• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 205
  • 45
  • 43
  • 22
  • 15
  • 9
  • 7
  • 7
  • 6
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 431
  • 103
  • 77
  • 66
  • 62
  • 61
  • 60
  • 48
  • 46
  • 45
  • 44
  • 43
  • 43
  • 40
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

N,N-diethyl-N'-naphthoylacylchalcogourea to metal (II)complexes as precursors for ternary metal chalcogenide thin films via AACVD

Ezenwa, Emmanuel January 2016 (has links)
In this thesis complexes of acylchalcogoureas with cadmium (II), lead (II) and nickel (II) have been synthesised and investigated as single source precursors for the formation of metal chalcogenide thin films viaaerosol assisted chemical vapour deposition (AACVD). Routes to binary thin films have been explored using homoleptic complexes of the general structure bis(N,N-diethyl-N'-naphthoylchalcogoureato)metal(II). Analysis of the thin films produced showed the successful deposition of the binary materials from the synthesised complexes when characterised by powder XRD, ICP-OES, SEM and EDX. Routes to ternary thin films with the general structure MExE'1-x, where M represents a metal (Cd, Ni and Pb); and E chalcogen (S or Se) have been investigated using heteroleptic metal complexes of cadmium, nickel or lead including different chalcogen containing N,N-diethyl-N'-naphthoylchalcogoureato ligands and diethyldithiocarbamate. The precursors were fully characterised and novel compounds had their crystal structures determined. The heteroleptic complexes were thermolysed by AACVD forming the MExE'1-x thin films. In the cases of lead, nickel and cadmium the thin films produced showed that the composition of the film tended heavily towards the metal selenide. Ternary films of type MS1-xSex was prepared by mixing their binary precursors of type bis(N,N-diethyl-N'-naphthoylselenoureato)metal(II) and bis(N,N-diethyl-N'-naphthoylthioureato)metal(II) [metal = Cd, Ni and Pb]. In the case of lead and cadmium chalcogenide films variation of the ratio of sulphur and selenium containing precursors allowed for the full transition in composition between metal sulphide and metal selenide. In the case of CdS1-xSexthe band gap of the films was determined from UV-visible spectroscopy to vary from 2.4 eV (CdS) to 1.7 eV(CdSe). In the case of NiS1-xSex the movement from sulphide to selenide was less simple with multiple phases of nickel chalcogenides produced.
232

Modification des propriétés de conduction ionique d'électrolytes pérovskites à base de lithium par substitution

Groleau, Laurence 12 1900 (has links)
No description available.
233

Black liquor gasification : experimental stability studies of smelt components and refractory lining

