Spelling suggestions: "subject:"aireless power"" "subject:"fireless power""
101 |
Analysis and Design of High-Frequency Soft-Switching DC-DC Converter for Wireless Power Charging ApplicationsDanekar, Abhishek V. 09 May 2017 (has links)
No description available.
|
102 |
Modeling and Design of Antennas for Loosely Coupled Links in Wireless Power Transfer ApplicationsSinclair, Melissa Ann 08 1900 (has links)
Wireless power transfer (WPT) systems are important in many areas, such as medical, communication, transportation, and consumer electronics. The underlying WPT system is comprised of a transmitter (TX) and receiver (RX). For biomedical applications, such systems can be implemented on rigid or flexible substrates and can be implanted or wearable. The efficiency of a WPT system is based on power transfer efficiency (PTE). Many WPT system optimization techniques have been explored to achieve the highest PTE possible. These are based on either a figure-of-merit (FOM) approach, quality factor (Q-factor) maximization, or by sweeping values for coil geometries. Four WPT systems for biomedical applications are implemented with inductive coupling. The thesis later presents an optimization technique for finding the maximum PTE of a range of frequencies and coil shapes through frequency, geometry and shape sweeping. Five optimized TX coil designs for different operating frequencies are fabricated for three shapes: square, hexagonal, and octagonal planar-spirals. The corresponding RX is implemented on polyimide tape with ink-jet-print (IJP) silver. At 80 MHz, the maximum measured PTE achieved is 2.781% at a 10 mm distance in the air for square planar-spiral coils.
|
103 |
Wireless Power Transfer and Power Management Unit Integrated with Low-Power IR-UWB Transmitter for Neuromodulation and Self-Powered Sensor ApplicationsBiswas, Dipon Kumar 05 1900 (has links)
This dissertation is particularly focused on a novel approach of a wirelessly powered neuromodulation system for chronic patients. The inductively coupled transmitter (TX) and receiver (RX) coils are designed through optimization to achieve maximum efficiency. A power management unit (PMU) consisting of a voltage rectifier, voltage regulator along with a stimulation circuitry is also designed to provide pulse stimulation to genetically modified neurons. For continuous health monitoring purposes, the response from the brain due to stimulation needs to be recorded and transmitted wirelessly outside the brain for analysis. A low-power high-data duty-cycled impulse-radio ultra-wideband (IR-UWB) transmitter is designed and implemented using the standard CMOS process. Another focus of this dissertation is the design of a reverse electrowetting-on-dielectric (REWOD) based energy harvesting circuit for wearable sensor applications which is capable of generating a very low-frequency signal from motion activity such a walking, running, jogging, etc. A commercial off-the-shelf (COTS) based and on-chip based energy harvesting circuit is designed for very low-frequency signals. The experimental results show promising progress towards the advancement in the wirelessly powered neuromodulation system and building the self-powered wearable sensor.
|
104 |
Capacitive Wireless Power Transfer to Biomedical Implants: Link Design, Implementation, and Related Power Management Integrated CircuitryErfani, Reza 02 September 2020 (has links)
No description available.
|
105 |
Conception et caractérisation d’une Rectenna à double polarisation circulaire à 2.45 GHz / Design and characterization of a dual circularly polarized 2.45 Ghz RectennaHarouni, Zied 18 November 2011 (has links)
Les travaux présentés dans ce mémoire s'inscrivent dans la thématique de la transmission d'énergie sans fil, appliquée à l'alimentation à distance de capteurs, de réseaux de capteurs et d'actionneurs à faible consommation. Cette étude porte sur la conception, la caractérisation, et la mesure d'un circuit Rectenna (Rectifying antenna) à double polarisation circulaire à 2.45 GHz, compact et à rendement de conversion RF-DC optimisé. Un outil d'analyse globale basé sur la méthode itérative a été développé et exploité pour valider la faisabilité de cette analyse. La diode Schottky a été modélisée en utilisant une impédance de surface. La rectenna à double polarisation circulaire, réalisée en technologie micro-ruban, a été validée expérimentalement. Elle est caractérisée par la rejection de la 2ème harmonique et une possibilité de recevoir les deux sens de