• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 473
  • 103
  • 58
  • 33
  • 18
  • 17
  • 13
  • 13
  • 12
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • Tagged with
  • 901
  • 901
  • 349
  • 195
  • 144
  • 127
  • 93
  • 92
  • 90
  • 88
  • 82
  • 81
  • 77
  • 66
  • 65
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

STUDY OF REQUIREMENTS FOR POST-CONSTRUCTION AUTOMATED BIRD MITIGATION SYSTEMS FROM STAKEHOLDER’S PERSPECTIVE

Crasilşcic, Veaceslav January 2016 (has links)
The expansion of wind power comes with additional risks for bird populations, one of which is the collision with wind turbine components, mainly the rotating blades. In order to mitigate this risk, few systems on the market propose solutions with modules that deter the birds from the wind turbine or trigger the temporary shutdown of the turbines.The thesis seeks to obtain a common view from different stakeholders in order to create a list of requirements that the bird protection systems must have so as to be accepted by all the parties involved in the wind industry in Sweden. In order to meet this objective, interviews were conducted with interested stakeholders. Consequently, the interviews were summarized and common points were extracted to create a list of requirements and additional suggestions.Firstly, a comprehensive literature review was done that has pointed out issues like impacts of wind farms on bird species, especially raptors, causes of bird mortality, environmental legislation in European Union and Sweden, and current solutions on mitigating the risk of collisions with wind turbines onshore. Additionally, the author looked up into the most efficient ways to engage the stakeholders in constructive discussions and develop an easy framework for presenting the requirements.The primary data was collected through interviews with stakeholders representing 12 organizations. In the next steps, the data was analyzed by summarizing each interview and identifying the common and differentiating points in respondents’ views and suggestions over automated bird mitigation systems. The identified points laid the basis for a list of requirements considered important for safe and efficient bird mitigation systems in Sweden. Among others, stakeholders identified that the most crucial issues regarding bird mitigation systems are the response time to shutdown of the turbine, distance from the birds’ species living areas, need of species identification in bad weather conditions and night time and overall financial feasibility of such technologies.
302

Ansätze zur Betriebsdauerverlängerung von Suzlon Windkraftanlagen

Brökel, Jan 10 December 2016 (has links) (PDF)
Hintergrund "Die ersten in Serie produzierten und kommerziell relevanten Windkraftanlagen (WKA) wurden in den frühen 1990er Jahren aufgestellt. In Deutschland, wie auch in anderen Ländern, wurden in dieser Zeit Förderprogramme wie das Stromeinspeisegesetz aufgelegt und ein zügiger Ausbau der Windenergienutzung setzte ein. So wurden zu Beginn der 1990er Jahre ca. 200 Anlagen mit je bis zu 300 kW pro Jahr installiert und Ende der 1990er Jahre waren es schon bis zu 1500 Anlagen pro Jahr mit je mehr als 1500 kW Leistung. In den 2000ern stieg die Durchschnittsleitung der jährlich installierten Anlagen auf über 2 MW auch wenn sich die Anzahl der Installationen verringerte, siehe Abbildung 1 bei Ender (Ender 2015). Insgesamt sind ca. 3000 Altanlagen entweder schon ca. 20 Jahre im Betrieb und haben damit ihre Konstruktionslebenszeit erreicht oder sind kurz davor. Wie in Abbildung 1 bei Ender (Ender 2015) deutlich zu sehen, steht damit ein rapider Anstieg der von Abriss oder Weiterbetrieb betroffenen Anlagen in den nächsten 5 Jahren bevor. ..."
303

A boost current source inverter based generator-converter topology for direct drive wind turbines

