• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95
  • 29
  • 27
  • 19
  • 8
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 234
  • 234
  • 42
  • 37
  • 36
  • 35
  • 31
  • 31
  • 29
  • 27
  • 27
  • 27
  • 22
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

An intelligent vertical handoff decision algorithm in next generation wireless networks

Nkansah-Gyekye, Yaw January 2010 (has links)
<p>The objective of the thesis research is to design such vertical handoff decision algorithms in order for mobile field workers and other mobile users equipped with contemporary multimode mobile devices to communicate seamlessly in the NGWN. In order to tackle this research objective, we used fuzzy logic and fuzzy inference systems to design a suitable handoff initiation algorithm that can handle imprecision and uncertainties in data and process multiple vertical handoff initiation parameters (criteria) / used the fuzzy multiple attributes decision making method and context awareness to design a suitable access network selection function that can handle a tradeoff among many handoff metrics including quality of service requirements (such as network conditions and system performance), mobile terminal conditions, power requirements, application types, user preferences, and a price model / used genetic algorithms and simulated annealing to optimise the access network selection function in order to dynamically select the optimal available access network for handoff / and we focused in particular on an interesting use case: vertical handoff decision between mobile WiMAX and UMTS access networks. The implementation of our handoff decision algorithm will provide a network selection mechanism to help mobile users select the best wireless access network among all available wireless access networks, that is, one that provides always best connected services to users.</p>
212

Network Coding in Distributed, Dynamic, and Wireless Environments: Algorithms and Applications

Chaudhry, Mohammad 2011 December 1900 (has links)
The network coding is a new paradigm that has been shown to improve throughput, fault tolerance, and other quality of service parameters in communication networks. The basic idea of the network coding techniques is to relish the "mixing" nature of the information flows, i.e., many algebraic operations (e.g., addition, subtraction etc.) can be performed over the data packets. Whereas traditionally information flows are treated as physical commodities (e.g., cars) over which algebraic operations can not be performed. In this dissertation we answer some of the important open questions related to the network coding. Our work can be divided into four major parts. Firstly, we focus on network code design for the dynamic networks, i.e., the networks with frequently changing topologies and frequently changing sets of users. Examples of such dynamic networks are content distribution networks, peer-to-peer networks, and mobile wireless networks. A change in the network might result in infeasibility of the previously assigned feasible network code, i.e., all the users might not be able to receive their demands. The central problem in the design of a feasible network code is to assign local encoding coefficients for each pair of links in a way that allows every user to decode the required packets. We analyze the problem of maintaining the feasibility of a network code, and provide bounds on the number of modifications required under dynamic settings. We also present distributed algorithms for the network code design, and propose a new path-based assignment of encoding coefficients to construct a feasible network code. Secondly, we investigate the network coding problems in wireless networks. It has been shown that network coding techniques can significantly increase the overall throughput of wireless networks by taking advantage of their broadcast nature. In wireless networks each packet transmitted by a device is broadcasted within a certain area and can be overheard by the neighboring devices. When a device needs to transmit packets, it employs the Index Coding that uses the knowledge of what the device's neighbors have heard in order to reduce the number of transmissions. With the Index Coding, each transmitted packet can be a linear combination of the original packets. The Index Coding problem has been proven to be NP-hard, and NP-hard to approximate. We propose an efficient exact, and several heuristic solutions for the Index Coding problem. Noting that the Index Coding problem is NP-hard to approximate, we look at it from a novel perspective and define the Complementary Index Coding problem, where the objective is to maximize the number of transmissions that are saved by employing coding compared to the solution that does not involve coding. We prove that the Complementary Index Coding problem can be approximated in several cases of practical importance. We investigate both the multiple unicast and multiple multicast scenarios for the Complementary Index Coding problem for computational complexity, and provide polynomial time approximation algorithms. Thirdly, we consider the problem of accessing large data files stored at multiple locations across a content distribution, peer-to-peer, or massive storage network. Parts of the data can be stored in either original form, or encoded form at multiple network locations. Clients access the parts of the data through simultaneous downloads from several servers across the network. For each link used client has to pay some cost. A client might not be able to access a subset of servers simultaneously due to network restrictions e.g., congestion etc. Furthermore, a subset of the servers might contain correlated data, and accessing such a subset might not increase amount of information at the client. We present a novel efficient polynomial-time solution for this problem that leverages the matroid theory. Fourthly, we explore applications of the network coding for congestion mitigation and over flow avoidance in the global routing stage of Very Large Scale Integration (VLSI) physical design. Smaller and smarter devices have resulted in a significant increase in the density of on-chip components, which has given rise to congestion and over flow as critical issues in on-chip networks. We present novel techniques and algorithms for reducing congestion and minimizing over flows.
213

