• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 66
  • 15
  • 11
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 217
  • 63
  • 58
  • 34
  • 31
  • 21
  • 20
  • 18
  • 16
  • 15
  • 14
  • 14
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Desenvolvimento da metodologia de fabricação de um fio supercondutor de MgB2 / Development of the manufacturing methodology of a MgB2 superconducting wire

Eleazar José Ribeiro 20 February 2018 (has links)
A descoberta da supercondutividade no diboreto de magnésio (MgB2) em 2001 com temperatura crítica (Tc) de 39 K e campo magnético crítico superior (Hc2) (H?c2 (0)) _ 40 (T), causou uma busca frenética por materiais leves com estruturas cristalinas semelhantes e constituídos por elementos simples, e com potencial para substituir os já estabelecidos Nb-Ti e Nb3Sn na fabricação de fios e fitas supercondutoras. Entretanto, apesar de apresentar alta Tc os valores de Hc2, para o MgB2, decaem rapidamente quando submetidos a um campo magnético externo, principalmente devido ao fraco aprisionamento das linhas de fluxo magnético no material. Além disso, o processo de deformação plástica do conjunto que contém o pó granular, constituído pelos metais utilizados como barreira de difusão e como estabilizador térmico e elétrico, é desafiador, pois há dificuldades devido ao endurecimento dos metais por trabalho a frio e à acomodação do pó supercondutor. O objetivo deste trabalho é desenvolver um processo para a fabricação de fios multifilamentares de MgB2, dopado com carbono sob a forma de grafite e com a adição de diboretos com estrutura cristalina semelhante à do MgB2, além da otimização dos processos de deformação mecânica, dos tratamentos térmicos intermediários e a caracterização das propriedades cristalográficas, microestruturais e supercondutoras do fio. A metodologia utilizada para a produção do fio é a Powder-In-Tube (PIT) ex-situ com: moagem do pó realizado em moinho de alta energia, dopagem química com grafite, adição de diboreto de vanádio (VB2), inclusão de magnésio em excesso e uso de ácido esteárico (C18H36O2) como agente controlador do processo. A deformação mecânica foi feita por meio de forjamento rotativo (Rotary Swage - RS). Os resultados finais sugerem que a rota utilizada para o processo de fabricação do fio multifilamentar de MgB2 dopado com grafite e com introdução de VB2, deve ser alterada para utilizar MgB2 produzido em laboratório a partir do magnésio e de boro puros, com certificado de pureza, com o uso da metodologia in-situ, em glove-box com atmosfera controlada e com teor de oxigênio e de umidade monitorados. O processo descrito neste trabalho aperfeiçoa metodologias apresentadas na literatura e garante a integridade do fio durante todo o processo de fabricação. Além disto, sugere-se a utilização de um material de reforço externo, tais como: ferro, Glidcop (Cu-Al 15) ou aço ixox (SUS 316L) para que o fio tenha maior resistência mecânica à tração e menor custo. / The discovery of superconductivity in magnesium diboride (MgB2) in 2001 with critical temperatute (Tc) of 39 K and upper critical magnetic field (Hc2) (H?c 2 (0)) _ 40 (T), caused a frenetic search for lightweight materials with similar crystalline structures and constituded by simple elements, and with potential to replace the already traditional Nb-Ti and Nb3Sn in the manufacturing of superconducting wires and tapes. However, despite the MgB2 has high Tc, the Hc2 values decay rapidly when an external magnetic field is applied, mainly due to the poor pinning of the magnetic flux lines in the material. Furthermore, the plastic deformation process of the set containing the granular powder, constituded of metals used as diffusion barrier termal and electric stabilizer, is a challenge, because the hardening of the metals by cold working and the accommodation of the superconducting powder. The objective of this work is to develop a process for the manufacture of multifilamentary MgB2 wires, doped with carbon in the form of graphite and addition of diborides with crystalline structure similar to MgB2, as well as the optimization of the mechanical deformation processes, of the intermediate heat treatments and the characterization of the crystallographic, microstructural and superconducting properties of the wire. The methodology used for the production of the wire was the Powder-In-Tube (PIT) ex-situ with: milling of the powder in a high energy ball mill, chemical doping with graphite, addition of vanadium diboride (VB2), magnesium in excess and use of stearic acid (C18H36O2) as a process controlling agent. The mechanical deformation was done by means of rotary swaging. The final results suggest that the route used for the fabrication process of the graphite-doped MgB2 multifilamentary wire with introduction of VB2, should be changed to use MgB2 produced in laboratory from pure magnesium and boron, with a certificate of purity, using the in-situ methodology in a glove-box with controlled and monitored atmosphere with respect to the oxygen and humidity contents. The process described in this work improves methodologies shown in literature and guarantees the integrity of the wire during the entire fabrication process. In addition, it is suggested the use of an external reinforcing material, such as: iron, Glidcop (Cu-Al 15) or stainless steel (SUS 316L), so that the wire has a higher mechanical tensile strength and a lower cost.
82