Råberg, Mathias January 2007 (has links)
<p>Black liquors are presently combusted in recovery boilers where the inorganic cooking chemicals are recovered and the energy in the organic material is converted to steam and electricity. A new technology, developed by Chemrec AB, is black liquor gasification (BLG). BLG has more to offer compared to the recovery boiler process, in terms of on-site generation of electric power, liquid fuel and process chemicals. A prerequisite for both optimization of existing processes and the commercialization of BLG is better understanding of the physical and chemical processes involved including interactions with the refractory lining. The chemistry in the BLG process is very complex and to minimize extensive and expensive time-consuming studies otherwise required accurate and reliable model descriptions are needed for a full understanding of most chemical and physical processes as well as for up-scaling of the new BLG processes. However, by using these calculated model results in practice, the errors in the state of the art thermochemical data have to be considered. An extensive literature review was therefore performed to update the data needed for unary, binary and higher order systems. The results from the review reviled that there is a significant range of uncertainty for several condensed phases and a few gas species. This resulted in experimental re-determinations of the binary phase diagrams sodium carbonate-sodium sulfide (Na2CO3-Na2S) and sodium sulfate-sodium sulfide (Na2SO4-Na2S) using High Temperature Microscopy (HTM), High Temperature X-ray Diffraction (HT-XRD) and Differential Thermal Analysis (DTA). For the Na2CO3-Na2S system, measurements were carried out in dry inert atmosphere at temperatures from 25 to 1200 °C. To examine the influence of pure CO2 atmosphere on the melting behavior, HTM experiments in the same temperature interval were made. The results include re-determination of liquidus curves, in the Na2CO3 rich area, melting points of the pure components as well as determination of the extent of the solid solution, Na2CO3(ss), area. The thermal stability of Na2SO3 was studied and the binary phase diagram Na2SO4-Na2S was re-determined. The results indicate that Na2SO3 can exist for a short time up to 750 °C, before it melts. It was also proved that a solid/solid transformation, not reported earlier, occurs at 675 ± 10 °C. At around 700 °C, Na2SO3 gradually breaks down within a few hours, to finally form the solid phases Na2SO4 and Na2S. From HTM measurements a metastable phase diagram including Na2SO3, as well as an equilibrium phase diagram have been constructed for the binary system Na2SO4-Na2S. Improved data on Na2S was experimentally obtained by using solid-state EMF measurements. The equilibrium constant for Na2S(s) was determined to be log Kf(Na2S(s)) (± 0.05) = 216.28 – 4750(T/K)–1 – 28.28878 ln (T/K). Gibbs energy of formation for Na2S(s) was obtained as ΔfG°(Na2S(s))/(kJ mol–1) (± 1.0) = 90.9 – 4.1407(T/K) + 0.5415849(T/K) ln (T/K). The standard enthalpy of formation of Na2S(s) was evaluated to be ΔfH°(Na2S(s), 298.15 K)/(kJ mol–1) (± 1.0) = – 369.0. The standard entropy was evaluated to be S°(Na2S(s), 298.15 K)/(J mol–1 K–1) (± 2.0) = 97.0. Analyses of used refractory material from the Chemrec gasifier were also performed in order to elucidate the stability of the refractory lining. Scanning electron microscopy (SEM) analysis revealed that the chemical attack was limited to 250-300 μm, of the surface directly exposed to the gasification atmosphere and the smelt. From XRD analysis it was found that the phases in this surface layer of the refractory were dominated by sodiumaluminosilicates, mainly Na1.55Al1.55Si0.45O4.</p>
234

Growth of Pt/Mg Multilayer X-ray Mirrors : Effects of Sputter Yield Amplification / Nil : Nil

Sohail, Hafiz Muhammad January 2009 (has links)
<p>This thesis report is focused on the growth of Pt/Mg multilayers and the studies of the sputter yield amplification effect in these. The main application is to use the multilayers as X-ray mirrors reflecting an X-ray wavelength of 17 Å. This wavelength is important for astronomical applications in general, and solar imaging applications in particular.</p><p>For periodic X-ray multilayer mirrors only a certain specific wavelength of X-rays can be reflected. What wavelength that is reflected depends on the individual layer thicknesses of the materials that are constituting the multilayer. These thicknesses can be determined using modified Bragg’s law and are approximately a quarter of the wavelength.</p><p>In order to obtain the exact desired layer thickness of each individual layer it is necessary to understand the growth processes and the effects that are going on during deposition of such multilayer mirrors. It has been shown that when depositing multilayers consisting of one very light and one very heavy material, like e.g. Pt and Mg, the deposition rate of the light element is non-linear with deposition time for thin layers. This is because of backscattered energetic neutrals from the heavy target material, which affects the growing film. Furthermore, a sputter yield amplification is present for thin layers when a light element is grown on top of a heavy element, i.e. for Mg on top of Pt.</p><p>Dual DC magnetron sputtering has been used to grow the Pt/Mg multilayers, and the influence of the backscattered energetic neutrals and the sputter yield amplification effect has been studied for Ar and Kr sputtering gases at pressures ranging from 3 up to 9 mTorr. The individual layer thicknesses have been obtained from simulations of hard X-ray reflectivity measurements using the IMD program. The number of backscattered energetic neutrals and their energies at the target have been calculated using the TRIM code.</p><p>Using the results obtained it is now possible to predict and compensate for the non-linear deposition rate of Mg.</p>
235