An Efficient Network Management System using Agents for MANETs

Channappagoudar, Mallikarjun B January 2017 (has links) (PDF)
Network management plays a vital role to keep a network and its application work e ciently. The network management in MANETs is a crucial and the challenging task, as these networks are characterized by dynamic environment and the scarcity of resources. There are various existing approaches for network management in MANETs. The Ad hoc Network Management Protocol (ANMP) has been one of the rst e orts and introduced an SNMP-based solution for MANETs. An alternative SNMP-based solu-tion is proposed by GUERRILLA Management Architecture (GMA). Due to self-organizing characteristic feature of MANETs, the management task has to be distributed. Policy-based network management relatively o ers this feature, by executing and applying policies pre-viously de ned by network manager. Otherwise, the complexity of realization and control becomes di cult Most of the works address the current status of the MANET to take the network man-agement decisions. Currently, MANETs addresses the dynamic and intelligent decisions by considering the present situation and all related history information of nodes into consid-eration. In this connection we have proposed a network management system using agents (NMSA) for MANETs, resolving major issues like, node monitoring, location management, resource management and QoS management. Solutions to these issues are discussed as inde-pendent protocols, and are nally combined into a single network management system, i.e., NMSA. Agents are autonomous, problem-solving computational entities capable of performing e ective operation in dynamic environments. Agents have cooperation, intelligence, and mobility characteristics as advantages. The agent platforms provide the di erent services to agents, like execution, mobility, communication, security, tracking, persistence and directory etc. The platform execution environment allows the agents to run, and mobility service allows them to travel among the di erent execution environments. The entire management task will be delegated to agents, which then executes the management logic in a distributed and autonomous fashion. In our work we used the static and mobile agents to nd some solutions to the management issues in a MANET. We have proposed a node monitoring protocol for MANETs, which uses both static agent (SA) and mobile agents (MA), to monitor the nodes status in the network. It monitors the gradational energy loss, bu er, bandwidth, and the mobility of nodes running with low to high load of mobile applications. Protocol assumes the MANET is divided into zones and sectors. The functioning of the protocol is divided into two segments, The NMP main segment, which runs at the chosen resource rich node (RRN) at the center of a MANET, makes use of SA which resides at same RRN, and the NMP subsegment which runs in the migrated MAs at the other nodes. Initially SA creates MAs and dispatches one MA to each zone, in order to monitor health conditions and mobility of nodes of the network. MAs carrying NMP subsegment migrates into the sector of a respective zone, and monitors the resources such as bandwidth, bu er, energy level and mobility of nodes. After collecting the nodes information and before moving to next sector they transfer collected information to SA respectively. SA in turn coordinates with other modules to analyze the nodes status information. We have validated the protocol by performing the conformance testing of the proposed node monitoring protocol (NMP) for MANETs. We used SDL to obtain MSCs, that repre-sents the scenario descriptions by sequence diagrams, which in turn generate test cases and test sequences. Then TTCN-3 is used to execute the test cases with respect to generated test sequences to know the conformance of protocol against the given speci cation. We have proposed a location management protocol for locating the nodes of a MANET, to maintain uninterrupted high-quality service for distributed applications by intelligently anticipating the change of location of its nodes by chosen neighborhood nodes. The LMP main segment of the protocol, which runs at the chosen RRN located at the center of a MANET, uses SA to coordinate with other modules and MA to predict the nodes with abrupt movement, and does the replacement with the chosen nodes nearby which have less mobility. We have proposed a resource management protocol for MANETs, The protocol makes use of SA and MA for fair allocation of resources among the nodes of a MANET. The RMP main segment of the protocol, which runs at the chosen RRN located at the center of a MANET, uses SA to coordinate with other modules and MA to allocate the resources among the nodes running di erent applications based on priority. The protocol does the distribution and parallelism of message propagation (mobile agent with information) in an e cient way in order to minimize the number of message passing with reduction in usage of network resources and improving the scalability of the network. We have proposed a QoS management protocol for MANETs, The QMP main segment of the protocol, which runs at the chosen RRN located at the center of a MANET, uses SA to coordinate with other modules and MA to allocate the resources among the nodes running di erent applications based on priority over QoS. Later, to reallocate the resources among the priority applications based on negotiation and renegotiation for varying QoS requirements. The performance testing of the protocol is carried out using TTCN-3. The generated test cases for the de ned QoS requirements are executed with TTCN-3, for testing of the associated QoS parameters, which leads to performance testing of proposed QoS management protocol for MANETs. We have combined the developed independent protocols for node monitoring, location management, resource management, and QoS management, into one single network management system called Network Management System using Agents (NMSA) for MANETs and tested in di erent environments. We have implemented NMSA on Java Agent development environment (JADE) Platform. Our developed network management system is a distributed system. It is basically divided into two parts, the Network Management Main Segment and other is Network Management Subsegment. A resource rich node (RRN) which is chosen at the center of a MANET where the Main segment of NMSA is located, and it controls the management activities. The other mobile nodes in the network will run MA which has the subsegments of NMSA. The network management system, i.e., the developed NMSA, has Network manage-ment main (NMSA main), Zones and sector segregation scheme, NMP, LMP, RMP, QMP main segments at the RRN along with SA deployed. The migrated MA at mobile node has subsegments of NMP, LMP, RMP, and QMP respectively. NMSA uses two databases, namely, Zones and sectors database and Node history database. Implementation of the proposed work is carried out in a con ned environment with, JDK and JADE installed on network nodes. The launched platform will have AMS and DF automatically generated along with MTP for exchange of message over the channel. Since only one JVM, which is installed, will executes on many hosts in order to provide the containers for agents on those hosts. It is the environment which o ered, for execution of agents. Many agents can be executed in parallel. The main container, is the one which has AMS and DF, and RMI registry are part of JADE environment which o ers complete run time environment for execution of agents. The distribution of the platform on many containers of nodes is shown in Fig. 1. The NMSA is based on Linux platform which provides distributed environment, and the container of JADE could run on various platforms. JAVA is the language used for code development. A middle layer, i.e., JDBC (java database connection) with SQL provides connectivity to the database and the application. The results of experiments suggest that the proposed protocols are e ective and will bring, dynamism and adaptiveness to the applied system and also reduction in terms network overhead (less bandwidth consumption) and response time.
214