polarisation LHCP et RHCP par l'intermédiaire de 2 accès. Le rendement mesuré avec une densité de puissance de 0.525 mW/cm² est de l'ordre de 63%, tandis que la tension DC obtenue aux bornes d'une charge optimale de 1.6 kohm est de 2.82 V / The work presented in this thesis is within the subject of wireless power transmission, power applied to the remote sensors, networks of sensors and actuators with low power consumption. This study focuses on the design, characterization, and measurement of a rectenna circuit (rectifying antenna) with dual circular polarization at 2.45 GHz, and optimisation of the conversion efficiency. A global analysis tool, based on the iterative method was developed and used to validate the feasibility of this concept by this method. The Schottky diode was modeled using surface impedance. The dual circular polarization rectenna with microstrip technology has been optimized and characterized experimentally operating at 2.45 GHz. It includes the property of harmonic rejections. Two accesses can receive either direction LHCP or RHCP sense. The conversion efficiency of 63% has been measured with a power density of 0.525 mW/cm². A DC voltage of 2.82V was measured across an optimum load of 1.6 kohm
|
106 |
UHF energy harvester in CMOS technologyMichelon, Dino 26 April 2016 (has links)
Un des défis majeurs de l’Internet des Objets et, plus généralement, des tous les réseaux de capteurs sans fils, c’est l’alimentation de chaque nœud connecté. La solution la plus commune est d’équiper chaque dispositif d’une batterie mais cela introduit plusieurs contraintes, qui mettent en question la faisabilité de cette approche sur le long terme (durée de vie limité, couts de gestion élevé, empreinte écologique).Cette thèse développe une possible solution basée sur la transmission sans-fils de l’énergie. Un récupérateur d’énergie RF, composé d’une antenne, un redresseur haute-fréquence et un convertisseur élévateur, est présenté. Ce système permet de récupérer les ondes électromagnétiques et de produire une tension continue en sortie, qui peut être utilisé pour alimenter des microcontrôleurs ou des capteurs. L’absence d’une batterie interne augmente la flexibilité globale, surtout pour les situations où le remplacement n’est pas possible (ex. dispositifs implantés, nombre élevé de nœuds, milieux dangereux). Une étude approfondie sur les redresseur intégrés ultra-haute-fréquence de type Schottky et MOS a été mené ; plusieurs topologies ont été analysées et optimisées. De plus, l’utilisation d’un convertisseur élévateur a été envisagée, dans le but d’accroitre la tension en sortie ; une première version discrète et puis une plus compacte version intégrée, ont été abordées et testées. Ces développements ont permis d’aboutir à un récupérateur complet, potentiellement capable d’alimenter un microcontrôleur du commerce. / One of the challenges of the Internet of Things and, more in general, of every wireless sensor network is to provide electrical power to every single one of its smart nodes. A typical solution uses batteries but various major concerns reduce the long-term feasibility of this approach (limited lifetime, maintenance and replacement costs, and environmental footprint).This thesis develops a possible solution based on the wireless transmission of power. A complete RF harvester composed of an antenna, a UHF rectifier and a step-up voltage converter is presented. This system captures electromagnetic waves and converts them to a stable DC voltage to supply power to common logic circuits like microcontrollers and sensors. The lack of an internal battery provides an extended flexibility, especially when its replacement is not a viable option (ex. implanted devices, large number of nodes, dangerous environments, etc.). An in-depth study of integrated Schottky and CMOS UHF rectifiers is carried out; various topologies and optimizations are analyzed. Moreover, the use of an additional step-up converter is proposed in order to increase the system output voltage; an early discrete implementation and a final, more compact, integrated version are discussed and tested. These developments lead to a complete system capable of potentially powering an application with an off-the-shelf microcontroller.
|
107 |
MARKET ADOPTION AND IMPACT OF ELECTRIC ROADWAYS ON CRITERIA POLLUTANTS AND GREENHOUSE GAS EMISSIONSTheodora Konstantinou (5930705) 16 January 2019 (has links)
<p>Traffic is
inevitably a major source of air pollution, particularly in urban areas.