Behavior of cutting tool coating material Ti<sub>1-x</sub>Al<sub>x</sub>N at high pressure and high temperature / Faser i Ti<sub>1-x</sub>Al<sub>x</sub>N-ytbeläggningar vid högt tryck och hög temperatur

Dilner, David January 2009 (has links)
<p>The high pressure and high temperature (HPHT) behavior of Ti<sub>1-x</sub>Al<sub>x</sub>N coatings on cutting tool inserts have been of interest for this diploma work. A literature study of HPHT techniques as well as measurement methods has been done. A diamond anvil cell (DAC) would be a good device to achieve high pressure and high temperature conditions on small samples. Another way to obtain these conditions would be a cutting test, which has been performed on a Ti<sub>1-x</sub>Al<sub>x</sub>N coated cutting tool insert with x = 0.67. Also a cubic press could be used to apply HPHT on a     Ti<sub>1-x</sub>Al<sub>x</sub>N sample or a large volume press on a whole cutting tool insert. To measure hardness on thin coatings a nanoindentor could be used, which have been done on heat-treated Ti<sub>0.33</sub>Al<sub>0.67</sub>N and TiN samples. X-ray diffraction (XRD) is a suitable method to measure phase composition of a sample and was performed on the cutting tested insert as well as on an untreated reference insert. Three ways to continue this project have been outlined all starting with more comprehensive cutting tests.</p>
236

Synthesis and characterisation of ZnO nanoparticles.An experimental investigation of some of their size dependent quantum effects

Jacobsson, T. Jesper January 2010 (has links)
<p>ZnO nanoparticles in the size range 2.5–7 nm have been synthesised by a wet chemical method where ZnO particles were grown in basic zinc acetate solution. The optical band gap increases when the size of the particles decreases. An empirical relation between the optical band gap given from absorption measurements, and particle size given from XRD measurements has been developed and compared to other similar relations found in the literature.</p><p>   Time resolved UV-Vis spectroscopy has been used to follow the growth of particles in situ in solution. The data show that the growth mechanism not can be described by a simple Oswald ripening approach and nor by an exclusive agglomeration of smaller clusters into larger particles. The growth mechanism is more likely a combination of the proposed reaction themes. The data also reveal that particle formation do not demand a heating step for formation of the commonly assumed initial cluster Zn<sub>4</sub>O(CH<sub>3</sub>COO)<sub>6</sub>.</p><p>   Steady state fluorescence has been studied as a function of particle size during growth in solution. These measurements confirm what is found in the literature in that the visible fluorescence is shifted to longer wavelengths and loses in intensity as the particles grow. Some picosecond spectroscopy has also been done where the UV fluorescence has been investigated. From these measurements it is apparent that the lifetime of the fluorescence increases with particle size.</p><p>    The phonon spectrum of ZnO has been studied with Raman spectroscopy for a number of different particle sizes. From these measurements it is clear that there is a strong quenching of the phonons due to confinement for the small particles, and the only clearly observed vibration is one at 436 cm<sup>-1</sup> which intensity strongly increases with particle size.   </p>
237

Employing Metal Iodides and Oxygen in ALD and CVD of Functional Metal Oxides

Sundqvist, Jonas January 2003 (has links)
<p>Many materials exhibit interesting and novel properties when prepared as thin films. Thin film metal oxides have had an impact on the technological progress of the microelectronics mainly due to their electrical and optical properties. Since the future goes towards the nanometre scale there is an increasing demand for thin film deposition processes that can produce high quality metal oxide films in this scale with high accuracy.</p><p>This thesis describes atomic layer deposition of Ta<sub>2</sub>O<sub>5</sub>, HfO<sub>2</sub> and SnO<sub>2</sub> thin films and chemical vapour deposition of SnO<sub>2</sub> thin films. The films have been deposited by employing metal iodides and oxygen as precursors. All these processes have been characterised with regards to important processing parameters. The films themselves have been characterised by standard thin film analysing techniques such as x-ray diffraction, scanning electron microscopy, atomic force microscopy and transmission electron microscopy. The chemical and physical properties have been coupled to critical deposition parameters. Furthermore, additional data in the form of electrical and gas sensing properties important to future applications in the field of microelectronics have been examined.</p><p>The results from the investigated processes have shown the power of the metal iodide based atomic layer deposition (ALD) and chemical vapour deposition (CVD) processes in producing high quality metal oxide thin films. Generally no precursor contaminations have been observed. In contrast to metal chloride based processes the metal iodide processes produces films with a higher degree of crystalline quality when it comes to phase purity, roughness and epitaxy. The use of oxygen as oxidising precursor allowed depositions at higher temperatures than normally employed in water based ALD processes and hence a higher growth rate for epitaxial growth was possible.</p>
238