Trådlösa Nätverk : säkerhet och GPU

de Laval, johnny January 2009 (has links)
Trådlosa nätverk är av naturen sårbara for avlyssning för att kommunikationen sker med radiovagor. Därfor skyddas trådlosa nätverk med kryptering. WEP var den första krypteringsstandarden som användes av en bredare publik som senare visade sig innehålla flera sårbarheter. Följden blev att krypteringen kunde förbigås på ett par minuter. Därför utvecklades WPA som ett svar till sårbarheterna i WEP. Kort därefter kom WPA2 som är den standard som används i nutid. Den svaghet som kan påvisas med WPA2 finns hos WPA2-PSK när svaga lösenord används. Mjukvaror kan med enkelhet gå igenom stora uppslagsverk för att testa om lösenord går att återställa. Det är en process som tar tid och som därför skyddar nätverken i viss mån. Dock har grafikprocessorer börjat användas i syfte för att återställa lösenord. Grafikkorten är effektivare och återställer svaga lösenord betydligt snabbare än moderkortens processorer. Det öppnar upp for att jämföra lösenord med ännu större uppslagsverk och fler kombinationer. Det är vad denna studie avser att belysa; hur har grafikkortens effektivitet påverkat säkerheten i trådlösa nätverk ur ett verksamhetsperspektiv. / Wireless networks are inherently vulnerable for eavesdropping since they use radio waves to communicate. Wireless networks are therefore protected by encryption. WEP was the first encryption standard that was widely used. Unfortunately WEP proved to have several serious vulnerabilities. WEP could be circumvented within few minutes. Therefore WPA was developed as a response to the weak WEP. Shortly thereafter WPA2 was released and are now being used in present. The only weakness with WPA2 is in the subset WPA2-PSK when weak passwords are being used. Software could easily go through large dictionaries to verify if a password could be recovered. But that is time consuming and therefore providing wireless networks limited protection. However a new area of use with advanced graphic cards has showed that it is providing a faster way of recovering passwords than the ordinary processor on the motherboard. That opens up for the larger use of dictionaries and the processing of words or combinations of words. That is what this study aims to shed light on. How the efficiency of the graphic cards have affected security in wireless networks from a corporate perspective of view.
215