Efforts are made towards reducing emissions by improving vehicle and fuel
technology and promoting alternative, sustainable modes of transportation. Although
the emergence of EVs has shown capabilities of decreasing energy use and
emissions levels, the EV market is developing slowly mainly due to drivers’ range
anxiety and charging time. Electric roadways (ERs) have been proposed as a
solution to overcome the concerns related to EVs by converting road segments
into powered lanes where vehicles can be charged as they move along the
roadway. This technology has the potential to increase driving range, decrease
battery size and thus, lower the weight and the cost of EVs. In this context,
exploring the challenging concept of ERs comes natural. </p>
<p>Since data on the
market acceptance and the environmental implications on this technology are
limited to non-existent, this thesis has the following objectives: 1) identify
the factors that affect the short- and long-term intention to use ERs, 2) estimate
the level of adoption of the ER technology and identify characteristics of the market
segments and 3) assess the impact of ERs on criteria pollutants and greenhouse
gas emissions based on the market adoption results.</p>
<p>To achieve these objectives,
a survey of the general population in Los Angeles, California was conducted,
gathering 600 responses representative of gender and age in the area. Los Angeles
is considered a leader in electro-mobility and thus, a natural choice for the
implementation of ERs. The short-or long-term intentions to drive on ERs and purchase
an EV knowing about the availability of ERs were found to be correlated and
thus, were modeled simultaneously using a bivariate ordered probit model. The
compatibility of the ER technology with respondents’ lifestyle and needs, respondents’
tendency towards using sustainable forms of transportation, respondents’
innovativeness and perceived environmental benefits were among the most
significant variables found to affect the short-term and long-term intention to
use ERs.</p>
<p>The level of adoption of the ER technology
and corresponding market segments were identified using a combination of
Principal Component Analysis (PCA) and Cluster Analysis. Three clusters emerged from the analysis: early adopters (48.5%), mid-adopters
(27.67%) and late adopters (23.83%) that differed in terms of demographics and
socioeconomic characteristics, travel and EV charging characteristics and level
of awareness. </p>
<p>The adoption
levels found were then used to estimate the emissions change due to the
implementation of the ERs by 2050. Using the California Air Resources Board’s
(CARB) 2017 EMissions FACtor model (EMFAC). Two scenarios were examined considering
light-duty vehicles (LDVs) in a specific corridor: “with” and “without
electrification” scenarios. The results suggested that the ER technology for light-duty
vehicles has the potential to provide emission reductions of 4 to 24%. A
sensitivity analysis was also conducted to examine the effect of speed on the
results.</p>
<p>Turning to the
practical implications, this thesis can provide a foundational framework for
the evaluation of the ER technology in terms of environmental and economic
viability and set the groundwork for future research. Ultimately, the
short-term and long-term intention analysis can be used as a draft guide by
state and local agencies and inform their strategic short- or long- range plans
for mobility. By segmenting potential users, policy makers and transport
operators can be informed about the main challenges regarding the promotion of
the ER technology to distinct market segments and devise ways to accelerate its
adoption. The findings from the impact analysis of ERs on criteria pollutants
and greenhouse gases can also inform long-range transportation plans and existing
regulations and policies in California and beyond.</p>
<p> </p>
|
108 |
Etude et modélisation d’un système de transmission d’énergie et de données par couplage inductif pour des systèmes électroniques dans l’environnement automobile / Modeling of wireless power transfer system by inductive coupling for electronic systems in automotive environmentVigneau, Guillaume 12 July 2016 (has links)
Actuellement, les systèmes permettant de transférer de l’énergie dans le but de recharger les accumulateurs d’appareils électroniques sans l’emploi de câble se démocratisent davantage chaque jour. On comprend donc bien l’intérêt de tels systèmes dans des environnements embarqués et confinés tels que l’habitacle d’un véhicule. Le principe de l’induction magnétique réside dans un transfert de flux magnétique entre deux antennes inductives. Le champ magnétique servira de vecteur au transport d’une puissance électrique, puisque c’est au travers de cette création de flux magnétique que sera échangée ou transférée la puissance d’un émetteur vers un récepteur. Un tel système d’émission-réception de puissance utilisant le principe d’induction magnétique contient un émetteur, des antennes (bobines) inductives couplées et un récepteur. Un premier chapitre sera donc consacré à l’étude des antennes d’un point de vue théorique et technologique. Des modèles électromagnétiques d’antennes inductives seront développés, et après validation par corrélation avec des mesures électriques et électromagnétiques, ils seront employés au travers d’intenses simulations électromagnétiques. Ceci afin de montrer l’impact des paramètres définissant ces antennes inductives sur leurs comportements électrique et électromagnétique. Une fois