Mise en oeuvre et optimisation d'un revêtement conducteur poly(époxy) : fils submicroniques d'argent pour la protection foudre de structures aéronautiques / Processing and optimisation of a conductive poly(epoxy) : silver submicronic wires coating for lightning strike protection of aircraft structural composite parts

Bedel, Vincent 21 September 2018 (has links)
Ce travail s'inscrit dans une problématique de mise en œuvre et d'étude d'un revêtement conducteur polymère extrinsèque pour la protection foudre des structures aéronautiques de type composite polymère renforcé fibres de carbone (CFRP). Le revêtement est composé d'une matrice poly(époxy) haute performance bi-composant fluide à température ambiante et de fils submicroniques d'argent à haut facteur de forme (AgNWs) obtenus par un procédé polyol. Une attention particulière a été portée à l'étude de l'influence des AgNWs sur la modification de la cinétique de réticulation du système, sa structure physique et sa mobilité moléculaire. La mesure des niveaux de conductivité volumique et surfacique du revêtement met en avant un seuil de percolation électrique pour un taux volumique en AgNWs inférieur à 1%. Une approche originale permettant la détermination des mécanismes de conduction a été effectuée au moyen des mesures de densités de courant imposées dans le revêtement en fonction du taux de charge en AgNWs et de la température. L'analyse du comportement électrique des échantillons aux valeurs critiques de densités de courant a permis d'appréhender les phénomènes responsables des mécanismes de dégradation. Enfin des essais foudres ont été effectués sur des substrats représentatifs d'une structure aéronautique avec différents types de protection foudre. L'analyse des échantillons par ultrasons après essais foudres a mis en avant l'efficacité du revêtement composite polymère conducteur poly(époxy)/AgNWs développé pour lutter contre le délaminage structurel du CFRP. / This work deals with the processing and the study of an extrinsic conductive polymer coating for the lightning strike protection of the aircraft carbon fibre reinforced polymer (CFRP) structural parts. The coating consist in a low viscosity bi component high performance poly(epoxy) matrix and silver submicronic wires with a high aspect ratio (AgNWs) obtained by a polyol process. The kinetic parameters, the physical structure and the molecular mobility of the matrix had been investigated as a function of the filler content. The surface and bulk conductivities had been measured as a function of filler content. It exhibits a percolation threshold below 1% in volume. The conduction mechanisms had been studied following an uncommon method of current density measurement as a function of the AgNWs content and the temperature. The critical electrical behaviour of each sample had been investigated through the current density method. It has permitted to understand the phenomenon responsible for the composite's degradation. Finally, lightning strike tests on representative configurations had been carried out. The ultrasonic inspections have highlighted the efficiency of the poly(epoxy)/AgNWs coating to avoid the structural delamination of the CFRP.
83

Studies of Magnetic Logic Devices

Hu, Likun January 2012 (has links)
Magnetic nanoscale devices have shown great promise in both research and industry. Magnetic nanostructures have potential for non-volatile data storage applications, reconfigurable logic devices, biomedical devices and many more. The S-state magnetic element is one of the promising structures for non-volatile data storage applications and reconfigurable logic devices. It is a single-layer logic element that can be integrated in magnetoresistive structures. We present a detailed micromagnetic analysis of the geometrical parameter space in which the logic operation is carried out. The influence of imperfections, such as sidewall roughness and roundness of the edge is investigated. Magnetic nanowires are highly attractive materials that has potential for applications in ultrahigh magnetic recording, logic operation devices, and micromagnetic and spintronic sensors. To utilize applications, manipulation and assembly of nanowires into ordered structures is needed. Magnetic self-alignment is a facile technique for assembling nanowires into hierarchical structures. In my thesis, I focus on synthesizing and assembling nickel nanowires. The magnetic behaviour of a single nickel nanowire with 200~nm diameter is investigated in micromagnetic simulations. Nickel nanowires with Au caps at the ends were synthesized by electrochemical deposition into nanopores in alumina templates. One-dimensional alignment, which forms chains and two-dimensional alignment, which forms T-junctions as well as cross-junctions are demonstrated. Attempts to achieve three-dimensional alignment were not successful yet. I will discuss strategies to improve the alignment process.
84

Reduced Density Matrix Approach to the Laser-Assisted Electron Transport in Molecular Wires