Heterogeneous Networks: from integration to mobility

Qachri, Naïm 16 September 2015 (has links)
Français:La notion de réseaux hétérogènes correspond à l’intégration de plusieurs technologies de transmission de données sans-fil dans le but d’accroitre la qualité de service des communications dans les réseaux mobiles.Historiquement, les mécanismes de sécurité des réseaux mobiles et sans-fil ont été largement focalisés sur la protection d’équipement utilisateur au niveau du dernier saut de communication et sur base d’une connectivité simple et unique. Cette connectivité, réduite à sa plus simple expression, a restraint le développement des protocoles de sécurité à des protocoles bi-parties, qui couvrent l’authentification des équipements utilisateurs et le chiffrement sur des communicationsLes mécanismes de sécurité et de cryptographie ne sont donc pas suffisants pour protéger correctement et efficacement des connections parallèles ou leur mobilité au sein de réseaux hétérogènes. Le but de cette thèse de doctorat, à travers quatre contributions personnelles, est d’apporter de nouveaux mécanismes et protocoles de sécurité afin de protéger au mieux les réseaux hétérogènes:• La première contribution se focalise sur le développement d’une nouvelle primitive cryptographique pour la protection des transmissions sans-fil. La propriété principale de celle-ci est de protéger les trames en cas de capture. Cette primitive introduit, notamment, la notion de force brute probabiliste (ce qui veut dire qu’un attaquant ne peut pas choisir parmi différentes clés équiprobables laquelle est effectivement utilisée).• La seconde contribution propose un nouveau protocole pour gérer d’une manière sure et efficace la mobilité des équipements utilisateurs entre différentes technologies au sein de réseaux hétérogènes.• La troisième contribution couvre la gestion des clés maîtres des utilisateurs, embarqués au sein des cartes SIM, utilisées au sein des réseaux d’opérateurs mobiles. Nos protocoles et mécanismes automa- tisent des changements réguliers et sûrs de la clé maître, et ajoutent de la diversité dans la gestion des clés de sessions pour minimiser l’impact en cas de révélation de ces dernières (par le biais d’un vol de base de donnée, par exemple)• La quatrième contribution introduit un nouveau paradigme de connectivité pour les réseaux mo- biles basé sur des communications 1−à−n. Le paradigme redéfinit les frontières de sécurité et place l’équipement utilisateur au centre d’un groupe authentifié mobile. Par conséquent, le changement de paradigme mène à la création de nouveaux protocoles pour l’authentification, la gestion de la mo- bilité et la négociation protégées de clés afin de fournir une protection de bout en bout entre deux équipements utilisateurs ou plus. / English:Heterogeneous Networks (HetNets) is the integration of multiple wireless technologies to increase the quality of service of the communications in mobile networks. This evolution is the next generation of Public Land Mobile Networks (PLMNs).Mobile and wireless network security mechanisms have largely focused on the protection of the User Equipment (UE) within the last mile (the last hop of the communication in the chain of connected devices) and on single connections. The single connectivity has reduced the development of the security to two party protocols, and they cover the authentication of the UE to the mobile network and the encryption on a single channel based on homogeneous communications through a unique technology.The current security and cryptographic mechanisms are not sufficient to protect correctly, and efficiently, parallel connections or their mobility in HetNets. The purpose of the PhD Thesis is to bring new security protocols and mechanisms to protect HetNets.The contributions, that are brought by the thesis, follow the evolution of HetNets through 4 contributions by starting from the wireless transmissions to the largest frame of HetNets architecture:• The first contribution focuses on the development of an new cryptographic primitives for wireless transmissions. The main property is to protect the frame from eavesdropping. The primitive introduces the notion of probabilistic brute force (meaning that an attacker cannot decide among different keys which the used one).• The second contribution proposes a new protocol to manage efficiently and securely the mobility of the UEs between different technologies inside HetNets.• The third contribution covers the management of the master secrets, embedded within the Universal Subscriber Identity Module (USIM), in large PLMNs. Our mechanisms and protocols automate regular and secure changes of the master secret, and they add diversity in the management of session keys to minimize the impact of key leakages (in case of credential database theft, for instance).• The fourth contribution introduces a new connectivity paradigm for mobile networks based on one-to- many communications. The paradigm redesigns the security borders and puts the UE in the center of a mobile authenticated group. Therefore, the paradigm shift leads to new security protocols for authentication, mobility management, and secure negotiation to provide end-to-end encryption between two or more UEs. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
216

