Spelling suggestions: "subject:"weierstrass"" "subject:"weierstrauss""
31 |
[en] MINIMAL SURFACES IN R3 / [pt] SUPERFÍCIES MÍNIMAS EM R3FELIPE DE ALBUQUERQUE MELLO PEREIRA 10 October 2013 (has links)
[pt] Neste trabalho estudamos a teoria clássica das superfícies mínimas em
R3, focando na representação de Enneper-Weierstrass e suas consequências.
São exibidos vários exemplos, incluindo as superfícies de Jorge-Meeks e de
Jorge-Xavier. Também mostramos princípios do máximo para superfícies
mínimas e várias aplicações como, por exemplo, o teorema do semi-espaço.
Em seguida, nos concentramos na teoria das superfícies mínimas completas
de curvatura total finita e, com esta, podemos analisar o desenvolvimento
assintótico de fins mínimos completos mergulhados de curvatura total finita.
Por fim, a dissertação culmina com o teorema de Schoen, que afirma que
as únicas superfícies mínimas completas, conexas, de curvatura total finita
e apenas dois fins - ambos mergulhados - são um par de planos e o
catenoide. / [en] In this work we study the classical theory of minimal surfaces in
R3, with special focus on the Enneper-Weierstrass representation and
its consequences. We exhibit many examples, including the Jorge-Meeks
and Jorge-Xavier surfaces. We also show maximum principles for minimal
surfaces and many applications as, for instance, the half-space theorem.
Afterwards, we focus on the theory of complete minimal surfaces with finite
total curvature, with which we can analyse the asymptotic development
of complete minimal embedded ends with finite total curvature. This
dissertation culminates with the Schoen s theorem, which states that the
only complete, connected minimal surfaces with finite total curvature and
exactly two ends - both embedded - are a pair of planes or a catenoid.
|
32 |
Uma Representação de Weierstrass para Superfícies Mínimas em H3 e H2 × R.Roque, Alejandro Caicedo 08 August 2008 (has links)
Made available in DSpace on 2015-05-15T11:45:59Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 323962 bytes, checksum: b1f72af0670744659eabe72c7c444dc3 (MD5)
Previous issue date: 2008-08-08 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The Weierstrass representation of minimal surfaces in R3 and its generalization
to Rn shows is a very useful tool in the study of minimal surfaces in these spaces.
In this work we want to describe a type Weierstrass representation for immersions
simply connected in the group of Heisenberg H3. Using applications harmonics is
possible obtain a formula for general representation, type Weierstrass for minimal
immersions in manifolds Riemannian simply connected general, is that, useful of point
view theoretical, however it is very difficult find solutions explicit. The dimention 3
and the structure of group Lie of the group of Heisenberg H3 allow a description
Geometric simple and we can get some classic examples. / A representação deWeierstrass para superfícies mínimas em R3 e sua generalização
a Rn mostra-se uma ferramenta muito útil no estudo de superfícies mínimas nestes
espaços. Neste trabalho pretendemos descrever uma representação tipo Weierstrass
para imersões simplesmente conexas no grupo de Heisenberg H3. Usando aplicações
harmónicas é possível obter uma fórmula de representação geral, tipo Weierstrass,
para imersões mínimas simplesmente conexas em variedades Riemannianas gerais,
isto é útil do ponto de vista teórico, entretanto é muito difícil encontrar soluções
explicitas. A dimensão 3 e a estrutura de grupo de Lie do grupo de Heisenberg
H3 permitem uma descrição geométrica simples e podemos obter alguns exemplos
clássicos.