Singh, Akanksha January 1900 (has links)
Doctor of Philosophy / Department of Electrical and Computer Engineering / Behrooz Mirafzal / In this dissertation, a new topology for Direct-Drive Wind Turbines (DDWTs) with a new power electronics interface and a low-voltage generator design is presented. In the presented power electronics interface, the grid - side converter is replaced by a boost Current Source Inverter (CSI) which eliminates the required dc-bus capacitors resulting in an increase in the lifetime of DDWTs. The inherently required dc-link inductor for this topology is eliminated by utilizing the inductance of the Permanent Magnet Synchronous Generator (PMSG). The proposed three-phase boost CSI is equipped with Reverse-Blocking IGBTs (RB-IGBT) and the Phasor Pulse Width Modulation (PPWM) switching pattern to provide a 98% efficiency and high boost ratios ([superscript V]LL/V[subscript dc]) up to 3.5 in a single stage. In this dissertation, Phasor Pulse Width Modulation (PPWM) pattern for the boost – CSI is also modified and verified through simulation and experimental results. In order to realize potential capabilities of the boost inverter and to assist its penetration into renewable energy systems, the boost inverter dynamic behaviors are studied in this dissertation. Then, the developed models are verified using circuit simulations and experiments on a laboratory-scale boost – CSI equipped with RB-IGBTs. The developed dynamic models are used to study the stability of the boost – CSI through root locus of small signal poles (eigenvalues) as control inputs and load parameters vary within the boost inverter's operating limits. The dynamic models are also used to design the control schemes for the boost – CSI for both stand-alone and grid-tied modes of operation. The developed controllers of the boost – CSI are verified through simulation and experimental results. In this dissertation, the boost – CSI steady-state characterization equations are also developed and verified. The developed boost – CSI is used to replace the grid - side converter in a DDWT. A reliability analysis on the power electronics interface of an existing and developed topology is presented to demonstrate the increase in the mean time between failures. The boost – CSI enables conversion of a low dc voltage to a higher line-to-line voltage enabling the implementation of a low-voltage generator. This further enables a reduction in the number poles required in DDWT generators. The feasibility of the presented low-voltage generator is investigated through finite element computations. In this dissertation, a 1.5MW low-voltage generator designed for the proposed topology is compared with an existing 1.5MW permanent magnet synchronous generator for DDWTs to demonstrate the reduction in the volume, weight, and amount of permanent magnet materials required in the generator. The feasibility of the developed system is supported by a set of MATLAB/Simulink simulations and laboratory experiments on the closed-loop stand-alone and grid-tied systems.
304

Security analysis of the interaction between the UK gas and electricity transmission systems

Whiteford, James Raymond George January 2012 (has links)
Natural gas has become the UK’s foremost primary energy source, providing some 39% of our energy needs. The National Transmission System (NTS) has developed from its humble beginnings when natural gas was first discovered in the North Sea in the 1960s to become a complex interconnected network delivering up to 550 million cubic meters of gas daily. Gas has also become an increasingly important energy source for power generation, currently generating 35% of our electricity. This presents major challenges for the planning and operation of both the electricity and gas networks as their interdependence grows into the future. With the government’s goal of drastically reducing emissions from power generation by 2020, Combined Cycle Gas Turbine units, and therefore the NTS, will have to offer a new degree of flexibility to quickly respond to the intermittency of the growing penetration of wind generation on the electricity transmission system. Coupling this with the decline in the UK natural gas resources resulting in the NTS becoming reliant on imports to meet demand, it is becoming increasingly difficult to decouple the security of the gas supply from the security of the electricity supply in the UK. This study presents the modelling challenge of assessing this growing interaction and provides a robust methodology for completing a security analysis using detailed network models of the UK gas and electricity transmission systems. A thorough investigation of the intraday operation of the two systems in 2020 is presented given the growth of wind generation in the UK. The results are analysed and the implications for combined modelling and assessment are discussed as we enter a new era for UK energy security.
305

The impact of wind power generation on the wholesale electricity price : Evidence from the Swedish electricity market

Li, Xiaoying January 2017 (has links)
Wind energy has been growing rapidly during recent years. This paper aims to estimate the impact of wind power generation on the Swedish wholesale electricity price, using monthly time series data over the periods 2000-2016. The error-correction model is used to measure the price effect by including other factors that influence the electricity supply and demand. Thefindings suggest that the impact of changes in wind power production on the wholesale priceof electricity is negative in the short-term. When the wind power production increases by 1%, the wholesale electricity price decreases with 0.08%. Furthermore, the magnitude of the coefficient increases to 0.10% in the long-term.
306