Les complexes métallo-organiques au cuivre (II), une nouvelle famille d'inhibiteurs de la protéase du virus de l'immunodéficience humaine de type 1/Metallo-organic copper (II) complexes as a new family of HIV-1 protease inhibitors

Ledecq, Marie 16 December 2004 (has links)
La protéase du VIH-1 est une cible de choix dans le traitement du SIDA, car l’inhibition de son activité protéolytique contrecarre la réplication virale. Dans ce contexte, une approche de conception de novo d’inhibiteurs non peptidiques de cet enzyme, réalisée au sein de notre laboratoire, avait permis d’épingler une famille originale de complexes métallo-organiques au cuivre (II). Au cours de cette thèse, nous avons entrepris la caractérisation physico-chimique et structurale de ces composés afin d’élucider leur mode d’interaction avec la protéase, en nous appuyant sur diverses techniques expérimentales (DRX, RPE, ESI-MS) et théoriques(mécanique moléculaire, SIBFA). En particulier, nous avons montré que la stabilité thermodynamique de ces complexes en solution était indispensable à toute activité biologique. L’adaptation de la méthode SIBFA aux complexes au cuivre (II) nous a permis d’étudier les phénomènes énergétiques intervenant dans leur stabilité. Enfin, nous avons réuni les critères structuraux responsables de l’activité anti-protéolytique de ces complexes au sein d’un modèle pharmacophorique optimalisé./HIV-1 protease is a main target for the AIDS treatment, because its inhibition blocks the viral replication. De novo drug design, previously conducted in our laboratory, had pointed out several copper (II) chelates as a new family of non peptidic protease inhibitors. In order to provide a better understanding of their structure-activity relationships, we performed the physico-chemical characterization of these compounds using experimental (XRD, EPR, ESIMS)and theoretical (molecular mechanics, SIBFA method) techniques. We demonstrated that the thermodynamic stability of the complexes is an essential property to provide inhibitory activity. The SIBFA procedure adapted to copper (II) complexes helped us to study the energetics involved in the stability process. From our results, we derived a pharmacophore model describing the structural properties needed to achieve a good inhibition of the enzyme.
239

Black liquor gasification : experimental stability studies of smelt components and refractory lining