les antennes inductives optimisées et leurs paramètres clés identifiés, on étudiera dans un deuxième temps les effets de l’induction magnétique lorsque qu’une antenne d’émission et une autre de réception sont présentées ensembles et mises en condition de transfert d’énergie. On mettra donc en évidence le principe de couplage magnétique entre les antennes ainsi que la notion de rendement de puissance appelé aussi efficacité de liaison. Les différents paramètres des antennes seront là aussi caractérisés afin d‘étudier leur influence sur le transfert d’énergie inductif. Le tout illustré de la même manière que précédemment, en s’appuyant sur d’intenses simulations électromagnétiques et des modèles validés par rapport à différentes méthodes de mesure. Ceci dans le but de comprendre les mécanismes de fonctionnement et d’optimisation d’un système de transfert d’énergie par induction magnétique ainsi que de proposer des règles générales de conception d’antennes inductives. Dans un troisième temps, on présentera les différents étages électroniques composant les systèmes de transfert d’énergie inductif. Une partie sera dédiée à la définition du point de vue système des éléments constituant la chaine complète d’émission et de réception. La conception, l’optimisation et la mesure des amplificateurs de puissance utilisés au niveau de l’émetteur seront également présentés. En effet, ces systèmes doivent être suffisamment performants afin de transférer des puissances capables d’alimenter des appareils électroniques de type téléphones tout en ayant un bilan de puissance efficace avec des pertes limitées. A partir de modèles de circuits émetteur et récepteur et en s’appuyant sur des simulations circuits, nous estimerons les bilans de puissances afin d’évaluer les performances et les limites des différents systèmes. Ces simulations une fois validées par mesures permettront de quantifier l’efficacité du transfert de puissance et proposer des voies d’optimisation. Ces systèmes et technologies sont de plus en plus utilisés pour l’électronique grand public et il existe actuellement plusieurs standards régissant le transfert d’énergie inductif. Les différentes études présentées dans cette thèse seront donc orientées vers ces différentes normes, et des analogies seront réalisées tout le long du mémoire afin de mettre en exergue leurs différents principes de fonctionnement. / Nowadays there is a strong demand of systems allowing to transfer energy in a wirelessly way to small electronic devices. So we can well understand the interest of such systems in embedded environments such as vehicle cockpit. The principle of magnetic induction comes from a magnetic flux exchange between two inductive antennas. The magnetic field will be used to transport an electrical power from an emitter to a receiver. These systems using the magnetic induction to transfer energy contain an emitter, inductive antennas (coils) and a receiver. A first chapter will be dedicated to the antennas employed in inductive wireless power transfer systems on theoretical and technological points of views. An electromagnetic modeling of these inductive antennas will be realized and validated through correlation with measurements. Once the modeling process defined and the validations done, it will be used through intensive electromagnetic simulations in order to show the impact of antennas parameters on their electrical and electromagnetic performances. After the inductive antennas characterization and their key parameters identification done, we will study in a second time the magnetic induction effects when emission and reception antennas are placed together in order to realize an inductive power transfer. Notions of magnetic coupling which appears between inductive antennas and magnetic efficiency which characterizes how much quantities of power are transferred will be highlighted. In the same conditions as before, the impact of antennas parameters on the power transfer and magnetic coupling will be investigated through electromagnetic modeling of inductive antennas and the use of intensive electromagnetic simulations. Thus, we will have the opportunity to precisely understand the meaning of the inductive power transfer and the different ways of optimizations. By this way, we will also propose some general design guidelines for antennas employed in inductive wireless power transfer systems. A third chapter will be dedicated to the presentation of the different electronic stages used in inductive wireless power transfer systems. A part of it will be employed on the definitions of the different elements allowing the wireless power transfer on a system approach. The design, optimization and measurement of power amplifiers used on the emission stage will be presented too.. Indeed, it is necessary to have efficient power amplification in order to transfer the required power to different receivers such as phones at the same time to limit the power losses. From circuit modeling of different emitter and receiver and with circuit simulations, we will develop power budgets in order to evaluate the performances and limits of these systems. Once the simulation validated by measurement, we will be able to quantify the total power transfer efficiency and propose optimization ways. Because of the current existence of different inductive wireless power standards on the industrial market for electronic consumer, analogies with them will be done all along the different steps of this thesis in order to highlighted their different functioning principles.