[en] PERFORMANCE EVALUATION OF MICROMOBILITY PROTOCOLS IN IP NETWORKS / [pt] ANÁLISE DE DESEMPENHO DE PROTOCOLOS DE MICRO-MOBILIDADE PARA REDES IP

MACSON JOSE MENDES DE ALMEIDA 24 September 2002 (has links)
[pt] Há alguns anos a Internet vem continuamente tomando uma importância cade vez maior na vida das pessoas, seja para trabalho, diversão, informação ou negócios. Essa disseminação está fazendo com que a necessidade de acesso vá além do escritório ou do lar e alcance o ar livre, ou seja as pessoas gostariam de acessar a Internet de seu notebook enquanto estão no caminho para o trabalho, casa ou escola. Para possibilitar isso o IETF fez estudos e definiu o padrão do IP Móvel. Porém o IP Móvel não resolve totalmente o problema de mobilidade na Internet, e para complementá-lo surgiram os protocolos de micromobilidade. Neste trabalho analisamos detalhadamente os dois principais protocolos de micromobilidade mais completos e sugerimos uma extensão para a melhoria do desempenho do acesso sem fio à Internet. / [en] Since some years ago the Internet is continually grwoing in importance in the peoples life, even for work, amusement, information or businesses. That spread is making the need for access goes outside the office or the home and reach the free air, the people would like to access Internet of his/her notebook while they are in their path for the work, home or school. To make it possible the IETF made studies and it defined a standard, The Mobile IP. However the Mobile IP doesn t totally solve the mobility problem in Internet, and to complement it, the micromobility protocols had appeared. In this work was analyzed the two main protocols of micromobility in detail and was suggested an extension for the improvement of the performance of the wireless access to the Internet.
217

An intelligent vertical handoff decision algorithm in next generation wireless networks

Nkansah-Gyekye, Yaw January 2010 (has links)
Philosophiae Doctor - PhD / The objective of the thesis research is to design such vertical handoff decision algorithms in order for mobile field workers and other mobile users equipped with contemporary multimode mobile devices to communicate seamlessly in the NGWN. In order to tackle this research objective, we used fuzzy logic and fuzzy inference systems to design a suitable handoff initiation algorithm that can handle imprecision and uncertainties in data and process multiple vertical handoff initiation parameters (criteria); used the fuzzy multiple attributes decision making method and context awareness to design a suitable access network selection function that can handle a tradeoff among many handoff metrics including quality of service requirements (such as network conditions and system performance), mobile terminal conditions, power requirements, application types, user preferences, and a price model; used genetic algorithms and simulated annealing to optimise the access network selection function in order to dynamically select the optimal available access network for handoff; and we focused in particular on an interesting use case: vertical handoff decision between mobile WiMAX and UMTS access networks. The implementation of our handoff decision algorithm will provide a network selection mechanism to help mobile users select the best wireless access network among all available wireless access networks, that is, one that provides always best connected services to users. / South Africa
218

An intelligent vertical handoff decision algorithm in next generation wireless networks