Interaction of DC-DC converters and submarine power cables in offshore wind farm DC networks

Wood, Thomas Benedict January 2014 (has links)
Offshore wind power is attracting increasing levels of research and investment. The use of HVDC transmission and the development of DC grids are topics with similar high levels of interest that go hand in hand with the development of large scale, far from shore wind farms. Despite increased capital cost of some components, DC power transmission can have significant advantages over AC transmission, in particular in the offshore environment. These advantages are well established for large scale, long distance point to point transmission. This thesis assesses the suitability of a multi-terminal DC power collection network, with short cables and relatively small amounts of power, addresses a number of the technical challenges in realising such a network and shows methods for overall system cost reduction. Technical and modelling challenges result from the interaction between power electronic DC-DC converters and the cables in a DC transmission network. In particular, the propagation of the ripple current in bipole DC transmission cables constructed with a metallic sheath and armour is examined in detail. The finite element method is used to predict the response of the cable to the ripple current produced by the converters. These results are used along with wave propagation theory to demonstrate that cable design plays a crucial role in the behaviour of the DC system. The frequency dependent cable models are then integrated with time domain DC-DC converter models. The work in the thesis is, broadly, in two parts. First, it is demonstrated that care and accuracy are required in modelling the cables in the DC transmission system and appropriate models are implemented and validated. Second, these models are combined with DC-DC converter models and used to demonstrate the practicality of the DC grid, make design recommendations and assess its suitability when compared with alternative approaches (e.g. AC collection and/or transmission).
307

Clean water from clean energy : removal of dissolved contaminants from brackish groundwater using wind energy powered electrodialysis