|
109 |
Système de radiocommunication télé-alimenté par voie radiofréquence à 2.45 GHz / Design of radiofrequency energy harvesters in CMOS technology for low-power applicationsKarolak, Dean 27 November 2015 (has links)
Récepteurs récupérateurs d’énergie sans fil (WPR) détiennent un avenir prometteur pour la génération d'énergie électrique continue afin d’alimenter complètement ou partiellement les circuits compris dans les systèmes de communication sans fil. Applications importantes telles que l'identification par radiofréquence (RFID) et les réseaux de capteurs sans fils (WSN) fonctionnant aux bandes de fréquences UHF et SHF sont apparues, nécessitant un important effort sur la conception de WPRs d’haute efficacité pour étendre la distance de fonctionnement ou de la durée de vie de ces applications portables. Dans ce contexte, les redresseurs intégrés et les antennes sont d'un intérêt particulier, car ils sont responsables pour la tâche de conversion d'énergie. Ce travail de thèse vise à faire progresser l'étatde l'art à travers de la conception et réalisation de WPRs d’haute efficacité, dès l'antenne jusqu’au stockage de la puissance DC convertie, en explorant les défis d’interconnexion avec leur pleine intégration sur PCBs. / Wireless Powered Receivers (WPR) hold a promising future for generating a small amount ofelectrical DC energy to drive full or partial circuits in wirelessly communicating electronic devices.Important applications such as RFIDs and WSNs operating at UHF and SHF bands have emerged,requiring a significant effort on the design of high efficient WPRs to extend the operating range or thelifetime of these portable applications. In this context, integrated rectifiers and antennas are of aparticular interest, since they are responsible for the energy conversion task. This thesis work aims tofurther the state-of-the-art throughout the design and realization of high efficient WPRs from the antennaup to the storage of the converted DC power, exploring the interfacing challenges with their fullyintegration into PCBs.
|
110 |
Modélisation et conception de circuits de réception complexes pour la transmission d'énergie sans fil à 2.45 GHz / Modeling and design of Rectenna Circuits for Wireless Power Transmission et 2.45 GHzTakhedmit, Hakim 18 October 2010 (has links)
Les travaux présentés dans ce mémoire s’inscrivent dans la thématique de la transmission d’énergie sans fil, appliquée à l’alimentation à distance de capteurs, de réseaux de capteurs et d’actionneurs à faible consommation. Cette étude porte sur la conception,l’optimisation, la réalisation et la mesure de circuits Rectennas (Rectifying antennas)compacts, à faible coût et à haut rendement de conversion RF-DC.Un outil d’analyse globale, basé sur la méthode des Différences Finies dans le Domaine Temporel (FDTD), a été développé et utilisé pour prédire avec précision la sortie DC des rectennas étudiées. Les résultats numériques obtenus se sont avérés plus précis et plus complets que ceux de simulations à base d’outils commerciaux. La diode Schottky a été rigoureusement modélisée, en tenant compte de ses éléments parasites et de son boîtier SOT23, et introduite dans le calcul itératif FDTD.Trois rectennas innovantes, en technologie micro-ruban, ont été développées,optimisées et caractérisées expérimentalement. Elles fonctionnent à 2.45 GHz et elles ne contiennent ni filtre d’entrée HF ni vias de retour à la masse. Des rendements supérieurs à 80% ont pu être mesurés avec une densité surfacique de puissance de l’ordre de 0.21 mW/cm²(E = 28 V/m). Une tension DC de 3.1 V a été mesurée aux bornes d’une charge optimale de1.05 k_, lorsque le niveau du champ électrique est égal à 34 V/m (0.31 mW/cm²).Des réseaux de rectennas connectées en série et en parallèle ont été développés. Les tensions et les puissances DC ont été doublées et quadruplées à l’aide de deux et de quatre éléments, respectivement. / The work presented in this thesis is included within the theme of wireless power transmission, applied to wireless powering of sensors, sensor nodes and actuators with low consumption. This study deals with the design, optimization, fabrication and experimental characterization of compact, low cost and efficient Rectennas (Rectifying antennas).A global analysis tool, based on the Finite Difference Time Domain method (FDTD),has been developed and used to predict with a good precision the DC output of studied rectennas. The packaged Schottky diode has been rigorously modeled, taking into account the parasitic elements, and included in the iterative FDTD calculation.Three new rectennas, with microstrip technology, have been developed and measured.They operate at 2.45 GHz and they don’t need neither input HF filter nor via hole connections. Efficiencies more than 80 % have been measured when the power density is 0.21mW/cm² (E = 28 V/m). An output DC voltage of about 3.1 V has been measured with anoptimal load of 1.05 k_, when the power density is equal to 0.31mW/cm² (34 V/m).Rectenna arrays, with series and parallel interconnections, have been developed and measured. Output DC voltages and powers have been doubled and quadrupled using two andfour rectenna elements, respectively.
|
Page generated in 0.0762 seconds