Råberg, Mathias January 2007 (has links)
Black liquors are presently combusted in recovery boilers where the inorganic cooking chemicals are recovered and the energy in the organic material is converted to steam and electricity. A new technology, developed by Chemrec AB, is black liquor gasification (BLG). BLG has more to offer compared to the recovery boiler process, in terms of on-site generation of electric power, liquid fuel and process chemicals. A prerequisite for both optimization of existing processes and the commercialization of BLG is better understanding of the physical and chemical processes involved including interactions with the refractory lining. The chemistry in the BLG process is very complex and to minimize extensive and expensive time-consuming studies otherwise required accurate and reliable model descriptions are needed for a full understanding of most chemical and physical processes as well as for up-scaling of the new BLG processes. However, by using these calculated model results in practice, the errors in the state of the art thermochemical data have to be considered. An extensive literature review was therefore performed to update the data needed for unary, binary and higher order systems. The results from the review reviled that there is a significant range of uncertainty for several condensed phases and a few gas species. This resulted in experimental re-determinations of the binary phase diagrams sodium carbonate-sodium sulfide (Na2CO3-Na2S) and sodium sulfate-sodium sulfide (Na2SO4-Na2S) using High Temperature Microscopy (HTM), High Temperature X-ray Diffraction (HT-XRD) and Differential Thermal Analysis (DTA). For the Na2CO3-Na2S system, measurements were carried out in dry inert atmosphere at temperatures from 25 to 1200 °C. To examine the influence of pure CO2 atmosphere on the melting behavior, HTM experiments in the same temperature interval were made. The results include re-determination of liquidus curves, in the Na2CO3 rich area, melting points of the pure components as well as determination of the extent of the solid solution, Na2CO3(ss), area. The thermal stability of Na2SO3 was studied and the binary phase diagram Na2SO4-Na2S was re-determined. The results indicate that Na2SO3 can exist for a short time up to 750 °C, before it melts. It was also proved that a solid/solid transformation, not reported earlier, occurs at 675 ± 10 °C. At around 700 °C, Na2SO3 gradually breaks down within a few hours, to finally form the solid phases Na2SO4 and Na2S. From HTM measurements a metastable phase diagram including Na2SO3, as well as an equilibrium phase diagram have been constructed for the binary system Na2SO4-Na2S. Improved data on Na2S was experimentally obtained by using solid-state EMF measurements. The equilibrium constant for Na2S(s) was determined to be log Kf(Na2S(s)) (± 0.05) = 216.28 – 4750(T/K)–1 – 28.28878 ln (T/K). Gibbs energy of formation for Na2S(s) was obtained as ΔfG°(Na2S(s))/(kJ mol–1) (± 1.0) = 90.9 – 4.1407(T/K) + 0.5415849(T/K) ln (T/K). The standard enthalpy of formation of Na2S(s) was evaluated to be ΔfH°(Na2S(s), 298.15 K)/(kJ mol–1) (± 1.0) = – 369.0. The standard entropy was evaluated to be S°(Na2S(s), 298.15 K)/(J mol–1 K–1) (± 2.0) = 97.0. Analyses of used refractory material from the Chemrec gasifier were also performed in order to elucidate the stability of the refractory lining. Scanning electron microscopy (SEM) analysis revealed that the chemical attack was limited to 250-300 μm, of the surface directly exposed to the gasification atmosphere and the smelt. From XRD analysis it was found that the phases in this surface layer of the refractory were dominated by sodiumaluminosilicates, mainly Na1.55Al1.55Si0.45O4.
240

Contribution à l'étude de techniques de siliciuration avancées pour les technologies CMOS décananométriques

Breil, Nicolas 15 May 2009 (has links) (PDF)
Dans le cadre de la réduction des dimensions des technologies CMOS, le module de jonction apparaît comme un point bloquant pour l'amélioration des performances. En particulier, la hauteur de barrière entre le siliciure et le silicium limite le courant passant du transistor. Cette thèse adresse spécifiquement la problématique du contrôle de la hauteur de barrière suivant deux directions. D'une part, nous étudions l'intérêt d'une modification du métal formant le siliciure. D'autre part, nous évaluons le potentiel des techniques de ségrégation de dopants pour la modulation de la hauteur de barrière. Dans un premier temps, nous démontrons les difficultés liées à l'intégration des siliciures de type n (ErSi). Par ailleurs, nous mettons en évidence le fort potentiel du siliciure de platine (PtSi). En effet, ce matériau présente une stabilité thermique supérieure au siliciure de référence (NiSi) et montre une faible barrière à l'injection de trous. De plus, nous montrons que les techniques de ségrégation de dopants permettent d'obtenir de faibles hauteurs de barrières pour l'injection des électrons. Le PtSi apparaît donc comme un candidat à fort potentiel pour les futures technologies CMOS. Après avoir montré les inconvénients majeurs posés par l'intégration auto-alignée du PtSi grâce au procédé standard par eau régale, nous proposons une nouvelle méthode de retrait sélectif basée sur la transformation du métal non réagi en un germaniure facilement retiré par des chimies conventionnelles. En conclusion, nous intégrons le PtSi dans un procédé de fabrication industriel afin de démontrer des performances électriques à l'état de l'art des technologies CMOS les plus avancées.

Page generated in 0.0449 seconds