Malek, Payam January 2015 (has links)
Around 770 million people lack access to improved drinking water sources (WHO 2013), urgently necessitating implementation of contaminant removal by e.g. desalination systems on a large scale. To improve water quality and enable use of brackish water sources for human consumption in remote arid areas, a directly coupled wind – electrodialysis system (Wind-ED) was developed. Modularity, sustainability and above all suitability for the practical use in off-grid locations were the main motivations and design objectives. The direct coupling of wind energy with membranes reduces the system costs as well as technical drawbacks associated with using intermediate energy storage systems. During this research, systematic experiments were performed using the Wind-ED system in order to determine desalination performance and clean water production, specific energy consumption (SEC) and current efficiency (ηc) under relevant conditions, such as varying: i) wind speed, ii) wind turbulence intensity, iii) oscillation periods, iv) varying NaCl concentrations and v) flow rates. Moreover, the competitive removal of four commonly available inorganic contaminants in brackish groundwater sources, nitrate (NO3-), fluoride (F-), sulphate (SO42-) and chloride (Cl-), were investigated. Firstly, to establish a systematic understanding of how and to what extent energy fluctuations influence the transport of the salt (i.e. NaCl) ions across the membranes, experiments were conducted using pulsed electric field assisted electrodialysis (pulsed-ED) over a wide range of frequencies (0.001 – 10 Hz) and duty cycles (20 – 80). The results showed that pulsation applied in the sub-limiting regime resulted in reduced water production, explained by the delays caused by the off-periods during the pulsed desalination process. At higher current densities, pulsation led to considerable improvements in current (e.g. up to 95%, for a feed solution of 500 mg/L and a pulse regime of 1 Hz at 50 V peak voltage) and significant reduction in water dissociation, explained by a reduction of concentration polarisation. Importantly, the pulsation had no significant effect on energy consumption or current efficiency suggesting that ED could be suitable for direct coupling to fluctuating energy sources such as wind energy. ED was consequently coupled to a wind turbine system and a series of desalination tests were performed over a wide range of wind speeds (2-10 m/s), turbulence intensities (TI of 0-0.6) and oscillation periods (0-180 s). Results showed that water production and SEC increased with wind speed. However, both the water production and SEC stopped increasing as the power output from the turbine levelled off at wind speeds above the rated value (vrated: 7.9 – 8.4 m/s). The impact of wind speed fluctuations on the system performance were insignificant up to a TI of 0.4. The desalination performance declined under high turbulence intensity fluctuations (TIs ≥ 0.5) and long periods of oscillation (> 40 s), as the wind-ED system periodically cycled off in response to operation below the cut-in wind speed of the wind turbine (vcut-in: ~ 2 m/s). The off-cycling of the system caused significant delays in the desalination process, and thus resulted in reduced water production. Further reduction in the water production resulted as the wind-ED system operated under intermittent wind speed conditions with off-wind periods longer than 10 s. It was concluded that the main challenge in direct coupling of ED to a wind resource was not the magnitude of the fluctuations but the impact of the power cycling off during long periods of oscillation and lengthy periods of no wind. Interestingly, the SEC of the process remained relatively unaffected by the fluctuations and intermittencies in the wind resource. The effect of energy fluctuations on the competitive transport of F-, Cl-, NO3- and SO42- from artificial brackish water (TDS ~4350 mg/L) was investigated using different sets of real wind data. The ion removal, independent of the wind regime tested, followed the order: NO3- ≥ Cl- > F- > SO42-. The competitive removal of the ions was linked to differences in physicochemical properties (i.e. hydration energy, ionic mobility and valence). The specific selectivity (e.g. preferential transport of NO3- over SO42- ions) was found to increase with concentration polarisation being either minimised (by lowering the mean wind speed) or disrupted (by fluctuations in the wind resource). The results from flow rate and feed concentration experiments, showed that power production of the wind turbine depended on not only the available wind energy but also the resistance of the load (i.e. the ED stack). Thus, increasing the feed concentration and the flow rate resulted in reduced resistance in the ED stack (Rstack), which inversely influenced the current induction counter torque force applied on the shaft of the wind turbine and caused the rotor to spin at a lower angular velocity. This led to increased sensitivity of the wind-ED system to wind speed fluctuations (e.g. system cycled off due to extreme fluctuations and intermittencies with low TDS feed concentration of 2400 mg/L) and hence a reduction of desalination performance. Impact of flow rate on the SEC was found to be negligible; this was attributed to the automatic voltage to current adjustments done by the wind turbine, in order to minimise the impacts of Rstack on the power production by the turbine at a given wind speed. Increased flow rate and resulting shrinkage of the boundary layer’s thickness, caused the concentration profiles at the solution-membrane interface to become steeper. This favoured the transport of ions with the highest diffusion coefficients in the mixture (i.e. Cl- and NO3-). Decreased flow rate favoured the transport of ions with larger valence numbers and higher electric mobility inside the electrolyte (i.e. SO42-); as the former property governed the faster migration of SO42- ions through the thick boundary layer and the latter property assisted with the improved affinity of the ion-exchange membrane to SO42- ions compared to the monovalent anions in the mixture. Increasing the feed concentration of Cl- from 500 to 2,550 mg/L led to reduced transport numbers for the other anions in the mixture and significantly reducing their removal rate. The results obtained from both the pulsed-ED and wind-ED experiments showed that, despite direct coupling to the fluctuating energy source the SEC of the process remained relatively unaffected by the energy fluctuations. Although the desalination process might require more time to be completed when operating under extreme wind speed fluctuations and intermittencies, the quality of the drinking water produced was always within the WHO standards. In conclusion, the findings from this research prove the wind-ED system to be an energetically robust and a reliable off-grid desalination technique suitable for the treatment of brackish groundwater in water stressed remote regions.
308