Welack, Sven 07 April 2006 (has links) (PDF)
The electron transport through a molecular wire under the influence of an external laser field is studied using a reduced density matrix formalism. The full system is partitioned into the relevant part, i.e. the wire, electron reservoirs and a phonon bath. An earlier second-order perturbation theory approach of Meier and Tannor for bosonic environments which employs a numerical decomposition of the spectral density is used to describe the coupling to the phonon bath and is extended to deal with the electron transfer between the reservoirs and the molecular wire. Furthermore, from the resulting time-nonlocal (TNL) scheme a time-local (TL) approach can be determined. Both are employed to propagate the reduced density operator in time for an arbitrary time-dependent system Hamiltonian which incorporates the laser field non-perturbatively. Within the TL formulation, one can extract a current operator for the open quantum system. This enables a more general formulation of the problem which is necessary to employ an optimal control algorithm for open quantum systems in order to compute optimal control fields for time-distributed target states, e.g. current patterns. Thus, we take a fundamental step towards optimal control in molecular electronics. Numerical examples of the population dynamics, laser controlled current, TNL vs. TL and optimal control fields are presented to demonstrate the diverse applicability of the derived formalism.
85

Self-assembled quantum dots in advanced structures

Creasey, Megan Elizabeth 09 July 2013 (has links)
Advances in nanofabrication have bolstered the development of new optical devices with potential uses ranging from conventional optoelectronics, such as lasers and solar cells, to novel devices, like single photon or entangled photon sources. Quantum encryption of optical communications, in particular, requires devices that couple efficiently to an optical fiber and emit, on demand, indistinguishable photons. With these goals in mind, ultrafast spectroscopy is used to study the electron dynamics in epitaxially grown InAs/GaAs quantum dots (QDs). Quantifying the behavior of these systems is critical to the development of more efficient devices. Studies of two newly developed InGaAs QD structures, quantum dot clusters (QDCs) and QDs embedded in photonic wires, are presented herein. GaAs photonic wires with diameters in the range of 200 to 250 nm support only the fundamental HE11 guided mode. To fully quantify these new systems, the emission dynamics of QDs contained within wires in a large range of diameters are studied. Time correlated single photon counting measurements of the ground state exciton lifetimes are in very good agreement with predicted theoretical values for the spontaneous emission rates. For diameters smaller than 200 nm, QD emission into the HE11 mode is strongly inhibited and non-radiative processes dominate the decay rate. The best small diameter wires exhibit inhibition factors as high as 16, on par with the current state of the art for photonic crystals. The QDCs are the product of a hybrid growth technique that combines droplet heteroepitaxy with standard Stranski-Krastanov growth to create many different geometries of QDs. The work presented in this dissertation concentrates specifically on hexa-QDCs consisting of six InAs QDs around a GaAs nanomound. The first ever spectral and temporal properties of QDs within individual hexa-QDCs are presented. The QDs exhibit narrow exciton resonances with good temperature stability, indicating that excitons are well confined within individual QDs. A distinct biexponential decay is observed even at the single QD level. This behavior suggests that non-radiative decay mechanisms and exciton occupation of dark states play a significant role in the recombination dynamics in the QDCs. / text
86

On the Scales of Turbulent Motion at High Reynolds Numbers

Sinhuber, Michael 01 June 2015 (has links)
No description available.
87

Development of Reactive Ion Scattering Spectrometry (RISS) as an Analytical Surface Characterization Technique

Joyce, Karen Elaine January 2008 (has links)
Reactive ion scattering spectrometry (RISS) utilizing low energy (tens of eV) polyatomic ions was employed to characterize self-assembled monolayers (SAMs) on gold. The terminal composition of halogenated SAMs, chemisorption motifs of disulfide and diselenide SAMs, and electron transfer properties of molecular wire containing SAMs were interrogated to develop the versatility of RISS as an analytical surface characterization technique.Novel halogen terminated SAMs were examined for their ability to convert translational to vibrational energy of colliding projectile ions. A general increasing energy deposition trend correlated with increasing terminal mass with the exception of the iodine functionality. Increased amounts of surface abstractions and sputtering from C12I suggest competitive ion-surface interactions account for less than predicted energy deposition results. Mixed films of CH2Br and CH3 terminal groups elucidated interfacial surface crowding discerned by energy deposition results.Thiol and disulfide based SAMs were shown by RISS comparisons to be dissimilar in structure. Terminal orientation, however, was the same based on ion-surface reactions, disproving the proposed dimer model of disulfide SAMs. Ion-surface reactions and electron transfer properties of disulfide surfaces suggested greater percentages of c(4x2) superlattice structure than in thiol SAMs. Based on increased hydrogen reactivity, decreased methyl reactivity, and increased energy deposition results, diselenide based SAMs were more disordered than S-Au based SAMs. Electron transfer results monitored through total ion currents (TIC) showed Se-Au contacts are more conductive than S-Au attachments.Molecular wire candidates whose electron transfer capabilities are difficult to characterize by traditional techniques were characterized by RISS after being doped into matrix SAMs. Electron transfer properties were dependent on the isolating SAM matrix, dipole moments of the wires, and the potential applied to the surface. Changes in surface voltage dictated molecular wire geometry and electron transfer. Wires were annealed into preferential geometries by colliding ions, but did not operate as switches.While not related to the advancement of RISS, structural elucidation of the pharmaceutical carvidioliol was investigated by collision-induced dissociation, surface-induced dissociation, sustained off-resonance irradiation, and sustained off-resonance irradiation-resonant excitation and through gas-phase hydrogen/deuterium exchange. This molecule fragmented easily by all methods and demonstrated the chemical specificity of gas-phase hydrogen/deuterium exchange experiments.
88