Gyekye, Yaw Nkansah January 2010 (has links)
Philosophiae Doctor - PhD / Seamless mobility is the missing ingredient needed to address the inefficient communication problems faced by the field workforces of service companies that are using field workforce automation solutions to streamline and optimise the operations of their field workforces in an increasingly competitive market place. The key enabling function for achieving seamless mobility and seamless service continuity is seamless handoffs across heterogeneous wireless access networks. A challenging issue in the multi-service next generation wireless network (NGWN) is to design intelligent and optimal vertical handoff decision algorithms, beyond traditional ones that are based on only signal strength, to determine when to perform a handoff and to provide optimal choice of access network technology among all available access networks for users equipped with multimode mobile terminals. The objective of the thesis research is to design such vertical handoff decision algorithms in order for mobile field workers and other mobile users equipped with contemporary multimode mobile devices to communicate seamlessly in the NGWN. In order to tackle this research objective, we used fuzzy logic and fuzzy inference systems to design a suitable handoff initiation algorithm that can handle imprecision and uncertainties in data and process multiple vertical handoff initiation parameters (criteria); used the fuzzy multiple attributes decision making method and context awareness to design a suitable access network selection function that can handle a tradeoff among many handoff metrics including quality of service requirements (such as network conditions and system performance), mobile terminal conditions, power requirements, application types, user preferences, and a price model; used genetic algorithms and simulated annealing to optimise the access network selection function in order to dynamically select the optimal available access network for handoff; and we focused in particular on an interesting use case: vertical handoff decision between mobile WiMAX and UMTS access networks. The implementation of our handoff decision algorithm will provide a network selection mechanism to help mobile users select the best wireless access network among all available wireless access networks, that is, one that provides always best connected services to users
219

Algorithms for Homogeneous Quadratic Minimization And Applications in Wireless Networks

Gaurav, Dinesh Dileep January 2016 (has links) (PDF)
Massive proliferation of wireless devices throughout world in the past decade comes with a host of tough and demanding design problems. Noise at receivers and wireless interference are the two major issues which severely limits the received signal quality and the quantity of users that can be simultaneously served. Traditional approaches to this problems are known as Power Control (PC), SINR Balancing (SINRB) and User Selection (US) in Wireless Networks respectively. Interestingly, for a large class of wireless system models, both this problems have a generic form. Thus any approach to this generic optimization problem benefits the transceiver design of all the underlying wireless models. In this thesis, we propose an Eigen approach based on the Joint Numerical Range (JNR) of hermitian matrices for PC, SINRB and US problems for a class of wireless models. In the beginning of the thesis, we address the PC and SINRB problems. PC problems can be expressed as Homogeneous Quadratic Constrained Quadratic Optimization Problems (HQCQP) which are known to be NP-Hard in general. Leveraging their connection to JNR, we show that when the constraints are fewer, HQCQP problems admit iterative schemes which are considerably fast compared to the state of the art and have guarantees of global convergence. In the general case for any number of constraints, we show that the true solution can be bounded above and below by two convex optimization problems. Our numerical simulations suggested that the bounds are tight in almost all scenarios suggesting the achievement of true solution. Further, the SINRB problems are shown to be intimately related to PC problems, and thus share the same approach. We then proceed on to comment on the convexity of PC problems and SINRB problems in the general case of any number of constraints. We show that they are intimately related to the convexity of joint numerical range. Based on this connection, we derive results on the attainability of solution and comment on the same about the state-of-the-art technique Semi-De nite Relaxation (SDR). In the subsequent part of the thesis, we address the US problem. We show that the US problem can be formulated as a combinatorial problem of selecting a feasible subset of quadratic constraints. We propose two approaches to the US problem. The first approach is based on the JNR view point which allows us to propose a heuristic approach. The heuristic approach is then shown to be equivalent to a convex optimization problem. In the second approach, we show that the US is equivalent to another non-convex optimization problem. We then propose a convex approximation approach to the latter. Both the approaches are shown to have near optimal performance in simulations. We conclude the thesis with a discussion on applicability and extension to other class of optimization problems and some open problems which has come out of this work.
220

Continuous time signal processing for wake-up radios / Traitement du signal à temps continu dans le domaine digital pour des wake-up radios