Regionale Unterschiede im Auftreten von Eisablagerungen

Arnold, Klaus, Raabe, Armin, Tetzlaff, Gerd 25 October 2016 (has links) (PDF)
Bei der Errichtung von Windenergieanlagen in Mittelgebirgsregionen ist darauf zu achten, daß an windexponierten Standorten die Gefahr einer Vereisung der Rotorblätter besteht. Es wurden klimatologische Daten im Bereich der Mittelgebirge ausgewertet und daraus eine Karte erarbeitet, in der die jährliche mittlere Häufigkeit der Tage mit Eisablagerungen dargestellt ist. / With the installation of wind turbines in low mountain areas the hazard of ice accretions on rotor blades at windy places must be considered. Interpreting climatological datas of the low mountain areas of S. E. Germany a map has been produced which shows the annual frequencies of days ice accretions on structures occurs.
309

It's an ill Wind : An Analysis of Justice Perceptions around Wind Power

Niebel Stier, Lucas, Wallimann, Marco January 2019 (has links)
Renewable energy lies in the center of the debate on climate change. In order to achieve the energy transition, to reduce greenhouse gas emissions and to terminate our reliance on fossil fuels, wind energy is one of the world’s biggest bets. However, wind power plants are frequently contested at the local level, where they create discussions regarding fairness as benefits and burdens seem not always to be equally distributed. To better understand ‘energy justice’ in the era of renewable energy, our research qualitatively explores the perceptions of relevant involved stakeholders around wind energy projects in three locations in Germany and Sweden. Our findings add evidence and confirm many previous implications from the growing literature of public acceptance and energy justice. In addition, we highlight the importance of distributive, procedural and recognitional justice, as well as paradoxes arising from wind energy projects such as envy, the transformation of nature and the interpretation of citizens’ duties. The study furthermore sustains the faced complexities on the path towards an energy-just world.
310

Electrical transient interaction between transformers and the power system: case study of an onshore wind farm

Banda, Cedric Amittai January 2016 (has links)
A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, in fulfilment of the requirements of the degree of Master of Science in Electrical Engineering June 2016 / Through the Renewable Energy Independent Power Producer Procurement Program (REIPPPP) the South African government has awarded opportunities for growth of renewable energy through bidding rounds. Round 1 saw a total capacity of 397 MW being awarded to independent power producers (IPP). Subsequently Rounds 2, 3 and 4 each had a total capacity of 333 MW auctioned. The advent of renewables on the market has brought upon its own associated problems with regards to power quality issues and failure of HV equipment. This thesis will address transformer failures that occurred at an onshore wind farm. The nature of the transformer failures suggest transient overvoltages are mainly to blame. A comparison between transformer failures in South African and Brazil suggest a common failure mechanism. The failure starts with an inter-turn insulation failure which propagates to an inter-layer insulation. In worst cases the failure mode results in a puncture through the LV-HV barrier and punctures through the LV winding. An extensive literature review was performed to find appropriate methods to predict and explain the failure mode in wind turbine LV-MV step-up transformers. Of the different models which were reviewed the most notable was the Multi-conductor Transmission Line (MTL) model which was chosen as the preferred model due to its ability to predict the inter-turn/inter-layer voltage stresses. Verification of the developed MTL model by the author was then compared to published results of an MTL model of a disc winding transformer. The results of the comparison revealed a relatively good agreement between the developed model and the published model. The application of the MTL model to represent the voltage stresses in transformer windings was then extended to two specially constructed wind turbine step-up transformer prototypes. The prototypes differed in the winding arrangement of the MV coil. The other used two separate MV coils separated by an oil gap whereas the other had a single MV coil. To validate the model accuracy, a comparison of measured results versus those obtained analytically was done for the two prototypes. The analytical and measured results also had a relatively good agreement for the two prototypes considered. Measurement of switching surges was done on-site at the wind farm to understand the nature of the transients. Using analysis tools such as FFT and frequency domain severity factor it was possible to understand the impact the nature of these transients would pose on the transformer insulation. Different mitigation techniques which can be used to alleviate the transient overvoltages to within safe levels were investigated. The most notable protection device considered was the RL choke device which offered a significant reduction of the pre-strikes and is virtually transparent under power frequency operation. / MT2017

Page generated in 0.1754 seconds