Hybrid Solvers for the Maxwell Equations in Time-Domain

Edelvik, Fredrik January 2002 (has links)
The most commonly used method for the time-domain Maxwell equations is the Finite-Difference Time-Domain method (FDTD). This is an explicit, second-order accurate method, which is used on a staggered Cartesian grid. The main drawback with the FDTD method is its inability to accurately model curved objects and small geometrical features. This is due to the Cartesian grid, which leads to a staircase approximation of the geometry and small details are not resolved at all. This thesis presents different ways to circumvent this drawback, but still take advantage of the benefits of the FDTD method. An approach to avoid staircasing errors but still retain the efficiency of the FDTD method is to use a hybrid grid. A few layers of unstructured cells are used close to curved objects and a Cartesian grid is used for the rest of the domain. For the choice of solver on the unstructured grid two different alternatives are compared: an explicit Finite-Volume Time-Domain (FVTD) solver and an implicit Finite-Element Time-Domain (FETD) solver. The hybrid solvers calculate the scattering from complex objects much more efficiently compared to using FDTD on highly resolved Cartesian grids. For the same accuracy in the solution roughly a factor of 10 in memory requirements and a factor of 20 in execution time are gained. The ability to model features that are small relative to the cell size is often important in electromagnetic simulations. In this thesis a technique to generalize a well-known subcell model for thin wires, in order to take arbitrarily oriented wires in FETD and FDTD into account, is proposed. The method gives considerable modeling flexibility compared to earlier methods and is proven stable. The results show excellent consistency and very good accuracy on different antenna configurations. The recursive convolution method is often used to model frequency dispersive materials in FDTD. This method is used to enable modeling of such materials in the unstructured FVTD and FETD solvers. The stability of both solvers is analyzed and their accuracy is demonstrated by computing the radar cross section for homogeneous as well as layered spheres with frequency dependent permittivity.
89

Studies of Magnetic Logic Devices

Hu, Likun January 2012 (has links)
Magnetic nanoscale devices have shown great promise in both research and industry. Magnetic nanostructures have potential for non-volatile data storage applications, reconfigurable logic devices, biomedical devices and many more. The S-state magnetic element is one of the promising structures for non-volatile data storage applications and reconfigurable logic devices. It is a single-layer logic element that can be integrated in magnetoresistive structures. We present a detailed micromagnetic analysis of the geometrical parameter space in which the logic operation is carried out. The influence of imperfections, such as sidewall roughness and roundness of the edge is investigated. Magnetic nanowires are highly attractive materials that has potential for applications in ultrahigh magnetic recording, logic operation devices, and micromagnetic and spintronic sensors. To utilize applications, manipulation and assembly of nanowires into ordered structures is needed. Magnetic self-alignment is a facile technique for assembling nanowires into hierarchical structures. In my thesis, I focus on synthesizing and assembling nickel nanowires. The magnetic behaviour of a single nickel nanowire with 200~nm diameter is investigated in micromagnetic simulations. Nickel nanowires with Au caps at the ends were synthesized by electrochemical deposition into nanopores in alumina templates. One-dimensional alignment, which forms chains and two-dimensional alignment, which forms T-junctions as well as cross-junctions are demonstrated. Attempts to achieve three-dimensional alignment were not successful yet. I will discuss strategies to improve the alignment process.
90

A comparative study of extraction treatment efficiency using conventional edgewise brackets and self-ligating brackets

Cox, Stan C. January 2008 (has links) (PDF)
Thesis (M.S.)--University of Alabama at Birmingham, 2008. / Title from first page of PDF file (viewed May 30, 2008). Includes bibliographical references.

Page generated in 0.0606 seconds