Ratiu, Alin 02 October 2015 (has links)
La consommation des systèmes de communication pour l'IoT peut être réduite grâce à un nouveau paradigme de réception radio. La technique consiste à ajouter un récepteur supplémentaire à chaque noeud IoT, appelé Wake Up Radio (WU-RX). Le rôle du WU-RX est de surveiller le canal de communication et de réveiller le récepteur principal (aussi appelé récepteur de données) lors de la réception d'une demande de communication. Une analyse des implémentations des WU-RX existants montre que les systèmes de l'état de l'art sont suffisamment sensibles par rapport aux récepteurs de données classiques mais manquent de robustesse face aux brouilleurs. Pour améliorer cette caractéristique nous proposons un étage de filtrage accordable `a fréquence intermédiaire qui nous permet de scanner toute la bande FI en cherchant le canal utilisé pour la demande de réveil. Ce filtre a été implémenté en utilisant les principes du traitement numérique de données à temps continu et consiste en un CAN suivi par un processeur numérique à temps continu. Le principe de fonctionnement du CAN est basé sur les modulateurs delta, avec une boucle de retour améliorée qui lui permet la quantification des signaux de fréquence plus élevé pour une consommation énergétique plus faible. Par conséquent, il a une plage de fonctionnement entre 10MHz et 50MHz ; pour un SNDR entre 32dB et 42dB et une consommation de 24uW. Cela se traduit par une figure de mérite entre 3fJ/conv-step et 10fJ/conv-step, une des meilleures pour la gamme de fréquences sélectionnée. Le processeur numérique est constitué d'un filtre IIR suivi par un filtre FIR. L'atténuation hors bande apportée par le filtre IIR permet de réduire le taux d'activité vu par le filtre FIR qui, par conséquent, consomme moins d'énergie. Nous avons montré, en simulation, une réduction de la puissance consommée par le filtre FIR d'un facteur entre 2 et 3. Au total, les deux filtres atteignent plus que 40dB de réjection hors bande, avec une bande passante de 2MHz qui peut être délacée sur toute la bande passante du CAN. Dans un pire cas, le système proposé (CAN et processeur numérique) consomme moins de 100uW, cependant la configuration des signaux à l'entrée peut rendre cette consommation plus faible. / Wake-Up Receivers (WU-RX) have been recently proposed as candidates to reduce the communication power budget of wireless networks. Their role is to sense the environment and wake up the main receivers which then handle the bulk data transfer. Existing WU-RXs achieve very high sensitivities for power consumptions below 50uW but severely degrade their performance in the presence of out-of-band blockers. We attempt to tackle this problem by implementing an ultra low power, tunable, intermediate frequency filtering stage. Its specifications are derived from standard WU-RX architectures; it is shown that classic filtering techniques are either not tunable enough or demand a power consumption beyond the total WU-RX budget of 100uW. We thus turn to the use of Continuous Time Digital Signal Processing (CT-DSP) which offers the same level of programmability as standard DSP solutions while providing an excellent scalability of the power consumption with respect to the characteristics of the input signal. A CT-DSP chain can be divided into two parts: the CT-ADC and the CT-DSP itself; the specifications of these two blocks, given the context of this work, are also discussed. The CT-ADC is based on a novel, delta modulator-based architecture which achieves a very low power consumption; its maximum operation frequency was extended by the implementation of a very fast feedback loop. Moreover, the CT nature of the ADC means that it does not do any sampling in time, hence no anti-aliasing filter is required. The proposed ADC requires only 24uW to quantize signals in the [10MHz 50MHz] bandwidth for an SNR between 32dB and 42dB, resulting in a figure of merit of 3-10fJ/conv-step, among the best reported for the selected frequency range. Finally, we present the architecture of the CT-DSP which is divided into two parts: a CT-IIR and a CT-FIR. The CT-IIR is implemented by placing a standard CT-FIR in a feedback loop around the CT-ADC. If designed correctly, the feedback loop can now cancel out certain frequencies from the CT-ADC input (corresponding to those of out-of-band interferers) while boosting the power of the useful signal. The effective amplitude of the CT-ADC input is thus reduced, making it generate a smaller number of tokens, thereby reducing the power consumption of the subsequent CT-FIR by a proportional amount. The CT-DSP consumes around 100uW while achieving more than 40dB of out-of-band rejection; for a bandpass implementation, a 2MHz passband can be shifted over the entire ADC bandwidth.

Page generated in 0.0729 seconds