are due to photooxidation, their photostabilities are much higher in vacuum than in air. The Mor2 and Morpip degrade by direct photodecomposition, their photostabilities are in the same order when exposed to light in their main absorption bands. The oxygen free environment (e.g. vacuum) is essential to increase their photostabilities. A beam branching effect in DCM doped waveguide film is observed. Stacked multi-layer waveguides are investigated as possible humidity sensors. Symmetric structure (PMMA/P-4VP/PMMA/P-4VP/PMMA) (P4VP-I) and unsymmetric structure (Si02/P-4VP/Zeonex/P-4VP/Air) (P4VP-II) are studied. Special procedures and process have been developed to fabricate multi-layer waveguide structures in experiments. It is found that both structures have good reversibilities and show reasonable stabilities. 30 ppm concentrations of water vapour can be detected by the P4VP-II structure. The experimental results show that the overall response of P4VP-II structure exhibits good linearity with increase of the concentration of water vapour. The structures can not only measure the phase shift of interference, but also can measure the direction of fringe movement. The sensitivity of the structure can be further improved by using different combinations of polymers in the structure.
50

MEMS-compatible integrated hollow waveguides fabricated by buckling self-assembly

Epp, Eric 11 1900 (has links)
This thesis describes the fabrication and characterization of integrated hollow Bragg waveguides fabricated by controlled thin film buckling. Hollow waveguides based on two different set of materials were studied. In the first case, thermal tuning of air-core dimensions was studied using waveguides, with chalcogenide glass and polymer claddings. Results showed that the change in air- core height as a function of small temperature variations was in good agreement with theory. Planar, silicon based, hollow core waveguides with Si/SiO2 Bragg reflector claddings are also described. Fabrication was accomplished by incorporating compressive stress in the sputtered Si and SiO2 layers and then heating samples to induce buckling along predefined areas of low adhesion. Several low adhesion layers were studied, but a fluorocarbon layer was deposited by CVD gave the best results. Optical experiments demonstrated optical confinement in the air-core, with loss in the ~5 dB/cm range at the 1550 nm wavelength. / Photonics and Plasmas

Page generated in 0.0438 seconds