|
33 |
Medidas e forma em geometria / Measures and shaped geometryEdjan Fernandes dos Santos 31 August 2015 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / O trabalho traz inicialmente uma abordagem histÃrica, da GrÃcia (com os pitagÃricos), com o matemÃtico Eudoxo, fazendo referÃncia a talvez à maior obra matemÃtica, os livros de Euclides. Em seguida, trazemos definiÃÃes e construÃÃes sobre os nÃmeros reais com um corpo completo, os conceitos de Ãnfimo, supremo, sequÃncias infinitas com destaque as convergentes, sequÃncia de Cauchy e os trÃs teoremas fundamentais para o curso de cÃlculo, o teorema do anulamento, do valor intermediÃrio e de Weierstrass. Logo apÃs, definimos mÃtrica e espaÃo mÃtrico no plano, mostramos que o processo de comparar um segmento arbitrÃrio com outro fixado como unidade nos conduz aos diversos tipos de nÃmeros reais positivos: inteiros, racionais e irracionais, onde a noÃÃo de segmento comensurÃvel à explicada. O cÃlculo de Ãrea para figuras planas, onde sÃo apresentadas as fÃrmulas usuais para as Ãreas dos polÃgonos mais simples, apresentamos uma aplicaÃÃo, a fÃrmula de Pick, sem demonstraÃÃo do teorema, simples, divertida, prÃtica e eficiente para o cÃlculo de Ãrea, um conteÃdo da disciplina de matemÃtica presente em todo o ensino bÃsico do Brasil sempre presente em avaliaÃÃes externas como a OBMEP. / The work initially brings a historical approach, Greece (with the Pythagoreans), with the mathematician Eudoxus, referring to perhaps the greatest mathematical work, Euclidâs books. Then bring definitions and constructions of the real numbers as a complete body, the concepts of tiny, supreme, infinite sequences especially the convergent, Cauchy sequences and the three fundamental theorems for the calculus course, the annulment of the theorem, the intermediate value and Weierstrass. Soon after, we define metric and metric space in the plan, we show that the process of comparing an arbitrary segment with another set as unit leads to various types of positive real numbers: integers, rational and irrational, where the notion of measurable and immeasurable segment is explained. The area calculation for plane figures, where the usual formulas for the areas of simple polygons are presented, we present and application, Pickâs formula, without demonstration of the theorem, simple, fun, practical and efficient for area calculation, one this mathematical discipline of content throughout basic education in Brazil always present in external evaluation as OBMEP.
|
34 |
[en] COMPLETE BOUNDED MINIMAL SURFACES IN R3 / [pt] SUPERFÍCIES MÍNIMAS COMPLETAS E LIMITADAS EM R3YUNELSY NAPOLES ALVAREZ 09 November 2021 (has links)
[pt] Há alguns anos temos visto um grande progresso na resolução de problemas antigos na teoria das superfícies mínimas. Dentre esse problemas estão as conjecturas de Calabi-Yau, que datam dos anos 60 do século passado. A primeira delas afirmava que não existiam superfícies mínimas completas
contidas em uma bola de R3, e a segunda que todas as superfícies mínimas completas tinham uma projeção ilimitada em cada eixo. Neste trabalho pretendemos revisar dois exemplos que mostram a falsidade da segunda conjectura. O primeiro foi dado por L. P. Jorge e F. Xavier (1980), e o segundo por
H. Rosenberg e E. Toubiana (1987). A primeira conjectura também é falsa. O primeiro contraexemplo foi dado por N. Nadirashvili (1996) e também constitui um contraexemplo da conjectura de Hadamard, que afirmava que não existiam superfícies completas limitadas com curvatura Gaussiana negativa. O desenvolvimento do artigo de Nadirashvili é o principal objetivo desta dissertação. A técnica usada nestes três trabalhos é o uso da Representação de Enneper-Weierstrass, combinada com aplicações adequadas do Teorema de Runge. / [en] During some years we have seen great progress in solving old problems
in minimal surfaces theory. Among these problems are the Calabi-Yau s
conjectures, dating from the 60s of last century. The first one stated that there
were no complete minimal surfaces contained in a ball of R3, and the second one
that all complete minimal surface should have an unbounded projection in each
axes. In this work we pretend to review two examples that proof the falsity of
the second conjecture. The first one was given by L. P. Jorge e F. Xavier (1980)
and the second one by H. Rosenberg e E. Toubiana (1987). The first conjecture
is also false. The first counterexample was given by N. Nadirashvili (1996) and
it is also a counterexample to the conjecture of Hadamard, which stated that
there were no complete bounded surfaces with negative Gaussian curvature.
Development of Nadirashvilli s article is the main objective of this dissertation.
The technique used in these three works is the use of the Enneper-Weierstrass
Representation, combined with appropriate applications of Runge s theorem.
|
35 |
Derivadas fracionárias, funções contínuas não diferenciáveis e dimensõesSant'anna, Douglas Azevedo January 2009 (has links)
Orientador: Roberto Venegeroles Nascimento / Dissertação (mestrado) - Universidade Federal do ABC. Programa de Pós-Graduação em Matemática
|
36 |
Analytic Solutions to Algebraic EquationsJohansson, Tomas January 1998 (has links)
This report studies polynomial equations and how one solves them using only the coefficients of the polynomial. It examines why it is impossible to solve equations of degree greater than four using only radicals and how instead one can solve them using elliptic functions. Although the quintic equation is the main area of our investigation, we also present parts of the history of algebraic equations, Galois theory, and elliptic functions.
|
37 |
Teorema de Riemann-Roch e aplicaçõesArruda, Rafael Lucas de [UNESP] 25 February 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:18Z (GMT). No. of bitstreams: 0
Previous issue date: 2011-02-25Bitstream added on 2014-06-13T20:28:17Z : No. of bitstreams: 1
arruda_rl_me_sjrp.pdf: 624072 bytes, checksum: 23ddd00e27d1ad781e2d1cec2cb65dee (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / O objetivo principal deste trabalho é estudar o Teorema de Riemann-Roch, um dos resultados fundamentais na teoria de curvas algébricas, e apresentar algumas de suas aplicações. Este teorema é uma importante ferramenta para a classificação das curvas algébricas, pois relaciona propriedades algébricas e topológicas. Daremos uma descrição das curvas algébricas de gênero g, 1≤ g ≤ 5, e faremos um breve estudo dos pontos de inflexão de um sistema linear sobre uma curva algébrica / The main purpose of this work is to discuss The Riemann-Roch Theorem, wich is one of the most important results of the theory algebraic curves, and to present some applications. This theorem is an important tool of the classification of algebraic curves, sinces relates algebraic and topological properties. We will describle the algebraic curves of genus g, 1≤ g ≤ 5, and also study inflection points of a linear system on an algebraic curve
|
38 |
Algebraic Curves over Finite FieldsRovi, Carmen January 2010 (has links)
<p>This thesis surveys the issue of finding rational points on algebraic curves over finite fields. Since Goppa's construction of algebraic geometric codes, there has been great interest in finding curves with many rational points. Here we explain the main tools for finding rational points on a curve over a nite eld and provide the necessary background on ring and field theory. Four different articles are analyzed, the first of these articles gives a complete set of table showing the numbers of rational points for curves with genus up to 50. The other articles provide interesting constructions of covering curves: covers by the Hemitian curve, Kummer extensions and Artin-Schreier extensions. With these articles the great difficulty of finding explicit equations for curves with many rational points is overcome. With the method given by Arnaldo García in [6] we have been able to nd examples that can be used to define the lower bounds for the corresponding entries in the tables given in http: //wins.uva.nl/~geer, which to the time of writing this Thesis appear as "no information available". In fact, as the curves found are maximal, these entries no longer need a bound, they can be given by a unique entry, since the exact value of N<sub>q</sub>(g) is now known.</p><p>At the end of the thesis an outline of the construction of Goppa codes is given and the NXL and XNL codes are presented.</p><p> </p>
|
39 |
Algebraic Curves over Finite FieldsRovi, Carmen January 2010 (has links)
This thesis surveys the issue of finding rational points on algebraic curves over finite fields. Since Goppa's construction of algebraic geometric codes, there has been great interest in finding curves with many rational points. Here we explain the main tools for finding rational points on a curve over a nite eld and provide the necessary background on ring and field theory. Four different articles are analyzed, the first of these articles gives a complete set of table showing the numbers of rational points for curves with genus up to 50. The other articles provide interesting constructions of covering curves: covers by the Hemitian curve, Kummer extensions and Artin-Schreier extensions. With these articles the great difficulty of finding explicit equations for curves with many rational points is overcome. With the method given by Arnaldo García in [6] we have been able to nd examples that can be used to define the lower bounds for the corresponding entries in the tables given in http: //wins.uva.nl/~geer, which to the time of writing this Thesis appear as "no information available". In fact, as the curves found are maximal, these entries no longer need a bound, they can be given by a unique entry, since the exact value of Nq(g) is now known. At the end of the thesis an outline of the construction of Goppa codes is given and the NXL and XNL codes are presented.
|
40 |
Minimala ytor : Kopplingar till komplex analysBrimberg, Andreas January 2023 (has links)
Föreliggande uppsats behandlar minimala ytor. De är speciella typer av de ytor som studeras i ämnet differentialgeometri, ur vilket uppsatsen tar upp viktiga definitioner och resultat. Redogörelsen leder fram till ett bekvämt sätt att uttrycka den så kallade medelkrökningen, som definitionen av minimala ytor baseras på. Därefter motiveras namnet minimala ytor och ett antal egenskaper hos dessa diskuteras. Detta följs av en koppling till komplex analys genom Weierstrass–Enneper-parametrisering och några exempel på minimala ytor. Slutligen diskuteras ett par tillämpningar.
|
Page generated in 0.0653 seconds